ATLAS, chef d’œuvre de Boston Dynamics, un compagnon robotique qui sera incontournable sur Mars

On connait bien les dangers auxquels les hommes seront physiquement confrontés sur Mars. Ils résulteront d’abord de l’isolement et de la gravité. L’isolement, parce qu’aucun transport depuis la Terre ou depuis Mars ne sera possible en dehors des fenêtres ouvertes par l’évolution respective des planètes autour du Soleil (cycles synodiques différents, de 26 mois pour Mars et de 12 mois pour la Terre). La gravité, plus faible (0,38g), parce qu’on ne sait pas comment lutter contre, en dehors de l’exercice physique (ou le port de vêtements pesants ou sollicitant les muscles) et parce que ce qui se passe à l’intérieur du corps restera toujours soumis à cette gravité différente (moins d’effort nécessaire à la pompe cardiaque pour pulser le sang vers le haut du corps et notamment le cerveau). On ne pourra en évaluer les conséquences que sur la durée, après les premières missions habitées. Au-delà, il faudra « faire-avec » toutes sortes de risques dont on pourra relativement bien se protéger à l’intérieur de la base habitée mais auxquels on restera exposé et vulnérable lors des « sorties », les mieux-nommées « EVA » (« extra-vehicular activities »).

Le remède à cette situation de danger présentée par « l’extérieur » mais en même temps d’impérieuse nécessité de pouvoir y exercer une activité, sera la robotique. Dans cette perspective les travaux de la Société Boston Dynamics* nous ouvrent des possibilités extraordinaires qui « tombent à pic » pour nous préparer à nous installer puis à vivre sur Mars.

*La société Boston Dynamics qui a commencé comme spin-off du MIT en 1992, est installée aux Etats-Unis. Après être « passée dans les mains » de Google, elle appartient aujourd’hui au chaebol Hyundai, via Hyundai Motor Group, pour 80%, et au financier Softbank (Japon) pour 20%. Ces vicissitudes s’expliquent par des “perspectives de rentabilité incertaines”.

Il faut dire en préambule que sur Mars toutes sortes de robots seront utiles sinon indispensables, et utilisables, dotés d’une programmation plus ou moins sophistiquée et d’une possibilité de recours à toutes sortes de données, ce qui permettra une intelligence artificielle plus ou moins développée selon les besoins.

Après l’incontournabilité de la nécessité de satisfaire le besoin d’activité à l’extérieur, la deuxième contrainte dimensionnante sera le besoin de mobilité car l’utilité principale des robots sera l’observation, l’exploration et la construction d’infrastructure sur une terre vierge. Enfin la troisième sera la robustesse car toute réparation sera coûteuse en disponibilité, en temps et en énergie.

Pour faire face à ces besoins, le robot que je pense le plus adapté (en dehors des véhicules robotiques « classiques ») sera l’humanoïde « ATLAS » (Agile Anthropomorphic Robot) de Boston Dynamics* assisté d’« animats » (« animal » +  « material », robots conçus pour se comporter comme des animaux). On en voit de temps en temps des vidéos et les plus récentes montrent qu’ils peuvent atteindre des performances extraordinaires (voir lien ci-dessous). Pour parler d’abord d’Atlas, l’intérêt n’est pas tant qu’il ressemble visuellement à l’homme mais qu’il peut effectuer à la place de l’homme toutes les taches physiques que l’homme devrait autrement effectuer lui-même : marcher sur un terrain inégal, sauter, escalader, porter, saisir, manœuvrer, manipuler, voir enfin via des caméras équipant sa tête avec retransmission de la chose vue sur écran à distance. On peut aussi sans doute envisager de renforcer son squelette ou de lui adapter un exosquelette pour porter des charges particulièrement lourdes. Quoique le transport puisse être effectué par des animats (voir ci-dessous), les manipulations de charges lourdes (déchargement d’un starship par exemple) peuvent nécessiter cette adaptation.

* Boston Dynamics n’est pas la seule société qui produit des robots humanoïdes. Tesla a décidé de suivre cette voie avec “Optimus”, ou la société Figure avec “Figure-1”. Cependant Boston Dynamics a beaucoup d’avance sur ses compétiteurs.

L’intérêt de cette intermédiation robotique sera de permettre à l’homme d’éviter de sortir de la Base habitée, donc de devoir enfiler, difficilement, une combinaison qui devra être pressurisée (et au travers de laquelle la main ne pourra pas intervenir, pour s’essuyer le front par exemple), d’être exposé dans cette combinaison au risque d’accrocs qui entraineraient une dépressurisation, d’être exposé aux radiations solaires et galactiques beaucoup plus sévèrement que dans la Base puisqu’il ne saurait être question de se déplacer avec la masse de matériaux protecteurs qui procureraient une sécurité totale. L’intérêt ce sera aussi d’éviter la nécessité et la complication d’équiper l’ouvrier d’un système support-vie (pour l’homme, gaz respirables, eau et stockage avec soi d’inévitables déchets corporels le temps de toute mission un peu longue). Ce sera encore d’être exposé à des températures très basses, qui nécessiteront un système de chauffage délicat incorporé au scaphandre (les robots devront pouvoir être chauffés pour maintenir leurs fluides fonctionnels liquides mais les marges de tolérance seront plus ouvertes). Ce sera encore d’éviter le risque de blessure grave pouvant provenir de micrométéorites, rares mais non exceptionnelles puisque l’atmosphère martienne n’est pas suffisante pour y faire barrière comme en surface de la Terre. Ce sera encore de limiter la fatigue physique des astronautes compte tenu de l’importance des gestes, manipulations, efforts qui seront nécessaires pour l’installation, l’entretien puis le développement des infrastructures de la Base, de son relai de communication, du site d’extraction des ressources locales, des véhicules, des équipements divers, de l’astroport. Ce sera encore de libérer les hommes de travaux répétitifs, consommateurs de temps et à faible valeur intellectuelle ajoutée. Ce sera encore de pouvoir apporter depuis la Terre dans un espace réduit, un maximum de « travailleurs » ne nécessitant pas les mêmes conditions de confort que les hommes (et donc bien davantage de force de travail sur Mars). Ce sera enfin de limiter les besoins en traitements médicaux en les remplaçant par des traitements mécaniques (avec évidemment modularité et redondance des pièces détachées) ou informatiques.

Alors, à ce stade, certains se demanderont pourquoi l’homme devrait-il aller physiquement sur Mars et pourquoi ne pas se contenter d’y envoyer des robots à sa place ? La réponse est que du fait de la finitude de la vitesse de la lumière, il y a un décalage temporel incontournable entre Mars et la Terre, qui va de 3 à 22 minutes dans un seul sens. On ne peut pas échapper à cette contrainte et on ne peut donc mener aucune action robotisée en direct sur Mars depuis la Terre. On doit programmer, constater le résultat, reprogrammer, sans cesse. Des hommes vivant dans une base martienne, donc au plus près de leurs robots, pourront agir sur le terrain constamment en direct via leur humanoïde (éventuellement évidemment assisté d’animats ou d’autres robots) qu’ils pourront considérer comme leur avatar. A cet égard, il faut bien voir que la situation sera totalement différente sur la Lune puisque la Terre n’en est qu’à 380.000 km et que, s’il y a bien un décalage temporel d’un tout petit peu plus d’une seconde entre les deux astres, cela n’empêche absolument pas une action directe depuis la Terre. La présence de l’homme sur Mars est donc indispensable pour l’explorer et l’exploiter ; elle ne l’est pas sur la Lune.

Je vois donc la population martienne future comme structurée en cellules de personnes humaines spécialisées, assistées de robots humanoïdes et autres pour la plupart de leurs actions extérieures. Leurs EVA ne seraient qu’exceptionnelles, pour contrôler ces machines, leur simple plaisir, le besoin physique de mener une action délicate (pour laquelle la programmation serait trop difficile ou trop complexe) seul ou avec d’autres humains (récupérer un homme blessé dans des conditions particulièrement délicates) ou d’autres nécessités (par exemple non-fonctionnement du parc robotique suite à une tempête solaire particulièrement forte qui aurait endommagé un centre informatique ne disposant pas de suffisamment de résilience ou de redondance).

Bien entendu ces humanoïdes seraient personnalisés pour chacun des humains qui les utiliseraient. On imagine bien que, puisqu’on le fait pour son ordinateur personnel (on a ses programmes, ses fichiers classés et on sait où ils se trouvent), on le ferait aussi pour son humanoïde personnel. Par ailleurs comme, vu à distance, un robot humanoïde ressemblera beaucoup à un autre, on aura intérêt à le distinguer visuellement des autres pour mieux le contrôler et le faire interagir à distance par écran interposé. Ça tombe bien car, étant donné le problème de poussière sur Mars et la vulnérabilité des articulations, il faudra les « habiller » aussi hermétiquement que possible.

A beaucoup d’égards, on pourra traiter l’humanoïde comme un homme, le faire monter sur un rover (l’avantage étant que le véhicule ne sera ni pressurisé, ni alourdi par une protection contre les radiations), télécommandé et il se rechargera en énergie en étant assis ; lui faire inspecter des parois raides et dangereuses (par exemple la partie haute de la coque d’un Starship avec un système de filins ou un échafaudage, ou bien l’aplomb d’une falaise sur laquelle on aurait aperçu une anfractuosité grâce à un hélicoptère ou un dirigeable) ; l’envoyer sur un hopper de Gruyere Space Program mener une mission lointaine avec une source d’énergie dédiée. Si un atlas se casse le poignet on pourra le lui remplacer car la plupart des pièces du robot sont imprimables en 3D, et ce sera évidemment préférable à une intervention chirurgicale sur un homme. Il faudra nettoyer le robot mais on n’aura pas besoin de lui faire prendre une douche (économie d’eau !) ; sans doute un bon coup de souffleur (ou sèche-cheveux !) pour lui enlever la poussière martienne ultrafine (d’abord à l’extérieur du sas) et quelques interventions plus méticuleuses en cas de problème (petit caillou coincé dans la chaussure !).

Il faudra également « nourrir » les robots. J’imagine que leur fonctionnement requerra beaucoup d’énergie (surtout qu’on leur demandera beaucoup !) et des rechargements fréquents puisque leur autonomie (batterie transportable) sera probablement limitée compte tenu du volume et de la masse*.  J’imagine bien que des atlas se rendent sur le site d’une intervention avec un rover non pressurisé sur lequel seront embarqués quelques animats, des outils et un ou deux kilopowers (réacteur à fission nucléaire portable). Après une durée de fonctionnement correspondant à leur capacité énergétique, ils viendraient se recharger à l’ombre de leur radiateur-parasol…comme on le fait nous-mêmes après l’effort sur la plage, sous des parasols également radiateurs (réflexion de la lumière solaire).

*mais on peut être créatif : les atlas-explorateurs qui par définition s’éloigneront beaucoup de la Base, pourront porter fixées à leurs épaules, de grandes ailes d’ange (ou de démon, selon votre point de vue) revêtues de panneaux solaires, qu’ils déploieront à l’envie.

Mais allons voir un peu plus à l’intérieur de « la bête » :

Comme le dit Boston Dynamics, ATLAS est une plateforme R&D, donc toujours un projet, fortement évolutif. Les recherches continuent à progresser dans les deux domaines de la physique et de la programmation (nous ne sommes pas au bout de notre émerveillement).

Dans le domaine physique les trois cadres sont :

1) La mobilité : le robot possède l’un des systèmes hydrauliques mobiles les plus compacts et réactifs au monde. Une batterie parfaitement adaptée, des vannes et une unité d’alimentation hydraulique lui permettent de fournir une puissance élevée immédiate mais dosable, à n’importe laquelle de ses 28 articulations.

2) La dynamique : Le système de contrôle avancé du robot permet une locomotion très diversifiée et agile tandis que les algorithmes raisonnent au travers d’interactions dynamiques complexes impliquant l’ensemble du corps et l’environnement pour planifier les mouvements. Sa vitesse maximum est de 2,5 m/s.

3) La légèreté et la modularité : le robot utilise des pièces imprimées en 3D qui lui donnent le rapport résistance/poids adéquat pour ses sauts. Pour une hauteur de 1,5 kg, son poids est de 89 kg (34 kg sur Mars).

Dans le domaine de la programmation, la recherche se situe dans la coordination de tout le corps et dans le mouvement dynamique :

4) Bibliothèque de comportements : les modèles de mouvements sont créés à l’aide de l’optimisation des trajectoires et intégration dans des routines complexes.

5) Perception en temps réel : ATLAS utilise des capteurs de profondeur pour générer des nuages ​​de points et détecter son environnement.

6) Contrôle prédictif modélisé : ATLAS utilise des modèles de dynamique pour prédire comment son mouvement évoluera dans le temps et il s’ajuste en conséquence.

 

ATLAS devrait être la pièce essentielle du dispositif robotique martien mais on peut également considérer deux animats comme ses assistants…et ceux de l’homme :

Bigdog (2004) est un robot porteur quadrupède utilisable pour les déplacements sur terrain accidenté. Il a été le premier à sortir du laboratoire de Boston Dynamics. Image: crédit Boston Dynamics) :

LS3 (2010) est l’équivalent de Bigdog pour transporter des équipements lourds et encombrants (crédit Boston Dynamics) :

Que fera donc l’« homme-aux-commandes », physiquement sur Mars ? Il sera le plus souvent assis à son bureau derrière son écran à surveiller son avatar, à voir au travers de lui et à lui donner des instructions pour lui-même et ses assistants robotiques. Mais il devra aussi, avec ses compagnons humains, entretenir sa « flotte » de robots, en construire et en programmer d’autres ; se concerter avec la Terre et au sein de la Base pour diriger le développement de cette dernière. Le ratio optimum êtres humains / robots sera facilement établi, c’est une question d’espace de stockage d’équipements et de ressources, d’énergie et de capacité d’attention de l’homme donc aussi des avancées possibles en autonomie des robots.

Au-delà, comme sur Terre, les hommes sur Mars auront besoin de se détendre, et encore plus que sur Terre, de faire du sport pour maintenir leur masse osseuse et musculaire. Nul doute que la Base sera bien équipée à cet effet (moins bien au début et mieux après). J’imagine aussi qu’ils liront sur leur tablette, qu’ils mèneront des études et des recherches, qu’ils écriront des lettres, écouteront de la musique, regarderont des films, nourriront leur corps et entretiendront leur santé. Tous ensemble, ils formeront une communauté pour faire avancer le développement de l’implantation humaine ou diverses recherches in situ…et aussi, en convivialité, pour lutter contre la solitude tout en permettant à chacun d’entre eux de s’épanouir et le moment venu de procréer d’autres hommes. Mais cela est une autre histoire !

Illustration de titre : ATLAS en train de travailler avec l’homme. Crédit Boston Dynamics

Liens (avec mes remerciements à mon ami Patrick) :

https://www.bostondynamics.com/atlas

https://youtu.be/E7qJQ2i47ZY

https://www.bostondynamics.com/

https://sciencepost.fr/video-le-robot-de-boston-dynamics-impressionne-sur-un-chantier-de-construction/

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 04 20

et pour continuer à lire mes nouveaux articles sur l’exploration spatiale après le 30 juin:

https://www.contrepoints.org/

ou dans les pages du Temps dans la rubrique “Opinions/débats” quand la Direction du Journal le jugera utile pour son lectorat général.

Mars, la vie en double

On connait les dangers que les hommes devront affronter sur Mars. Parmi ceux-ci, on peut noter les impacts d’astéroïdes, l’absence d’air respirable, la très faible pression atmosphérique, des variations de températures quotidiennes de l’ordre de 100°C, la panne d’un équipement vital ou d’un autre, et bien sûr l’impossibilité de repartir sur Terre ou de bénéficier d’un secours en dehors des fenêtres synodiques espacées de 26 mois.

La conséquence c’est qu’il faudra penser à la possibilité d’une catastrophe à tout moment pour s’en prémunir. A cette fin on peut bien sûr envisager de s’installer en sous-sol, suffisamment profondément pour éviter les impacts susmentionnés, mais cela n’empêchera pas les accidents internes aux volumes viabilisés qui pourraient les rendre inhabitables, les pannes ou même un tremblement de Terre, peut-être peu puissant mais agissant sur un point faible de la structure sur laquelle l’habitat reposerait ou en contrebas duquel il se trouverait (au cas où la base serait construite dans une caverne).

La solution ce sera la redondance partout où elle sera possible.

Cela commencera avec les fusées pour revenir sur Terre. Le risque c’est que l’une (sinon évidemment les deux !) se pose mal à l’atterrissage ou que durant le long séjour en attendant la possibilité de retour, l’entretien soit défaillant ou insuffisant (et le seul test vrai de la possibilité de décollage d’une fusée, c’est son décollage effectif). La possibilité de retour physique sur Terre étant sinon indispensable (il le sera de moins en moins avec le temps et l’amélioration des capacités de vie sur Mars) du moins extrêmement utile, il sera nécessaire que lors de chaque fenêtre de tirs, au moins deux fusées soient lancées en même temps. D’ailleurs cela pourra servir pendant le voyage, pour créer une gravité artificielle dans chacune d’elle après mise en rotation du couple.

Ensuite, si l’on construit des habitats en surface, ils devront bien entendu être protégés par une couche de régolithe, aussi bien contre les impacts de micrométéorites que contre les radiations. En principe une couche d’un à deux mètres de régolithe devrait suffire mais les météorites capables de transpercer une telle épaisseur ne sont pas inenvisageables. On a observé en surface de Mars plusieurs cratères récents résultant d’impact de corps porteurs de cette énergie (voir illustrations de titre et ci-dessous). Cela implique donc une compartimentation des habitats permettant l’isolation immédiate des volumes viabilisés dont l’enveloppe serait frappée…et percée. Mais, en allant plus loin, il faudrait prévoir qu’un habitat puisse être détruit par une météorite et que donc les hommes qui l’occupaient puisse se réinstaller (s’ils n’ont pas péri) dans un habitat proche disposant des mêmes facilités de vie. A noter qu’il n’y a pas davantage de météorites qui approchent Mars que la Terre, en réalité moins, considérant que le puits de gravité terrestre est plus profond donc plus attractif que celui de Mars. Cependant dans l’environnement terrestre une bonne partie des météorites (les plus petits) sont totalement détruits dans l’atmosphère où ils brulent et sont consumés. Quand aux plus gros, ils peuvent « survivre » jusqu’au sol mais l’atmosphère joue aussi son rôle de chauffage et de freinage et beaucoup sont désagrégés avant d’atteindre le sol. L’atmosphère joue également un rôle de protection autour de Mars mais beaucoup plus faible (je rappelle que la pression atmosphérique est de 610 pascals au datum (équivalent du niveau de la mer) soit 6 millibars.

Pour l’énergie ce sera pareil. La source principale sera la fission nucléaire et, comme il est inenvisageable d’être à court d’énergie, les hommes devront disposer, dès le début, de deux réacteurs. Le second pouvant d’ailleurs ne pas être activé tout de suite, pour ne pas écourter sa durée de vie utile. En cas d’incident, on pourrait relayer le réacteur défaillant en attendant la mise en route du second, par des batteries, des panneaux solaires ou bien de petits générateurs brûlant du méthane dans de l’oxygène (le tout dans un volume viabilisé restreint et en maintenant une activité réduite à l’urgence).

Pour les hommes, ce sera encore pareil. En cas d’invalidation d’un dentiste, un autre dentiste doit pouvoir intervenir, de même le mécanicien qui connaît parfaitement le fonctionnement du rover ou du hopper doit pouvoir être remplacé « au pied levé » sans attendre qu’il récupère d’un accident, d’une maladie et, bien entendu, s’il décède.

Si l’on y réfléchit, aucune fonction ne doit pouvoir être dépendante d’un seul individu ou d’une seule machine. Toute fonction vitale doit être exercée ou exerçable de façon redondante. Cela implique donc beaucoup de personnes, d’équipements, de volumes viabilisés « en plus », donc des coûts en plus et des niveaux d’emplois-essentiels peu élevés en temps normal. Ce taux d’emplois-essentiels réduit ne sera pas un luxe mais une nécessité pour la sécurité de tous d’autant qu’en dehors des taches essentielles, les personnes disposant de temps « libre » pourront/devront exercer toutes sortes d’activités. Un dentiste (pour reprendre l’exemple) pourra aussi effectuer des travaux en mécanique de précision ou assister un chirurgien comme anesthésiste.

Maintenant, peut-être ne sera-t-il pas indispensable d’avoir exactement « un doublon » pour toute fonction. Il faudra estimer lesquelles pourront subsister en mode légèrement dégradé. Dans cet esprit, je me souviens d’une solution que j’avais trouvée très heureuse quand, jeune banquier, j’étais allé, avec deux autres collègues de mon établissement, négocier un accord cadre chez un confrère, importante banque d’investissement dont le siège était à Londres. Un jour, un de nos interlocuteurs étant défaillant, il fut remplacé au pied levé par un cadre dont l’âge le situait aux alentours de la retraite et dont l’expérience lui permettait d’entrer, sans autre, dans la négociation. J’appris par la suite que ce mode de fonctionnement n’était pas inhabituel au sein de cette société, plusieurs équivalents pouvant être mobilisés selon leur spécialité en cas de besoin, d’un replaçant ou d’un renfort. Sur Mars il y aura bien sûr beaucoup de retraités car après une longue vie sur cette planète, certains voudront y rester d’autant que la ré-acclimatation à une gravité plus forte ne sera pas facile. Nul doute qu’on puisse compter sur eux en cas de besoin, et ce pendant de longues années (j’ai moi-même été « cyberconsultant » après avoir cessé ma vie « active »).

Un autre facteur à considérer pour alléger les contraintes résultant de l’obligation de redondance est la modularité liée à la standardisation des éléments utilisés dans les équipements ou les constructions. Comme expliqué plus haut, il faut pouvoir à tout moment utiliser un élément quelconque dans une pluralité de fonctions aussi étendue que possible. Un volume viabilisé ou un véhicule doivent pouvoir être adaptables à plusieurs fonctions et un longeron en métal ou une poutre être utilisables dans toutes sortes de constructions différentes. Au bout du processus, l’impression 3D sera l’outil à tout faire. On le voit aujourd’hui quand une société comme Relativity Space est capable de construire 85% (en masse) d’une fusée avec ce seul outil, en 60 jours seulement. Sur Mars, on recourra massivement à cette solution. On pourra donc avoir un minimum de stocks d’éléments standardisés modulables et toute une batterie (redondance) d’imprimantes 3D avec leurs stocks d’« encres métalliques » à disposition (extraites du sol martien et raffinées sur place).

En réalité on arrive avec ce raisonnement, à la marge de ce qu’on peut appeler la redondance. La question de l’utilité multiple se pose en effet à chaque niveau de complexité, la véritable redondance, c’est-à-dire la possibilité d’utiliser un élément de rechange standardisé immédiatement, n’existant qu’à un niveau élevé de complexité ne nécessitant pas d’adaptation longue pour le nouvel usage. Cependant elle existe dans une certaine mesure à tous les niveaux, même à celui de la poudre de métal utilisée par l’imprimante 3D. Plutôt que de rechercher les variétés de ces poudres pouvant les rendre plus appropriées à tel ou tel usage dans un environnement martien, il sera préférable de rechercher les caractères communs pouvant être portés par une poudre plutôt qu’une autre et stocker la poudre qui aura le plus d’applications possibles.

Vous avez donc compris le sens du titre de mon article. Oui, Mars ce devra être la vie en double puisqu’il faudra toujours penser au remplacement, à la substitution. Même si, hélas, les vies humaines qui seraient emportées par la chute d’un astéroïde ne pourront pas être remplacées après avoir été dupliquées !

Illustration de titre : IPGP-CNES, N. Starter. Crédit NASA. Illustration réalisée à l’occasion de l’impact du 24 décembre 2022.

Illustration ci-dessous : (crédit NASA, capture d’écran). Un cratère de météorite « frais » sur Mars. Image réalisée à partir des données recueillies par l’orbiteur MRO de la NASA. L’impact a été enregistré par la sonde InSight le 24 décembre 2021 et identifié par MRO le 11 février 2022. L’astéroïde devait avoir une taille de 5 à 12 mètres. Il a formé un cratère de 150 mètres dans sa longueur et de 21 mètres dans sa plus grande profondeur. Les éjecta ont été projetés jusqu’à 37 km. Un tel impact pourrait statistiquement survenir tous les 20 ou 30 ans quelque part n’importe où sur la planète :

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 03 17

et pour continuer à lire mes nouveaux articles sur l’exploration spatiale après le 30 juin:

https://www.contrepoints.org/

ou dans les pages du Temps dans la rubrique “Opinions/débats” quand la Direction du Journal le jugera utile pour son lectorat général.

Variations sur l’impermanence des choses et la force de l’esprit

Notre Hébergeur, Tempus-Omnipotens, qui avait lancé sa plateforme de blogs le 4 septembre 2015, a donc décidé, certainement “dans sa très grande sagesse”, de la détruire, un peu comme les bouddhistes thibétains du grand-véhicule passent la main sur leur mandala de sable pour l’effacer une fois qu’ils l’ont achevé pour bien exprimer l’impermanence des choses de ce monde.

Il est vrai que toute permanence n’est qu’illusion ou, pour être plus positif, que tout (matière et énergie) n’est que mouvement, fluctuation, passage d’un champ de forces à l’autre, d’une fraction de temps à une autre, à l’occasion duquel une modification de la réalité peut se produire ou non, conduisant à toujours plus d’entropie et peut-être à « quelque-chose ».

Revenons sur Terre ou plutôt considérons le système que nous formons ensemble, vous-mêmes, chers lecteurs, avec moi-même via les articles de ce blog ouvert dès l’Origine, en 2015, et avec la Direction du Temps.

Nous avons atteint les 5400 commentaires (pour 420 articles). C’est important car peu ont manqué de substance. Tous ensemble, par nos échanges, questions, réponses, confrontations, nous avons contribué à créer une réflexion tangible car lisible, sur les « grandes questions » essentielles qui se posent à l’homme aujourd’hui et sur les moyens concrets de sortir de notre berceau pour un jour mieux pouvoir y répondre. C’est cela le mandala de sable que nous avons réalisé ensemble. Même vouée à disparaître, cette construction n’est pas rien car elle nous a profité aussi bien individuellement que collectivement. Elle a « été » et elle a enrichi l’intellect de chacun de nous.

Je voudrais donc vous remercier, vous tous, d’abord les commentateurs fidèles bien sûr mais aussi les épisodiques, les exceptionnels par leur parole, et même les simples spectateurs muets mais attentifs, par la chaleur de leur nombre et leur attention inexprimée mais réelle, chacun ayant à sa façon apporté sa contribution.

Ce qui fait d’abord l’intérêt des blogs par rapport aux articles de journaux, ce sont précisément les échanges, les réactions immédiates, les interventions, les réponses, comme si nous étions sur l’Agora de nos ancêtres, avec en plus la trace écrite qu’il en reste. D’un autre côté, leur intérêt par rapport aux échanges sur plateaux de télévision ou de radio, c’est la possibilité pour chacun de mieux réfléchir avant de s’exprimer, de « tourner sept fois la langue dans sa bouche » (ou « sa plume dans l’encrier ») comme le dit l’expression populaire. Cela permet à chacun de fournir d’avantage d’arguments ou d’être plus pertinent, de choisir ses mots, de vérifier ses sources, de revenir pour compléter sa pensée déjà exprimée. L’avantage du blog sur le tweet c’est qu’on peut nuancer son expression au-delà d’une interjection enveloppée ou d’un ressenti brutal et donc mieux s’expliquer aux autres et ainsi mieux se comprendre soi-même. Et c’est enfin mieux qu’une simple lettre aussi bien écrite soit-elle car toute personne intéressée en profite et peut participer à l’échange pour y ajouter son grain de sel.

Je suis convaincu que lorsque l’homme sera sur Mars, cette relation pourra continuer sans que le décalage de temps résultant de la finitude de la vitesse de la lumière pose des problèmes insurmontables. Le blog est l’avenir des relations sociales tant que nous resterons les uns et les autres à une distance raisonnable. Et avec 22 minutes-lumière maximum, dans un seul sens, la distance Terre-Mars restera un éloignement acceptable (compte tenu bien sûr du temps de réflexion et d’écriture puis du temps de voyage de la réponse). Comme je n’ai pas l’intention de partir plus loin que Mars, nous pourrons continuer sous d’autres cieux que ceux du Temps, à échanger et à nous enrichir mutuellement l’esprit dans les mêmes conditions optimales. NB : Si je ne pars pas (le Starship ne vole toujours pas et je suis conscient du temps qui passe) je suis convaincu que d’autres partiront.

Lorsque cette colonie sur Mars, à laquelle j’aspire, sera établie, on pourra dire que la «cognosphère*» humaine aura généré son premier alter-ego extraterrestre. Les deux communautés pourront se féconder mutuellement de leur vécu ou de leurs observations réciproques mais finalement la différence de lieu ne changera pas grand-chose pour les problèmes qui nous motivent. Les personnes qui partagent nos préoccupations et intérêts ou notre passion, peuvent tout aussi bien vivre sur Mars que sur Terre. Elles resteront dans la même proximité puisque disposant de quasiment les mêmes possibilités de communiquer. Et comme sur Mars nous aurons certainement (car ce sera vital) une copie des « data-bases » terrestres, nous aurons les mêmes sources pour nous nourrir, réfléchir et spéculer. La seule différence ce sera les conditions environnementales permettant le travail et la réflexion et sur ce point il est moins que certain que les conditions terrestres soient plus favorables que les conditions martiennes.

*ensemble des têtes pensantes et communicantes.

Comme j’y ai fait allusion plus haut, on peut élargir notre cercle au-delà des commentateurs. Ceux-ci sont ceux à qui j’ai d’abord naturellement pensé mais il y a aussi les autres, les lecteurs fidèles mais discrets, au premier rang desquels évolue la cohorte des abonnés-silencieux. J’en connais certains comme on a aperçu des météores, et qui de temps en temps me font part directement de leurs observations ou de leurs sentiments, sans pour autant recourir à l’écrit sur le blog. Je peux donc vous assurer que cette nébuleuse qui forme l’essentiel en nombre des quelques 700.000 visiteurs au total ayant effectué quelques 1.750.000 incursions dans notre monde, existe bel et bien et qu’elle nous enveloppe de sa chaleur lointaine, un peu comme la Ceinture d’Astéroïdes (qui est en réalité la Ceinture des Abonnés) mais aussi les Ceintures de Kuiper ou encore les Nuages de Oort pour les plus lointains et les plus froids. Ses éléments constituants ne sont pas lisibles eux-mêmes mais ils participent néanmoins à notre système en lisant mes articles et vos commentaires. Et de temps en temps, quand l’envie de participer est trop forte, l’un ou l’autre se risque à envoyer un message et devient alors visible en rejoignant notre communauté vivante car inter-communicante, un peu comme une comète décroche de son nuage glacé et descend jusqu’à nous.

Nous avons même eu quelques objets interstellaires qui n’avaient jamais lu un article du blog mais qui ont interféré en passant, en donnant leur avis sur quelque chose ou n’importe quoi (tout n’est pas publié !), et en repartant aussitôt très loin dans l’infini d’où ils venaient et qui sans doute les appelait, à moins que leur vitesse ne leur ait pas permis de s’arrêter chez nous. Je les salue aussi comme on lance une bouteille à la mer ou plutôt une balise dans l’espace en réaction à un espoir diffus, pour qu’eux-mêmes se rapprochent à nouveau (maintenant sous d’autres cieux), si la trajectoire de leur réflexion le leur permet et au cas où notre force gravitationnelle, qui s’est exercée sur eux une première fois lors de ce passage, puisse un jour les faire revenir…si bien sûr ils ont alors quelque chose de pertinent à dire.

Il y a eu aussi dans un passé dont nous nous sommes maintenant heureusement un peu éloignés, un accident extraordinaire comme le fut l’extinction de l’Ordovicien-Silurien. Je fais référence à la supernova de l’étoile-massive hélas proche, nommée Sylvia Ekström qui, enflant considérablement à partir de son domaine de compétence, l’astrophysique, pour faire intrusion dans la planétologie, l’exobiologie et même l’astronautique, était parvenue à son stade d’implosion avant explosion, en faisant du « battage » à propos de son livre « Nous ne vivrons pas sur Mars ni ailleurs ». J’avais trouvé très mauvaises les raisons qu’elle avançait dans ce livre telles qu’elles avaient été publiées dans la Presse, sur l’impossibilité de transporter notre vie humaine ailleurs que sur Terre. Je m’étais malheureusement permis de les critiquer avant d’avoir lu son « chef-d’œuvre » moi-même, car je pensais en avoir suffisamment compris la teneur et le sens, rien que par ce qu’en rapportaient les autres. Je ne m’étais pas trompé car ma lecture n’a fait finalement que conforter la mauvaise opinion que j’avais des arguments utilisés baignant dans un océan de certitudes infondées et d’a-priori bancals. J’aurais cependant dû être plus prudent car notre planète a bien failli brûler à cette occasion comme si un sursaut gamma l’avait touchée. Mais le rayonnement brutal de cette étoile hostile s’est vite éteint, la vie a repris, nos échanges ont recommencé à fleurir et à produire leurs fruits.

Alors aujourd’hui ce blog est à nouveau confronté à une onde de destruction massive. Mais cette fois, elle est annoncée et certaine. Après la date fatidique du 30 juin 2023, il ne peut rien rester dans le cadre actuel de ce monde que nous avons construit puisque ce cadre lui-même aura disparu. Notre Univers est plein de systèmes ou d’astres morts. Certains ont été détruits comme le sera le nôtre. Beaucoup d’autres sont peut-être (je dirais volontiers « sans-doute ») totalement stériles parce qu’ils n’ont jamais été porteurs des ingrédients nécessaires. De toute façon on ne peut pas compter sur eux ; trop lointains, nous n’en connaissons encore que ce que nous en dit leur lumière. Et puis nous avons nos spécificités. Il n’y a donc pour nous qu’une seule possibilité, migrer ailleurs, comme un jour certains d’entre nous iront sur Mars. Il ne tient qu’à moi mais aussi à vous-même que notre propre système continue dans ce contexte à tourner autour de son Soleil brûlant mais nourricier que sont les connaissances accumulées par tous, les publications scientifiques paraissant dans le monde entier, vos commentaires toujours renouvelés et l’esprit critique de chacun. Je serai le 30 juin, pour ma part, aussi prêt que possible à partir pour transplanter notre blog sous de nouveaux cieux.

Toute construction matérielle est fragile comme nous le rappelle le mandala de sable. Mais les constructions intellectuelles peuvent s’avérer plus solides, comme l’est l’esprit de ceux qui dessinent le mandala en se nourrissant aux mêmes sources intellectuelles et en le perfectionnant à chaque représentation qu’ils en font. C’est ce que j’espère et que je souhaite. Dans ces conditions, si notre transition pour sortir de l’orbite du Temps réussit, on pourra une fois de plus dire avec Pangloss que tout va pour le mieux dans le meilleur des mondes possibles, en attendant d’en découvrir un autre et peut-être un jour la clef de tous les mystères.

Aux étoiles !

Illustration de titre : vue d’artiste de notre système planétaire encoconné dans son Nuage de Oort. Crédit : Pierre Carril, Novapix (ref : a-com99-90007). Pierre Carril est un des meilleurs illustrateurs spatiaux. Il a notamment obtenu des contrats de l’ESA (magnifique illustration du programme Aurora).

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 04 20

Et pour continuer à lire les nouveaux articles de ce blog après le 30 juin:

https://www.contrepoints.org/

La réutilisabilité des fusées conçue et réalisée par SpaceX a révolutionné le marché, et ça continue !

La Direction du Temps a décidé ce 3 mai de fermer son espace dédié aux blogs sur letemps.ch à compter du 30 juin. Ce blog que vous lisez va donc perdre son support et son cadre. Les articles déjà publiés et les commentaires resteront lisibles jusqu’à la fin de l’année 2023 à l’adresse https://www.letemps.ch/blogs .

Cette décision est le résultat de l’évolution de la politique éditoriale du média. Elle ne peut être discutée même si on peut la déplorer (ce qui est mon cas). Je laisse la Direction du Temps s’en expliquer auprès de vous, chers lecteurs, par un article dans le Journal, si elle le juge utile.

Le moment est donc venu de vous remercier de m’avoir accompagné pendant près de huit années, qui pour moi ont été merveilleuses, dans cette œuvre collective (mes articles, vos commentaires, nos échanges). Je me suis fait des amis, vous aussi sans doute, et nous formons aujourd’hui une grande famille. Comme dans toute famille les éléments constitutifs s’entendent plus ou moins bien mais comme ils partagent quand même des intérêts communs, ils ne peuvent s’empêcher de discuter à leurs propos, ce qui in fine devient un enrichissement pour tous.

Ce n’est pas parce que le Temps va nous couper la lumière que pour autant ma passion pour l’Espace, notre Univers, les questions fondamentales qui nous habitent tous (sans oublier “ma” toute petite planète Mars que je considère comme notre Porte vers l’Infini), va cesser de s’exprimer. Vous pourrez me retrouver sur le média en ligne contrepoints.org qui déjà me publiait de plus en plus souvent. Contrepoints est un journal libéral qui correspond très bien à mon orientation politique (que nul doute mes lecteurs attentifs ont bien remarquée). C’est un média important, le plus important dans son domaine avec plus de 2 millions de visiteurs uniques par mois et vous me retrouverez au milieu des meilleurs auteurs libéraux francophones de notre époque, ce dont je suis très fier.

Mes articles sont également publiés sur le site internet de la Mars Society Switzerland (adresse https://planete-mars-suisse.space/fr/blogs/blog-pierre-brisson ) mais je devrai faire un ajustement technique avant que cette page soit opérationnelle puisqu’elle est alimentée à partir des Blogs du Temps. Il existe une page “forum” sur ce site mais pour le moment les commentaires sous article ne fonctionnent pas (ce n’était pas nécessaire puisqu’il y avait le blog du Temps!). Sans doute vais-je passer par un blog WordPress personnel dont je vous communiquerai les coordonnées la semaine prochaine.

Continuons ensemble, jusqu’à Mars peut-être un jour! Mais d’ores et déjà, suivez moi sur Contrepoints.

Comme la plateforme des Blogs du Temps continue à fonctionner pour quelques semaines, je reprends le fil de mes articles. Cette semaine je vais encore vous parler du Starship car je n’ai pas fini de dire tout ce que je voulais à son propos.

La réutilisabilité des fusées conçue et réalisée par SpaceX a révolutionné le marché, et ça continue !

Imaginez que l’on jette les avions à la mer à chaque fois qu’on en utilise pour traverser l’Atlantique. C’est un peu ce qui se passait avant l’arrivée de SpaceX sur le marché et la mise en pratique de l’idée géniale d’Elon Musk de récupérer puis de réutiliser le lanceur (premier d’une fusée de deux, trois ou quatre étages).

Depuis les V2 allemands de la Seconde guerre mondiale et les années qui suivirent, une fusée lancée était une fusée perdue (non pour l’objet de sa mission mais pour ses éléments constitutifs). On était dans un contexte où la pollution était une notion inconnue, où l’on disposait d’autant de métal que l’on souhaitait et où les usines tournaient sans trop de problème d’approvisionnement en métaux ou ergols (carburant + comburant). Sur cette lancée, si l’on peut dire, les fusées américaines de la grande époque de la Conquête de la Lune (fin des année 60/début des années 70) étaient également jetables et elles donnaient satisfaction puisqu’on ne comptait pas les dollars dépensés (et qu’on jetait aussi à peu près tout).

L’euphorie des premiers succès passés, on se dit que, tout de même, on pourrait pour les seuls vols habités, faire des fusées comme des avions. Cela donna la navette spatiale, « the Shuttle », qui fut en service entre 1981 et jusqu’en 2011 (« retraite » un peu forcée après 135 vols, pour des raisons de sécurité). Cet avion-fusée rendit de grands services (ne serait-ce que le sauvetage du télescope Hubble !) mais il s’avéra coûter extrêmement cher en entretien. Il s’agissait notamment de réviser la totalité des tuiles de protection thermiques une à une après chaque vol. Et ce fut d’ailleurs un bloc de mousse de protection qui avait heurté une de ces tuiles au décollage qui provoqua la catastrophe de la navette Columbia (7 morts !).

Elon Musk, quand il lança ses premières fusées en 2010, était animé par l’Objectif Mars comme Tintin l’avait été par l’Objectif Lune. Et, sans aucun complexe (c’est un de ses traits de caractère) il voulut que sa fusée soit récupérable et réutilisable (il fallait évidemment qu’elle le soit pour revenir de Mars). Il commença ses lancements en 2006 et en 2015 il réussit sa première récupération (après plusieurs échecs ou demi-succès, mais on sait que c’est comme cela qu’il « fonctionne »). On était au 20ème vol et c’était un Falcon-9 (le seul lanceur dont la société disposait. Aujourd’hui SpaceX a lancé 217 Falcon-9 et Arianespace seulement 84 Arianes-5 (depuis 2006). Sur les 217 lancements, 175 lanceurs de Falcon-9 sont revenus se poser sur Terre et il y a eu 152 réutilisations. Il n’y a eu aucune récupération d’Ariane. La différence est claire et la conséquence de la différence c’est le coût, aggravé par le fait que moins on lance plus le lancement coûte cher puisqu’on fait moins d’économies d’échelle. Au bout du compte un lancement de Falcon-9 coûte moitié moins cher (67 millions de dollars) qu’un lancement d’Ariane-5. NB : Une autre fusée plus puissante de SpaceX, le Falcon-Heavy (poussée par 3 groupes de 9 moteurs Merlin), permet d’emporter des charges plus lourdes mais elle a été encore peu utilisée (6 lancements dont le dernier est intervenu ce 30 avril, un “sans-faute”).

Le deuxième étage du Falcon-9 n’était pas récupérable mais cela n’avait pas vraiment de sens pour plusieurs raisons.

Premièrement la combustion des ergols du premier étage se termine très rapidement (trois minutes dans le cas du Starship) car il s’agit de s’arracher de la gravité terrestre à partir d’une vitesse nulle et pour ce faire non seulement de gagner en vitesse mais aussi en altitude, le plus vite possible (avec le meilleur rapport ergols consommés/puissance délivrée). Après son utilisation, le premier étage se trouve donc, à la verticale, très proche de son site de lancement. Au contraire le deuxième étage va prendre de la vitesse essentiellement à l’horizontal, en prenant lentement de l’altitude en fonction de la vitesse qui le soustrait de plus en plus à la gravité. Il faudrait beaucoup d’ergols pour revenir sur le site de lancement, très éloigné, et à une vitesse initiale beaucoup plus élevée (peut-être pourrait-on le faire après une orbite complète ?).

Deuxièmement, le deuxième étage dans une fusée classique est un exhausteur d’altitude qui ne comporte ni beaucoup de métal (il est moins chargé en ergols), ni beaucoup de moteurs. Il est donc de ce fait moins intéressant à récupérer.

Troisièmement, toujours dans une fusée classique, le deuxième étage en porte un autre (un “inter-étage” ou, plus complexe, un module de service) qui lui-même en porte un autre (la capsule ou le satellite ou la sonde) même si l’expression « deuxième étage » est réservée exclusivement à l’exhausteur d’altitude. Le problème de la récupération est ainsi segmenté en plusieurs sous-problèmes. Si on lance un satellite, on ne va pas le récupérer ce qui ne sera pas le cas d’une capsule si elle porte des passagers. Quant au module de service, il peut aller très haut, très loin, à une distance où il ne sera pas plus récupérable que la sonde qu’il a lancée.

Pendant la mise en place chez SpaceX de l’innovation/révolution qui consistait à récupérer le premier étage, les institutionnels, NASA ou ESA, regardaient sans comprendre qu’ils étaient en train de perdre le marché, obnubilés par leur crainte que la fiabilité du lanceur récupéré ne serait jamais suffisante et par le fait que pour revenir se poser sur le sol terrestre, un lanceur devait utiliser entre 10 et 15% des ergols embarqués.

Vue l’évolution des coûts et donc des prix des lancements, vu également l’allongement du « track-record » positif de SpaceX, ces mêmes institutionnels finirent par se dire que cette réutilisation des lanceurs n’était peut-être pas une mauvaise idée. Mais le retard accumulé est considérable. A ce jour aucune fusée de la NASA construite par ULA (United Launch Alliance = Boeing + Lockheed Martin) n’est récupérable et l’ESA n’envisage la récupération/réutilisation que pour les années 30. D’ici là tout le marché, sauf protection très coûteuse, sera pris par SpaceX. C’est d’ailleurs presque déjà le cas sauf pour les lancements d’institutions ou de sociétés captives pour des raisons politiques (l’ESA utilise forcément les services d’Arianespace).

Mais Elon Musk voulait aller plus loin. Il voulait aller sur Mars et c’est pour cela qu’il décida de créer un lanceur lourd adapté pour ces missions lointaines avec un nouveau concept de deuxième étage qui devient un second étage inclusif des autres. Ce second étage fait en effet un bloc de tous les segments supérieurs de la fusée car il a besoin de conserver les différentes fonctions de ces éléments jusqu’au bout. Si l’on veut envoyer des hommes sur Mars, il faut s’organiser pour qu’ils puissent revenir et donc que le second étage qui va les emporter sur Mars puisse en revenir, en bon état, avec le minimum d’entretien sur place et qu’il puisse être approvisionné sur place en ergols pour bénéficier de l’énergie suffisante pour le voyage (moins que pour l’aller car la gravité martienne est nettement plus faible que la gravité terrestre). Par la même occasion, il faut que ce vaisseau spatial puisse revenir avec un module de propulsion type deuxième étage propulsif classique, avec un module de service classique pour assurer toutes sortes de fonctions nécessaires à l’habitat mais pas seulement (correctif d’attitude notamment) et avec un habitat. Il faut enfin qu’il puisse être récupéré et réutilisé afin de réduire les coûts. A noter qu’il est totalement exclu d’apporter sur Mars les ergols nécessaires au retour sur Terre car il faudrait doubler la masse qu’il conviendrait d’arracher à la gravité terrestre à l’aller (ergols suffisant pour repartir de Mars plus les réservoirs pouvant les contenir). Cela reviendrait à « trimbaler » avec soi un corps mort inutile pendant la moitié du voyage (qu’il faudrait en plus maintenir pendant deux ans à des conditions de températures particulièrement basses).

C’est ainsi donc qu’est né le concept de ce Starship et de son lanceur SuperHeavy dont on peut espérer que le second vol orbital, dans deux mois, soit plus long que le premier. Avec lui, le deuxième étage et les autres sont intégrées et la récupération rentre dans la fonction elle-même du vaisseau spatial.

Lire ici la très intéressante interview d’Elon Musk qui m’a été communiquée le 30 avril, par mon ami Jean-François P : https://twitter.com/ufotinik/status/1652644402534273025

Si le Starship peut voler, le concurrent, également conçu et fabriqué selon des principes traditionnels par ULA, nommé « SLS » (Space Launch System), celui qui a mené à bien la première mission Artemis autour de la Lune, deviendra complètement obsolète. En effet il n’aura pas une capacité d’emport comparable. Sa capsule, Orion a un volume pressurisé de 19,57 m3 dont un volume habitable de 9 m3 alors que le Starship aura un volume viabilisable de 1100 m3, habitable pour plus de 800 m3. Par ailleurs Orion serait totalement incapable de repartir de Mars après y être descendu. Il faudrait qu’il reste en orbite en étant assisté d’une annexe légère, comme l’était le module lunaire (« LEM ») du temps d’Apollo pour descendre sur Mars puis remonter à l’orbite. Inutile de dire que ses capacités d’emport ne pourraient être qu’extrêmement limitées en volume et en masse (2 personnes et quelques équipements, comme un rover plié pour les transporter). En second lieu le coût du SLS se monte à plus de 4 milliards de dollars alors que celui du Starship atteint juste le milliard. Bien sûr, cela est un coût initial et il baissera si l’on construit plusieurs fusées mais c’est mal parti pour le SLS étant donné qu’il n’est et ne sera jamais réutilisable.

Donc le SLS n’est qu’une solution provisoire en attendant que le Starship soit prêt. Quant à l’Europe/ESA, on en reparlera plus tard quand elle aura réussi aussi à faire son lanceur réutilisable. Mais pour le moment elle n’est définitivement pas dans la course et ne tiendra dans les années qui viennent, que parce que la différence de prix entre celui de sa fusée Ariane-6 et celui d’une Falcon-9 ou Heavy sera payée par les impôts des contribuables.

Illustration de titre :

Retour spectaculaire sur Terre de deux des trois corps de propulsion du Falcon-Heavy en avril 2019. Crédit SpaceX.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 04 20

Test du 20 avril du Starship. Discussion des résultats, de leurs causes et de leurs conséquences

Le test du 20 avril du Starship (vol S24/B7) apporte beaucoup de données qui sont capitales pour poursuivre le projet. De ce fait, il n’est certainement pas négatif comme beaucoup d’observateurs mal informés et mal disposés envers SpaceX ont tenu à le dire mais malheureusement on est probablement encore loin d’un vol sans histoire.

Comme chacun devrait le savoir mais souvent refuse de le considérer, l’objet du vol S24/B7 du 20 avril était non pas de mettre quoi que ce soit en orbite mais de réunir autant de données que possible sur le décollage et le comportement en vol de l’ensemble intégré du Starship, cette fusée révolutionnaire qui doit nous emmener sur Mars et, auparavant, sur la Lune dans le cadre de la phase 3 du programme Artemis. Cependant, compte tenu de l’importance des modifications, ajustements, améliorations qu’il semble (en attendant les analyses approfondies) nécessaire d’apporter maintenant à l’ensemble du dispositif, il semble difficile que l’on puisse utiliser rapidement ce système de transport XXL.

Pour ce qui est du décollage, il est maintenant très clair que le pas de tir n’était pas adapté. Certes la table de lancement était suffisamment haute (25 mètres) comme on le verra ci-dessous, et un dispositif était prévu pour éviter que les gaz ultra-chauds ne refluent, puisqu’un anneau de jet (« sprinklers ») à gaz comprimé devant avoir cet effet, encerclait le trou au-dessus duquel était posé le lanceur. Mais l’ensemble ne comprenait pas de « carneau » (« flame trench ») comme en sont équipés toutes les autres plateformes de lancement dans tous les autres astroports du monde. Pour ceux qui l’ignorent, un carneau est une grande tranchée très profonde située en dessous du lanceur. Au fond, un déflecteur en béton permet d’orienter les gaz d’échappements vers une large ouverture (comme une gueule ouverte) pour les évacuer immédiatement après le déclenchement de l’ignition et avant le décollage, et empêcher, ce qui est arrivé dans le cas du test S24/B7, le creusement d’un cratère et les projections qui en résultent. A Baïkonour le carneau du premier pas de tir a une profondeur de 42 mètres. Au Cap Kennedy, celui qui a été spécialement construit pour le SLS ne fait que 13 mètres de profondeur mais il est très large. Celui du second pas de tir de Baïkonour fait 20 mètres. A Kourou, celui du Centre Spatial Guyanais fait 26 mètres. On voit donc que les profondeurs sont variables, avec bien sûr une adaptation des largeurs puisqu’ils doivent prendre en compte le volume de gaz éjecté par seconde. Peut-être les ingénieurs de SpaceX ont-ils considéré que la table de lancement étant aussi haute que les carneaux sont profonds et que portée par cinq piliers, elle laisserait suffisamment de volume libre pour que les gaz ultra-chauds animés d’une très grande vitesse, dégagent. Ils ont visiblement sous-estimé la puissance de l’éjection de ces gaz mais, plus vraisemblablement, l’erreur a été l’impasse au niveau du déflecteur et une mauvaise évaluation de la résistance des piliers de la table.

Si l’on considère d’abord le déflecteur, peut-être faut-il envisager que les gaz ne puissent être évacués que d’un seul côté, comme dans un carneau, et non pas de tous les côtés et entre les cinq pieds de la table ce qui rend peut-être la canalisation du flux plus difficile par la création de tourbillons. Il y a toute une étude de mécanique des fluides à effectuer et il est étonnant qu’elle n’ait pas été faite.

Il était prévu, sur le sol en-dessous du trou de la table, une plaque d’acier épaisse. Malheureusement cette plaque n’a pu être livrée à temps et les ingénieurs de SpaceX ont estimé qu’elle n’était pas indispensable ! C’est dommage de ne pas l’avoir attendue car, refroidie constamment par de l’eau circulant à grande vitesse au-dessus (« déluge ») et à l’intérieur (tuyaux) pour éviter qu’elle ne fonde, elle aurait sans doute pu éviter la création d’un cratère par les jets ultra-chauds des moteurs lors de l’allumage et les projections de matière qui ont détruit les trois premiers moteurs défaillants et endommagé les pieds de la table (dont l’ancrage au sol a peut-être aussi été affaibli par le cratère). On ne sait pas si même avec cette plaque, les piliers auraient résisté. Peut-être convient-il de les renforcer aussi avec un blindage d’acier également refroidi par une circulation d’eau ?

Il y a donc à ce niveau, beaucoup de réflexion, d’études et d’aménagements à faire avant le deuxième lancement.

Pour ce qui est de la défaillance en vol, on a pu constater que l’ensemble intégré a été propulsé dès le début avec une puissance limitée puisque trois moteurs sur trente-trois au décollage puis trois autres après (dont un qui a explosé…mais sans détruire les autres) ont fait défaut. La défaillance initiale est sans doute due à une détérioration par impact au décollage et elle n’était pas dramatique, le rapport 30/33 restant acceptable. Mais on ne sait pas ce qui s’est passé pour les trois autres. Le plus ennuyeux serait que leur défaillance soit due à l’environnement de l’ensemble de propulsion car cela remettrait en cause la structure même du lanceur qui effrayait beaucoup de spécialistes par le grand nombre contigus de moteurs (le Falcon Heavy qui en a 27, les regroupe en trois corps distincts de 9). Cependant, même avec 30 moteurs le Starship pouvait (et a pu) décoller et avec 27 seulement la force de propulsion a été suffisante pour lui permettre de continuer l’ascension et même atteindre puis dépasser Mach 1 (vitesse provoquant un effet acoustique très dangereux pour la structure du lanceur par les contraintes mécaniques qu’il génère du fait de sa très grande puissance*) puis le seuil de Max-Q (point de pression dynamique maximum également difficile à supporter pour toute fusée) qui sont les points les plus critiques de la trajectoire d’un lanceur (c’est pour cela que l’on parle d’une réussite à 50%). L’échec de la mise sur orbite est donc à rechercher ailleurs.

*exprimée en Watts, elle atteint plusieurs gigawatts.

Regardons les faits. Dès T+25’’ après le décollage (« T ») une explosion est survenue dans le bas du lanceur, arrachant une partie du revêtement extérieur. On n’en connaît ni la cause ni les conséquences. Ensuite le vaisseau a progressé en restant stable pendant un peu plus de deux minutes. A T+02’40’’, l’ensemble intégré avait engagé son inclinaison pour la mise en orbite. Cette inclinaison prématurée s’est poursuivie en boucle ce qui était normal pour déclencher la libération du vaisseau. Mais il ne s’est pas séparé alors du lanceur et l’ensemble s’est engagé dans trois loopings successifs avant que SpaceX, par sécurité, déclenche l’explosion depuis le sol. Juste avant l’explosion le Starship-vaisseau s’est peut-être détaché mais on ne sait pas si la séparation s’est faite « normalement » ou sous l’effet d’une tension mécanique trop forte. A ce stade, il est important d’insister sur le fait que l’explosion n’est pas involontaire, un « accident », mais résulte d’une décision de Space X qui a actionné depuis Starbase son système FTS (Flight Termination System) pour éviter que le Starship aille causer des dégâts hors de la zone de surveillance (il était encore propulsé).

On en déduit que (1) avec 27 moteurs, le vaisseau n’avait pas une poussée suffisante (déficit de 20%), d’autant que les ergols non brulés par les six moteurs restaient dans la masse à propulser et ils ont pu par leur surcharge (estimée de 900 à 1000 tonnes) créer un déséquilibre général. Par ailleurs (2) le système de « Guidance & Control » embarqué a été défaillant puisqu’il n’a pu constater que le Starship avait quitté sa trajectoire d’ascension programmée et qu’il était entré dans cette succession de loopings (ou bien qu’il l’a constaté mais n’a pu réagir).

Le problème est de savoir si le décollage à moitié réussi/raté a pu causer les dommages qui se sont révélés ultérieurement dans le comportement du lanceur ou s’il y a eu défaillance des trois moteurs qui se sont arrêtés après le décollage pour une autre raison. Nous le saurons certainement bientôt. L’ennui est que cela met en péril l’exécution de l’agenda du programme Artemis puisque le Starship HLS (Human Landing System) est censé relayer le SLS à partir de l’orbite lunaire NRHO (Near Rectilinear Lunar Orbit) pour descendre sur la Lune en 2025 en passant par une orbite basse circulaire. Agenda d’autant plus contrarié que le vol habité doit être évidemment précédé d’un test à vide sur cette orbite basse lunaire.

Pour le moment l’heure est à (1) étudier les données recueillies sur le décollage et le vol ; (2) décider des aménagements à apporter à la plateforme de décollage et éventuellement au lanceur SuperHeavy ; (3) effectuer ces aménagements et bien sûr à réparer les dégâts causés au sol.

Le premier communiqué de SpaceX, daté du 20 avril, tel que rapporté par Jim Hillhouse d’AmericaSpace, était tout à fait positif (voir ci-dessous). La NASA de son côté a félicité SpaceX rappelant que « toute grande réussite dans l’histoire a demandé un certain niveau de risques calculés ». Par ailleurs, Elon Musk parle d’un nouveau test dans deux ou trois mois. Il est sans doute un peu optimiste, comme d’habitude. Reste surtout à savoir comment la FAA appréciera. Compte tenu des difficultés qu’il a fallu surmonter pour obtenir son accord, le manque d’anticipation des risques environnementaux qui pouvaient se produire au décollage, et se sont effectivement produits, ne fait malheureusement pas montre de la part d’Elon Musk d’une psychologie très adaptée à la situation. On peut tout à la fois avoir confiance dans la faisabilité du Starship et le déplorer.

Illustration de titre : vol S24/B7 après décollage (crédit SpaceX via Twitter).

Première déclaration de SpaceX après le vol, d’après Jim Hillhouse:

Starship gave us quite a show during today’s first flight test of a fully integrated Starship and SuperHeavy from Starbase in Texas.

At 8:33 CT, Starship successfully lifted off from the orbital launch pad for the first time. The vehicle cleared the pad and beach as Starship climbed to an apogee of 39 km over the Gulf of Mexico, the highest of any Starship to-date. The vehicle experienced multiple engines out during the flight test, lost altitude and began to tumble. The flight termination system was commanded on both the booster and ship. As is standard procedure, the pad and surrounding area was cleared well in advance of the test and we expect the road and beach near the pad to remain closed until tomorrow.

With a test like this, success comes from what we learn, and we learned a tremendous amount about the vehicle and ground systems today that will help us improve on future flights of Starship. Thank you to our customers, Cameron County, and the wider community for the continued support and encouragement. And congratulations to the entire Space team on an exciting first flight test of Starship!”

Liens:

https://www.presse-citron.net/cratere-scene-de-chaos-7-images-effrayantes-des-degats-de-starship/

https://www.kosmonavtika.com/lanceurs/soyouz/sol/carneau/carneau.html

https://www.france24.com/en/live-news/20230424-giant-spacex-rocket-leaves-crater-serious-damage-at-texas-base

https://www.americaspace.com/2023/04/21/starship-orbital-test-flight-raises-serious-questions/#:~:text=Yesterday%2C%20April%2020%20at%208,terminated%204%20minutes%20after%20launch

https://www.nasa.gov/feature/launch-pad-39b-flame-trench-nears-completion

https://www.futura-sciences.com/sciences/actualites/vols-habites-starship-decryptage-premier-vol-expert-acquis-positifs-il-explose-104878/

https://trustmyscience.com/spacex-starship-lancement-explosion-prevue/

Pour SpaceX le lancement du Starship du 20 avril est un demi-succès

Les spectateurs retenaient leur souffle et quand, au décompte T+0, la fusée s’est élancée, on y a cru. L’espoir a duré 02:40 minutes car, juste avant la séparation du lanceur SuperHeavy d’avec le vaisseau spatial Starship qui devait intervenir à T+3 m, on a vu que quelques chose n’allait pas. L’ensemble a commencé à faseiller, puis, déstabilisé, il a perdu sa direction, a perdu de l’altitude et a explosé. On était à T+4 m.

Voir en fin d’article, une mise à jour du 22 avril.

C’est évidemment une déception mais Elon Musk nous avait prévenu, il n’y avait que 50% de chances que le lancement réussisse. Par ailleurs SpaceX avait également déclaré que le but était de recueillir autant de données qu’il était possible avec ce premier lancement d’un Starship pleinement intégré (vaisseau ET lanceur).

Il est vrai que le lanceur SuperHeavy n’avait jamais volé. Une seule mise à feu statique avait pu être accomplie avec succès (31 moteurs sur 33) le 11 février de cette année. On peut dire que non seulement la seconde mise à feu (celle de ce jour) a été satisfaisante pour l’allumage mais qu’elle a bien réussi à conduire le vaisseau presqu’à l’altitude de la séparation (34 km d’altitude, 1950 km/h). A ce moment 28 moteurs Raptors sur 33 fonctionnaient, ce qui n’est pas mal du tout. D’autant qu’on peut constater que les 5 qui n’ont pas fonctionné n’ont ni explosé ni empêché de les autres de fonctionner (2 seulement étaient contigus).

C’est donc quand même un succès d’autant que ce test correspond à la manière de progresser d’Elon Musk, ne pas attendre que tout soit théoriquement parfait mais tenter tout ce qu’il est possible de faire dès qu’il est possible de le faire afin d’apprendre de son échec et corriger les défauts ou les faiblesses si l’on constate que l’on s’est engagé dans une mauvaise voie. C’est exactement ce qu’il a fait avec le vaisseau Starship seul puisque ce n’est qu’avec le SN 15 (Serial Number 15) que le vol a été concluant (il n’a pas explosé en revenant se poser au sol).

Il ne faut donc pas désespérer du vol S24/B7 (S pour le vaisseau, B pour le lanceur, « booster »). D’autant qu’une autre grosse étape a été passée avec succès, l’autorisation de voler donnée par la FAA (Federal Aviation Administration). Les complications administratives générées par cette administration ont été en effet à l’origine de plusieurs mois d’attente et de 75 mesures préventives à satisfaire avant la mise à feu. Les 75 mesures sont un catalogue de contraintes écologiques plus ou moins justifiées (mais certainement si l’on se place au niveau d’un écologisme ambiant absolument délirant). On peut en déduire que puisque le vol S24/B27 s’est terminé sans dommage pour l’environnement, la FAA ne va pas durcir sa position et que le prochain test orbital aura lieu plus rapidement. On a pu en effet constater par le passé qu’Elon Musk a réagi très vite. Je ne serais pas étonné que dès ce soir, réunis à Starbase (Boca Chica, Texas) on analyse les données et on commence à en discuter. Elon Musk dort très peu et les personnes qui travaillent avec lui n’ont pas beaucoup le choix de faire autrement, d’ailleurs ils s’intéressent à ce qu’ils font et sont bien payés pour cela.

On peut douter qu’un jour les vols de Starship deviennent une routine. On aurait tort. Souvenez-vous des premiers vols d’aéroplane, des premiers km des trains et des balbutiements de l’automobile. Rien n’était certain et on considérait les pratiquants comme de dangereux baroudeurs. Certes l’explosion d’une fusée est plus spectaculaire que l’éclatement au sol de la carcasse d’un avion ou le déraillement d’un train de la belle époque. Cela s’explique aisément par l’énergie déchainée pour faire voler une fusée, qui plus est une fusée de la masse d’un Starship (4500 tonnes avec un poussée qui doit être de quelques 5500 tonnes et 1200 tonnes d’ergols). Il faut penser qu’avec beaucoup d’essais, d’échecs donc de progrès, l’époque des pionniers paraitra bientôt comme une époque fantastique, dangereuse, mais révolue, un peu comme le vol de Gagarine quand on le considère aujourd’hui.

Sur le fond j’ai réentendu de la bouche de la présentatrice de SpaceX que le but du Starship était plus que jamais de faire de l’humanité une espèce multiplanétaire. Quoi qu’on puisse dire par ailleurs, c’est cela l’objet du Starship. Elon veut aller sur Mars pour y établir une présence humaine durable, ce qu’on appelait avant le wokisme, une « colonie ». Les autres vols seront faits pour rendre accessible le coût du voyage vers Mars. C’est pour cela qu’il y aura Starlink (hélas ! pour la pollution que cela va occasionner) et les vols sur la Lune dans le cadre du programme Artemis. Seul un vaisseau offrant un volume viabilisable et utilisable capable de transporter des dizaines de passagers ou 100 tonnes d’équipements sur Mars, permettra la réalisation de ce rêve et aussi de revenir sur Terre si l’on en a envie. Et pour sûr la plupart des passagers voudront revenir sur Terre, surtout au début de l’Aventure.

Nous venons de faire un premier pas. On to Mars !

Illustration de titre: capture d’écran émission SpaceX dédiée. Nous sommes encore à “0km” mais le décollage a eu lieu. Ce sont les premiers mètres qui sont les plus durs car c’est à ce moment que le vaisseau est le plus lourd et que, par définition, il n’a aucune vitesse acquise.

PS: mise à jour du 22 avril

On dit de plus en plus que le non fonctionnement de quelques moteurs s’expliquent par la destruction de la table de lancement lors de l’impulsion de départ. Des blocs de béton et de métal aurait été projetés dans toutes les directions et certains auraient heurté des moteurs les rendant inutilisables. Ensuite le lanceur SuperHeavy a manqué de puissance pour monter jusqu’à l’altitude prévue pour la séparation d’avec le Starship-vaisseau.

Elon Musk ajoute qu’une plaque en acier très épaisse était prévue pour recevoir la flamme au fond de la table de lancement mais que cette plaque n’avait pu être livrée à temps. Il a quand même voulu faire le test le 20 avril car il y avait d’autres observations à faire dans le comportement de la fusée. Lors du prochain lancement, dans deux ou trois mois, il y aura bien cette plaque de métal (et peut-être quelques ajustements à l’architecture de la plateforme de lancement).

JUICE, mission majeure de l’ESA vers les lunes de Jupiter, a été lancée ce 14 Avril

Ça y est, elle est partie ! La mission JUICE de l’ESA a quitté la Terre ce vendredi 14 avril de la base de Kourou en Guyane pour le monde de Jupiter (le nom derrière l’acronyme est « JUpiter ICy moons Explorer »)*.C’est, pour l’Europe, l’événement astronautique de l’année. L’objet de la mission est de chercher à savoir jusqu’à quel niveau de complexification vers la vie ont pu mener les « astres-océan » que sont Europa, Ganymède et Callisto**, les plus grosses lunes de la « géante gazeuse » qu’est Jupiter. La mission sur place durera quatre ans, le vaisseau passant de l’orbite de l’une à l’orbite de l’autre. Mais il lui faudra malheureusement cheminer huit années pour parvenir dans l’environnement jovien qui n’évolue pourtant que de 590 à 966 millions de km de la Terre (Mars, de 56 à 400 millions).

*Voir les détails du déroulé du lancement en fin d’article.

**vous remarquerez que Io n’est pas dans les objectifs de JUICE. Il n’y a pas d’océan sous la croûte d’Io, trop proche de Jupiter, et son environnement radiatif, résultant de cette proximité, est trop perturbateur pour être supporté sans dommage trop longtemps. Cette même situation requerrait également trop d’énergie pour s’en éloigner après s’y être satellisée.

C’est en 2004 que tout a commencé, quand l’ESA a entrepris de consulter la communauté scientifique des pays membres pour choisir l’orientation de son futur programme « Cosmic Vision 2015-2025 » (sur des thèmes extrêmement vagues ou complétement ouverts selon le point de vue). L’ESA a ensuite, en 2007, lancé un « appel à missions » pour déterminer quelle devrait être la mission majeure (de classe « L ») de ce programme. En 2012, trois propositions ont été retenues pour étude plus approfondie (phase de « définition ») : JUICE, NGO et ATHENA. Finalement JUICE a été choisie et les deux autres ont été reportées. ATHENA (Advanced Telescope for High Energy Astrophysics) qui doit étudier avec un capteur à rayon X l’accumulation de la matière dans les galaxies ainsi que la formation et l’évolution des trous noirs, pourrait faire l’objet d’une seconde mission « L » mais, telle que prévue, elle coûte trop cher et elle a été remise à l’étude en 2022. NGO (New Gravitational wave Observatory), dédiée à l’étude des ondes gravitationnelles (adaptation de LISA) reste « en suspens ». Tout ça pour dire que la progression des projets se fait très lentement au milieu de beaucoup de concurrence, de beaucoup de bavardages et de beaucoup de précautions, notamment financières, au-delà même du raisonnable (je ne dis pas qu’une bonne définition est évidemment indispensable). L’explication est sans doute à rechercher dans le nombre des intervenants et le poids des administrations.

Ceci dit l’étude des mondes de Jupiter est passionnante et elle est tout à fait faisable sur le plan astronautique. Sur le plan scientifique les équipements d’observation embarqués nous font espérer une moisson magnifique de connaissances nouvelles.

Sur le plan astronautique, c’est une fusée Ariane 5-ECA d’Arianespace, qui a effectué le lancement d’aujourd’hui. La version « ECA » est la plus puissante de la gamme de ces lanceurs. Elle permet de placer 21 tonnes en orbite basse terrestre et 10,5 tonnes en orbite géostationnaire. Sur trajectoire interplanétaire c’est environ moitié moins. En l’occurrence cela a suffi mais de justesse pour la masse à injecter qui était de 5,2 tonnes (dont 285 kg d’instruments scientifiques). C’est cette version d’Ariane qui a lancé le télescope JWST vers le point de Lagrange L2 le 25 décembre 2021. JUICE était son 84ème et avant-dernier lancement (il aurait été impardonnable de le rater !).

Le problème, comme évoqué en introduction, c’est la durée du voyage (pour ceux qui, comme moi, attendent avec impatience les données). Les missions précédentes ont été nettement plus rapides. Galileo, lancé par la navette-spatiale de la NASA, arriva dans l’environnement de Jupiter en 6 ans ; Cassini, lancé par un Titan-IVB de Martin Marietta y parvint en 3ans (et de Saturne en 6 ans) ; Juno, lancé par un Atlas V 551 de Lockheed Martin y parvint en 3 ans. Huit ans pour JUICE c’est donc vraiment beaucoup. L’explication est que la masse de la sonde ne permettait pas d’aller plus vite. Par ailleurs, on a voulu économiser au maximum les ergols pour le voyage puisqu’on aura besoin une fois arrivé « sur place », d’une quantité supérieure aux précédentes missions pour circuler d’une lune à l’autre (35 survols prévus !).

Pour réduire au maximum cette consommation on a prévu d’y substituer au maximum de l’énergie « naturelle », celle qu’on peut obtenir par assistance gravitationnelle (dans un sens positif d’accélération qu’on appelle l’effet de fronde). C’est une opération délicate car il faut s’approcher de l’astre (tomber vers lui) pour bénéficier de la force de son attraction qui va augmenter la vitesse, suffisamment mais pas trop pour qu’elle corresponde exactement à l’ellipse que l’on souhaite parcourir pour parvenir au mieux à l’astre suivant. Le moment de la libération permettra de réorienter la fusée.

Dans le cas de cette mission, l’assistance gravitationnelle suivra un programme « EVEE ». Cela veut dire que la propulsion chimique sera complétée par les impulsions gravitationnelles successives de la Terre (E), de Vénus (V) puis deux fois de la Terre (EE). La première manœuvre aura lieu en aout 2024 en utilisant le système Terre/Lune.

Quoi qu’il en soit du voyage, les objectifs sont passionnants. Il s’agit d’abord d’étudier les zones habitables de Ganymède (comme « objet planétaire et habitat potentiel »), Europa (en insistant sur les zones les plus récemment actives) et Callisto (comme témoin du système le plus ancien de Jupiter), les trois lunes abritant un océan sous une carapace de glace. Il est notable que le fond de ces océans soit constitué de roches, ce qui doit permettre sous l’effet de l’énergie tellurique, imprégnations, enrichissements, évolutions des molécules organiques qu’ils peuvent contenir. On veut en même temps explorer le système de Jupiter comme archétype des systèmes de planètes géantes gazeuses (leur atmosphère, leur magnétosphère et leur système de satellites et d’anneaux). Ce sera en fait la suite de la mission JUNO de la NASA (2016-2021-2025).

Ganymède va être étudié par de nombreux survols à basse altitude. C’est un satellite particulièrement intéressant du fait non seulement de son océan sous surface mais aussi de sa magnétosphère, le seul satellite du système solaire à en générer une, et de sa taille puisque c’est le plus gros des satellites du système solaire avec un diamètre de 5.268 km (plus que Titan, D = 5.149 km ; mais nettement moins que Mars, D = 6.779 km et beaucoup plus que notre Lune, D = 3.475 km). JUICE devrait terminer sa course en s’écrasant sur Ganymède (l’occasion de transmettre un supplément d’informations). Jusqu’à la fin, l’altitude minimum des survols sera de 500 km (pour référence, L’ISS orbite la Terre à environ 400 km).

Europa, bien connue pour sa surface de glace blanche (mais un peu sale, ce qui précisément nous intéresse) et réfléchissante, va être scrutée dans les régions où les rejets d’eau et de matière souterraines (le « sale » ci-dessus) de nombreuses fissures apparaissent les plus récents et l’on va essayer ainsi de déterminer la composition chimique des matériaux autres que la glace, tout en analysant aussi précisément que possible leurs processus de remontée en surface. L’altitude minimum sera de 400 km.

Callisto (la deuxième en taille avec D = 4820 km) est une lune particulière en ce qu’elle est la plus éloignée de Jupiter et de beaucoup, puisque son orbite est à 1.882.700 km de Jupiter (notre Lune est à 385.000 km de la Terre) alors que la deuxième, Ganymède, évolue à 1.070.000 km. Elle a donc été beaucoup moins transformée par Jupiter que les autres, par force de marée (ou par radiations), comme en témoigne d’ailleurs sa surface extrêmement cratérisée (qui est aussi une indication sur l’épaisseur de la croûte recouvrant son océan interne). Elle peut donner de ce fait des informations sur la période la plus ancienne du système jovien et servir de référence pour comparaison avec Ganymède.  Le survol le plus bas sera effectué à seulement 200 km (à noter que plus un passage est bas, plus la vitesse est grande, autrement la sonde s’écrase) !

Pour exploiter ces différents passages à basse altitude, la sonde sera équipée d’un grand nombre d’équipements, pertinents et à la pointe de ce que l’on sait faire aujourd’hui : Imaging system (JANUS), Visible-IR Imaging spectrometer (MAJIS), UV Spectrograph (UVS), Sub Millimeter Wave Instrument (SWI), JUICE Magnetometer (J-MAG), Radio and Plasma Wave Instrument (RPWI), Particle Environmental Package (PEP), Laser Altimeter (GALA), Ice Penetrating Radar (RIME), Radio Science Experiment (3GM), VLBI Experiment (PRIDE). Je les évoque ci-dessous :

Janus va nous fournir des cartes géologiques détaillées à haute résolution et imagées avec les altitudes (DTM) et donner le contexte des autres données observées. Il opérera dans les longueurs d’ondes du spectre visible et du proche infra-rouge. Il bénéficie du know-how des caméras des missions Bepi-Colombo, Dawn, Rosetta et Mars Express. MAJIS va ajouter une dimension spectrométrique à l’image, avec une précision jamais atteinte (1280 bandes spectrales dans le segment 0,4 µm à 5,7 µm, soit de l’IR moyen à l’IR profond). Mais pour analyser les différentes atmosphères et leurs interactions avec l’espace, JUICE sera aussi équipée d’un spectromètre, UVS, opérant de l’autre côté du visible, dans l’ultraviolet (55 à 210 nm, UV lointain et UV extrême). Dans l’atmosphère de Jupiter, SWI mesurera et dressera la carte des températures et des vents Doppler (verticaux) ; il étudiera les molécules CO, HS, HCN, H2O, présentes dans la stratosphère de cette planète géante. Il caractérisera les atmosphères ténues des lunes galiléennes. Il mesurera également les propriétés thermophysiques et électriques des surfaces et sous-sol de ces mêmes astres et les corrèlera avec leurs propriétés atmosphériques et les traits géographiques. Le magnétomètre J-MAG permettra de mieux comprendre la formation des lunes, de caractériser leurs océans souterrains (profondeur, étendue, conductivité), et permettra d’étudier le comportement d’un astre magnétisé en rotation rapide comme Jupiter, et la façon dont il accélère les particules qu’il émet. Il permettra aussi de caractériser la petite magnétosphère de Ganymède. En surface d’Europa, il pourra détecter et caractériser d’éventuels dégazages. RPWI disposera de sondes de Langmuir qui lui permettront de mesurer la température, la densité électronique et le potentiel du plasma circulant entre Jupiter et ses lunes et en particulier de mesurer comment les océans des satellites et les ionosphères réagissent aux variations très fortes de la magnétosphère de Jupiter. Le PEP permettra la mesure et l’imagerie des densités et des mouvements des particules énergétiques neutres (ENA) et du plasma dans tout le système de Jupiter (NB : les particules peuvent atteindre une énergie se mesurant en plusieurs MeV). GALA est spécifique à Ganymède. Il va mesurer l’effet de marée exercé par Jupiter sur cette dernière et déduira des déformations de la croûte, l’épaisseur de celle-ci et l’importance du volume de l’océan sous-jacent. Le rôle de RIME (Radar for Icy Moon Exploration) s’explique de lui-même. Il concerne au premier chef Europa. Compte tenu de ses caractéristiques visibles et de sa position dans le système de Jupiter (chaleur interne par effet de marée), cette lune est la meilleure candidate pour disposer de l’océan capable de faire évoluer les molécules organiques au plus loin vers la vie. RIME est la continuation des radars MARSIS et SHARAD opérant en orbite autour de Mars. Il aura une pénétration allant jusqu’à 9 km. C’est nettement moins que l’épaisseur de la banquise d’Europa qui peut faire entre 80 et 170 km mais cela donnera une vision en 3D de cette banquise (et ce qu’il conviendrait de faire si l’on veut commencer à la sonder). 3GM étudiera tous les effets que peut avoir la gravité dans le système de Jupiter : effet de la planète sur ses lunes, effets des lunes entre elles. PRIDE étudiera tout ce qui peut être mesuré par effet Doppler à l’intérieur du système de Jupiter et de ce système vers les autres astres du système solaire, par la mesure précise des positions et déplacements du vaisseau spatial sur le cadre de référence ICRF (International Celestial Reference Frame). Enfin les organisateurs de la mission ont insisté sur la coordination et la synergie des différents instruments embarqués (« Synergistic payload capabilities ») ce qui est judicieux pour un ensemble aussi riche.

Cet orchestre absolument magnifique (on peut en effet comparer ces instruments scientifiques embarqués à des instruments de musique joués en harmonie du fait de la coordination et de la synergie ci-dessus mentionnées) doit nous permettre d’avancer considérablement dans la compréhension du système de Jupiter. On se rend bien compte qu’animé par un cœur violent, la redoutable planète-reine elle-même, c’est un milieu très hostile de par son environnement radiatif. Mais « la nature est bien faite » ; la vie, si elle existait dans les océans souterrains, bénéficierait d’une protection contre ces forces destructrices du fait de la présence d’une carapace de glace (et d’ailleurs ces océans n’existeraient pas sans ces carapaces) et de la chaleur interne des lunes stimulée par les forces de marée générées par la masse de Jupiter. On peut toujours espérer.

L’énergie à bord est fournie par 85 m2 de panneaux solaires. Les corrections d’attitudes et les impulsions pour changer de direction (principalement insertion en orbite de Jupiter puis insertion en orbite de Ganymède) seront faites grâce à 3650 kg d’ergols (mono-méthil hydrazine – MMH – brûlant dans un mélange d’oxydes d’azote – MON). Poussée maximum 425 Newton.

Les participants scientifiques (« JUICE Science Working Team ») à cette mission sont évidemment très nombreux. Ils sont ressortissants de plusieurs pays membres de l’ESA : l’Allemagne, l’Italie, la France, la Grande Bretagne, la Suède, la Suisse, les Pays-Bas, la Belgique mais aussi des Etats-Unis et Israël.

Le décollage a eu lieu le 14 avril à l’heure prévue, 14h15 (avec un jour de retard compte tenu du temps orageux le 13 avril). Les deux boosters latéraux se sont détachés à 14h18. La coiffe protégeant la sonde s’est ouverte et a été évacuée à 14h20. La séparation du premier étage s’est faite à 14h22. L’allumage du second étage a eu lieu à 14h24. La séparation de la sonde et du second étage a eu lieu à 14h42. L’acquisition du signal radio a eu lieu à 15h05. Le déploiement des panneaux solaires a eu lieu à 15h50. Comme on dit en Franglais « All is nominal ! »

Le moment le plus délicat de la mission, après le décollage et après les multiples recherches d’assistance gravitationnelle sera l’insertion en orbite de Jupiter mais malheureusement nous n’en sommes pas encore là.

Au-delà, en m’éloignant de la science jusqu’aux rives de la science-fiction, je ne peux m’empêcher de me souvenir que c’est dans ce cadre grandiose qu’évoluait l’un des monolithes-relais de l’épopée 2001 Odyssée de l’Espace conçue par l’esprit fertile d’Arthur Clarke et merveilleusement mis en images et en musique par le génial Stanley Kubrick. JUICE rencontrera-t-elle un Monolithe ? Ce serait bien sûr une révolution pour nous, l’ouverture d’une porte splendide vers l’infini et vers la vie ailleurs. On peut toujours rêver.

Illustration de titre : Les quatre plus grosses lunes de Jupiter, de gauche à droite : Io, Europe, Ganymède, Callisto. Crédit ESA. Les proportions ainsi que l’ordre en distance à la planète sont respectées, la plus chaude et la plus « tourmentée » par sa proximité avec Jupiter, étant la volcanique Io couverte de souffre.

https://sci.esa.int/documents/33960/35865/1567260128466-JUICE_Red_Book_i1.0.pdf

https://www.esa.int/Science_Exploration/Space_Science/Juice

https://www.cosmos.esa.int/web/juice

https://www.esa.int/Space_in_Member_States/Belgium_-_Francais/JUICE_prochaine_grande_mission_scientifique_de_l_Europe

https://saf-astronomie.fr/la_mission_juice_esa/

https://sci.esa.int/documents/33960/35865/1567260193381-ESA_SPC%282012%2920_rev.-1_JUICE_SMP.pdf

https://fr.wikipedia.org/wiki/Jupiter_Icy_Moons_Explorer

https://fr.wikipedia.org/wiki/Juno_(sonde_spatiale)

https://www.space.com/why-take-juice-spacecraft-eight-years-reach-jupiter

De la Poussière à l’Homme

Au commencement était un nuage, un gigantesque nuage de gaz moléculaire et d’un peu de poussière, d’une centaine d’années-lumière en étendue et de deux ou trois soleils en masse, comme il en existe partout dans l’Espace, matériau léger et froid provenant des origines mêmes de l’Univers, enrichi au cours du temps de quelques parties d’éléments lourds, « métalliques », forgés au cœur des étoiles-massives et libérés après leur mort.

« Un jour », comme l’ont théorisé Emmanuel Swedenborg (1734), Emmanuel Kant (1755) puis Pierre-Simon Laplace (1796), cette énorme masse immobile et passive fut animée par un événement extérieur fortuit, le passage d’une étoile proche ou l’explosion en supernova d’une étoile-massive qui ayant généré un vent puissant, souffla le nuage en l’enrichissant aussi d’un peu plus de matière. Le seuil critique de densité était atteint pour que la force de gravité intrinsèque à toute matière commence à faire son œuvre, que la concentration du nuage à peine esquissée se développe et s’auto-accentue et qu’un disque d’accrétion en rotation résultant de l’accélération de la rotation pendant la contraction, se forme autour des parties les plus denses et s’y réchauffe du fait de cette densité.

Le processus étant enclenché, rien ne pouvait plus l’arrêter. C’est au centre du disque que la densité était naturellement la plus forte et la température la plus élevée. Et c’est là qu’assez rapidement (une centaine de millions d’années) un astre ou deux devaient se former comme un enfant dans le ventre de sa mère. La masse seule devait déterminer leur puissance, c’est-à-dire leur capacité à générer une fusion nucléaire de l’hydrogène vers l’hélium plus ou moins importante. Pour notre système ce fut une « naine-jaune », c’est-à-dire une étoile de puissance moyenne (type spectral « GV ») et de durée de vie assez commune, soit quelques 10 milliards d’années…et sans doute un ou deux frères du Soleil dont nous ne savons rien sinon qu’ils sont probables et qu’ils ont dû partir vivre leur vie en fonction de leur masse, de l’influence des masses voisines et de leur vitesse propre autour du Centre galactique.

Aussitôt le feu allumé par la fusion, le Soleil, car c’était lui un des “happy few” qui naissaient, rayonna ; c’est-à-dire qu’il projeta au sein de sa sphère d’influence des particules résultant de son activité interne et rejeta au-delà de son environnement le plus proche les nuages de matière qu’ils n’avaient pas absorbés et en particulier les volatils, dont l’eau sous forme de cristaux. Celle-ci fut repoussée au-delà d’une certaine limite qu’on appellera la « Ligne de glace », située aujourd’hui au milieu de la Ceinture d’Astéroïdes.

Mais le Soleil n’avait pas épuisé la matière de son disque, même s’il en constituait et de loin, la plus grande partie, soit 99,86%. Ce disque continuait à tourner car une fois le processus de concentration du nuage initié, il ne pouvait s’arrêter puisque porteur de l’énergie cinétique liée à l’effondrement de ce même nuage dont il était issu. A l’intérieur, la matière, du fait de la diversité de son mixte de constituants en fonction de sa distance au jeune Soleil et de la vitesse générée par la gravité, ne pouvait y être homogène. Des tourbillons se formaient, des chocs multiples intervenaient, des attractions gravitationnelles de plus en plus puissantes s’exprimaient en fonction des masses en présence et de la distance à l’Astre central, tout ceci dans un « joyeux désordre » apparent mais toujours selon les lois universelles de la Physique (Lois de Kepler et de Newton).

C’est à plus grande distance du Soleil, au-delà de la Ligne de glace, par nettoyage et absorption de la quasi-totalité de la masse de leur environnement et notamment de leur orbite, que se formèrent d’abord les plus grosses planètes, les « géantes gazeuses », Jupiter, Saturne, Neptune, Uranus et peut-être la fabuleuse « Planète-9 » située entre Saturne et Neptune, car non seulement elles disposaient de la matière solide mais aussi des volatils à l’origine présents partout mais rejetés par le jeune Soleil au-delà de cette Ligne. En deçà de la Ligne, les masses étaient par définition sèches, sans eau libre (ce qui n’exclut pas l’eau chimiquement captive). C’est là que se formèrent ensuite les planètes telluriques, Mars, la Terre, Vénus, Mercure. C’était il y a quelques 4,6 milliards d’années.

Les étapes furent multiples. L’accrétion n’est pas quelque chose de simple dans un milieu occupé par d’innombrables masses différentes. Les plus grosses absorbent les plus petites à leur proximité mais en même temps elles se déplacent vers leur centre commun de gravité, leur barycentre. Certains chocs font éclater des astres déjà gros et les centres d’accrétion peuvent se recomposer différemment après impact et éjections. Enfin des zones entières peuvent être soumises à des forces gravitationnelles contradictoires qui empêchent ou limitent toute centralisation. C’est ainsi que la Ceinture d’Astéroïde se forma à distance respectable mais insuffisante de Jupiter et de Mars de telle sorte qu’elle ne put se concentrer en planète. Avant les planètes qui purent se former et après l’époque des astéroïdes, il y eut l’époque des planétoïdes. Certains fusionnèrent pour former ces planètes qui libérèrent de matière leur orbite. D’autres ne purent aller jusqu’au bout de cette évolution, ce sont aujourd’hui les planètes-naines (dans la Ceinture d’Astéroïdes ou la Ceinture de Kuiper, comme Cérés, Pluton ou Eris) et les gros astéroïdes.

Enfin la stabilisation fut longue et difficile. On pense ainsi (Alessandro Morbidelli, « le Grand Tack ») que Jupiter, après avoir concentré l’essentiel de la matière de sa zone mais toujours attiré par la matière voisine qui restait très abondante, « entreprit » de descendre vers la Ceinture d’Astéroïdes, région qui, vers le Soleil lui était la plus proche et où la matière était encore très diffuse. Jupiter entraîna sa voisine, Saturne, en amorçant sa descente et ce ne fut que lorsqu’une certaine résonnance fut établie entre les deux (trois rotations de Jupiter pour deux de Saturne) que les deux astres purent revenir de concert vers leur lieu de naissance. A l’aller et au retour elles capturèrent une bonne partie de la matière initiale de la Ceinture d’Astéroïdes et « chamboulèrent » le reste, remettant des corps glacés en deçà de la Ligne de glace toujours à l’intérieur de la Ceinture, ce à quoi le Soleil, un peu calmé de ses ardeurs juvéniles, ne put s’opposer. Quand les perturbations étaient trop violentes ces petits corps glacés étaient projetés en dehors de la Ceinture, soit vers le système planétaire externe soit vers le système planétaire interne et donc la Terre. Mais, comme dans toute manœuvre de ce genre, il y eut des excès ; c’est-à-dire des effets d’inertie ou de balancier. Jupiter descendit très bas vers le Soleil, jusque dans le domaine de Mars et captura beaucoup de matière à cette distance du Soleil, ce qui n’en laissa pas suffisamment à la future Mars pour devenir aussi massive que la Terre ou Vénus. Dans l’autre direction, après rebroussement, le retour du couple emporta Saturne bien au-delà du berceau de sa naissance. Neptune fut de ce fait éjecté au-delà d’Uranus et l’axe de rotation d’Uranus fut complètement perturbé (rotation rétrograde, sur un axe incliné de 97,7° sur l’écliptique). Certains pensent même qu’une autre géante gazeuse, qui s’était formée à distance respectable de l’orbite initiale de Saturne, fut, du fait de son retour, expulsée bien au-delà des autres planètes. C’est ce qu’on appelle la Planète-9 susmentionnée, qui serait aujourd’hui quelque part dans la Ceinture de Kuiper, ce tore d’astéroïdes trop lointain et trop immense (et ses composants animés d’une vitesse trop faible) pour avoir permis la création d’une planète unique sur son orbite bien qu’il soit peuplé de plusieurs planètes-naines de la taille de Pluton. D’ailleurs ces planètes naines résultent peut-être de perturbations créées par l’intrusion profonde de Neptune dans cette zone du fait qu’elle y avait été rejetée par le retour de Saturne. Du fait de ces bouleversements dans les Ceintures d’astres glacés, l’eau redescendit sous forme de pluies de comètes vers le Soleil. Et la Terre, comme Mars et Vénus purent jouir de ses bienfaits.

Les dés étaient jetés, les cartes distribuées, les rôles pouvaient se dérouler en fonction des positions de chacune des planètes par rapport au Soleil et de leurs dons ou aptitudes respectifs. La Terre, comme les autres, avaient ses potentialités sinon son destin. Compte tenu des circonstances particulières galactiques, compte tenu du dosage des composants chimiques les constituant, compte tenu de l’histoire ayant mené les astres jusqu’à ce point, beaucoup de voies étaient possibles. Ce qui est certain c’est que la Terre se trouvant alors dans la zone-habitable du Soleil et possédant de l’eau en plus des fameux éléments chimiques C,H,O,N (plus souffre, potassium, et quelques autres), elle devenait potentiellement habitable.

Cela a conduit jusqu’à nous au travers d’une multitude de vicissitudes, d’accidents, d’imprévus comme de possibles sinon de prévisibles. C’est précisément parce que la Vie a pris au bon moment les bonnes directions dans les multiples carrefours qui se sont présentés par accidents que nous sommes aujourd’hui présents sur Terre. Ces accidents étaient imprévisibles dans leur intensité particulière et dans le moment exact où ils survinrent par rapport à l’écoulement du fleuve de la Vie.

Certains voudraient que tout fut écrit. Je ne le pense pas. De la poussière à l’Homme il y a un très long parcours croisant de multiples carrefours, unique comme une empreinte digitale et qui s’est effacé au fur et à mesure qu’on a progressé. Il y a eu le Hasard et la Nécessité et aussi, lorsqu’il accéda à la conscience, la Liberté de l’Homme, sa Réflexion, sa Volonté et sa capacité de Faire. Maintenant on peut toujours s’interroger sur le Hasard, la Nécessité et l’issue de la Réflexion. Jamais nous n’aurons de certitude absolue sur la cause du résultat de ce cheminement absolument unique. C’est cela aussi notre Liberté. Le pari de Pascal a un bel avenir.

Comme quoi « On » peut tout faire avec la poussière, même l’Homme pour contempler le Ciel et se poser les questions qui lui sont essentielles.

Joyeuses Pâques!

Illustration de tire : Nébuleuse d’Orion, crédit NASA, ESA, M Robberto (STscl/ESA et al.).

Liens :

https://media4.obspm.fr/public/ressources_lu/pages_planetologie-formation/disque-protoplanetaire_impression.html

https://fr.wikipedia.org/wiki/N%C3%A9buleuse_solaire

Traces de vie. Terre, oui ; Mars, peut-être. Une exposition à Neuchâtel à ne pas manquer

L’exposition “Traces de vie”, certitude sur Terre, hypothèse sur Mars, a été ouverte au public lundi 26 mars ; elle durera jusqu’au 3 décembre. Il s’agit, dans le cadre bucolique du Jardin botanique de Neuchâtel (exposition dans la « Villa ») et grâce au concours de spécialistes reconnus, (1) de comprendre l’environnement terrestre particulier dans lequel le phénomène de la vie est apparu ; (2) de voir quels équipements l’ESA compte utiliser pour savoir si ce même phénomène s’est développé également sur Mars.

Les spécialistes sont l’astrophysicien Jean-Luc Josset, directeur du Space Exploration Institute de Neuchâtel (le « SpaceX » suisse, rien à voir avec l’autre SpaceX) et le biologiste Blaise Mulhauser, directeur du Jardin botanique de Neuchâtel. Les deux ont chacun une équipe parfaitement « branchée » aussi bien sur Mars que sur les problématiques de l’origine de la vie. Au sein de SpaceX, la géologue Marie Josset et le géobiologiste et exobiologiste Tomaso Bontognali connaissent Mars comme s’ils y avaient déjà été. Quant à Blaise Mulhauser, le sujet de la vie le passionne depuis toujours, aussi bien dans le domaine animal que dans le domaine végétal et, bien sûr, de leurs ancêtres eucaryotes et procaryotes. Pour préparer l’exposition ils ont reçu le confort de l’ESA (Jorge Vago, ExoMars Project Scientist), des Universités de Berne, de Neuchâtel, du Musée d’Histoire Naturelle de Berne (Beda Hofmann) et de la Haute Ecole Arc ingénierie ainsi que de chercheurs de renommée mondiale, comme la géologue-exobiologiste Frances Westall (Centre de biophysique moléculaire, Orléans) ou la géologue-exobiologiste Emmanuelle Javaux (Université de Liège).

L’hypothèse à la base de l’exposition, comme d’ailleurs des missions d’exploration martiennes, une éventuelle vie sur Mars (passée ou encore présente), repose sur la similitude entre la Planète Mars et la Terre dans les premières centaines de millions d’années suivant leur accrétion (entre -4,56 et -3,9 ou -3,8 milliards d’années). Dans les deux cas on se trouve en présence d’une planète rocheuse, avec présence d’eau liquide en surface (en zone dite d’« habitabilité ») sous atmosphère. Mars est de ce point de vue plutôt à la marge compte tenu de sa distance au Soleil et de l’excentricité de son orbite mais pendant cette période (essentiellement Hadéen et début Archéen sur Terre, Phylosien sur Mars) l’atmosphère était très dense (surtout au début car la gravité de Mars n’a pas eu la force de la retenir bien longtemps). Mais cela ce sont de « grandes lignes » et il faut probablement descendre loin « dans les détails » pour vérifier l’hypothèse. Nous n’aurons bien sûr de réponse que lorsque nous aurons trouvé, ou non, des traces de cette vie.

Pour ce faire, l’ESA a prévu depuis le début des années 2000 (à l’origine dans le cadre de son programme Aurora) d’envoyer sur Mars un rover (laboratoire mobile robotique), comme l’ont fait à plusieurs reprises les Américains. A partir de cette date, la mission, nommée « ExoMars », va subir de nombreuses vicissitudes. Elle passe d’une association avec les Américains à une association avec les Russes, pour le lancement et l’atterrissage. Elle devait être lancée en 2016 (ce fut heureusement le cas de la partie orbiteur, « TGO » qui fonctionne à merveille), puis en 2018, en 2020, en 2022. Finalement l’ESA a dû renoncer à cette dernière opportunité à cause de l’éclatement de la guerre en Ukraine*. Il a donc fallu reprendre le projet en 2022 pour repartir dans une coopération avec les Etats-Unis (puisque l’Europe ne dispose toujours pas d’un lanceur suffisamment puissant et ne maîtrise pas la technique très « pointue » de l’EDL pour descendre sur Mars). Mais, du coup, des ajustements nombreux doivent être faits. Le résultat c’est que le lancement ne pourra avoir lieu qu’en 2028 ! Ces différents reports sont à la fois impressionnants et très frustrants. On peut toutefois se consoler en considérant que les Russes n’ont jamais réussi à poser sur Mars un laboratoire robotique qui ait fonctionné avec succès (malgré trois semi-échecs/réussites d’atterrissage) et que les Américains maîtrisent, eux, parfaitement la technologie.

*Remarquez que cette guerre n’a pas empêché les Américains de continuer à coopérer avec les Russes dans l’ISS. Les Européens se veulent sans doute moralement plus irréprochables qu’irréprochables !

Le rover européen « Rosalind Franklin » de cette mission ExoMars, (bien présenté à l’exposition) est très clairement conçu pour nous faire avancer dans nos recherches exobiologiques. Il ne faut pas le voir comme une simple copie des rovers américains car il est porteur d’innovations considérables. Tout d’abord, il est équipé d’une foreuse qui lui permettra d’atteindre une profondeur de 2 mètres alors que les forets américains actuels (sur Curiosity ou Perseverance) ne peuvent pas être enfoncés au-delà de 6,5 cm. Cela représente une différence énorme car en raison d’une atmosphère très ténue et de l’absence de protection par champs magnétiques générés par dynamo interne de la planète, le sol de Mars est bombardé depuis des milliards d’années par toutes sortes de radiations cosmiques (galactiques et solaires) qui ont dû détruire toute molécule organique jusqu’à cette profondeur de 2 mètres. Par ailleurs, l’eau liquide de surface s’est forcément sublimée compte tenu de la très faible pression atmosphérique et on ne peut espérer trouver un peu d’humidité que si l’on s’enfonce assez profondément dans le sol (autrement l’eau se trouve sous forme de glace, si la température le permet).

Au-delà de la foreuse, Jean-Luc Josset (PI, Principal Investigator) et son équipe (Beda Hofmann et Frances Westall sont co-PI) ont conçu et fait réaliser un outil essentiel, la caméra CLUPI (CLose-Up Imager) qui est un trésor d’ingéniosité. Cette caméra équipe le bras de la foreuse qui doit examiner le sol avant puis après extraction des échantillons et également au moment de l’introduction de ces échantillons dans le laboratoire d’analyses embarqué dans le rover. Elle bénéficiera d’une capacité de réglage pour de multiples focalisations qui donneront des images claires à différentes distances et toutes ces images seront synthétisées avant l’envoi vers la Terre sur un document unique. A noter par ailleurs que le laboratoire embarqué qui fera l’analyse des échantillons n’utilisera pas d’oxydant pouvant fausser la composition des éventuelles molécules organiques prélevées et que la caméra CLUPI fonctionne sans lubrifiant ce qui est un gage de durabilité compte tenu du temps qui doit encore s’écouler avant utilisation et des conditions environnementales martiennes très dures pour les lubrifiants. Le rover européen pourra également affronter des terrains plus difficiles, en pente et sableux, grâce à des articulations aux « jambes » des roues, qui lui permettront par effet de braquet, de bloquer les roues dans la montée ou la descente.

Mais que s’attend-t-on à trouver sur cette sœur de la Terre ? On déduit de la ressemblance des environnements, que le « réacteur biologique » que constitue la planète aura conduit à la même évolution des matières organiques vers la vie que sur Terre. L’exposition montre dans cet esprit des procaryotes (bactéries ou archées) vivants et des procaryotes fossilisés. Ils montrent aussi des microbialithes, ces structures minérales, parmi lesquelles on classe les stromatolithes, créées par l’activité et le métabolisme des bactéries. Ils montrent aussi les traces plus discrètes de la vie, les plus anciennes formes de procaryotes telles qu’elles ont survécu dans la roche au travers du travail du temps (on est vers -3,5 milliards d’années). On peut cependant reconnaître des volumes de procaryotes par microscope électronique à balayage et confirmer leur nature par analyse chimique (compte tenu de l’évolution des molécules du fait du temps). Au-delà (jusqu’à -3,8 milliards), on ne peut plus identifier sans réserve les formes mais on peut toujours remarquer les assemblages chimiques particuliers, mettant en évidence la présence des fameuses molécules de la vie autour des atomes de carbone, hydrogène, oxygène, azote, souffre, potassium ou encore l’organisation de ces molécules en composés aromatiques ou encore le choix très caractéristique de leur homochiralité (démonstration faite à l’exposition).

Là où je diverge avec mes amis concepteurs de cette exposition, c’est que j’estime qu’ils vont trop vite trop loin, en supposant, c’est cela l’hypothèse, que ces matières organiques se sont organisées également sur Mars en organismes vivants, c’est-à-dire en organismes capables de se reproduire, presque à l’identique (avec quelques « accidents » permettant l’adaptation) en puisant leur matière et leur énergie dans leur environnement. Je ne les suis pas sur cette voie car je pense qu’il y a un saut énorme entre les molécules les plus complexes que peut sans doute produire le réacteur planétaire (il y a déjà complexification dans les astéroïdes) et la vie, c’est-à-dire l’organisation de ces molécules, et seulement elles, au sein d’une cellule qui « fonctionne ». Je pense que ce sont des conditions très particulières sur Terre qui ont permis le saut du prébiotique au biologique et je ne vois pas d’automatisme pour qu’il se réalise ailleurs. La Terre est en effet très “spéciale” ne serait-ce qu’en raison de son satellite de masse anormalement importante, relativement, qui dans les premiers temps évoluait très près de nous, 30.000 à 40.000 km seulement, provoquant de très fortes marées (et l’on sait que l’alternance d’humidité et de sécheresse a été indispensable à certaines réactions chimiques à l’origine de la vie). Ou bien ce sont les fumeurs gris (« Lost City ») dont les emanations s’échappent à grande profondeur le long des dorsales courant au fond des océans, dans des conditions spécifiques aussi bien de minéralogie que de température et de pression et sur un temps très long (les fumeurs gris ne sont pas des fumeurs noirs!). Ou encore des environnements de type Yellowstone en milieu aqueux acide sous une atmosphère riche en azote et en gaz carbonique, à des pressions et températures bien précises. Ou enfin, et ce n’est pas le moins important, un différentiel de taux de pH particulier entre le liquide basique qui sort des profondeurs de la planète et celui de l’environnement de l’Océan. Ce différentiel est évolutif et c’est un différentiel élevé qui a permis, à une époque précise, la mise en route du processus oxydation/réduction à la base de toute chimie de la vie. N’oublions jamais qu’il n’y a eu qu’un seul LUCA (Last Universal Common Ancestor) pour toute vie présente aujourd’hui sur Terre et que depuis près de 4 milliards d’années il n’y en a eu aucun autre (la phylogénétique nous le dit très clairement, sans contestation possible). Bref, il ne faut pas vendre la peau de l’ourse « Vie martienne » avant de l’avoir trouvée…ce qui ne veut pas dire qu’il ne faut pas la chercher, bien sûr (et la recherche est d’autant plus “facile”, si l’on peut dire, qu’en l’absence de tectonique des plaques sur Mars, les surfaces datant de cette époque très ancienne, sont extrêmement étendues).

Un autre point de divergence est une réflexion inutile (de mon point de vue) qui est affichée à l’entrée de l’exposition : « il n’y a pas de planète « B ». Pour moi, il est évident au contraire qu’il y a bien pour nous, êtres humains, une planète-B et que cette planète est Mars. J’ai tout à fait conscience des difficultés qu’il y aurait à y vivre mais je sais aussi que notre technologie pourrait nous le permettre. Ce serait bien sûr pour un petit nombre mais un nombre suffisant tout de même pour survivre, pour nous reproduire et pour faire perdurer l’humanité dans des conditions acceptables au cas où la Civilisation (sinon l’Homme) disparaîtrait sur Terre.

Pour terminer je voudrais signaler deux faits qui ont flatté mon égo dans cette exposition. D’abord apprendre que c’est à l’occasion de la convention de la Mars Society Switzerland que j’avais organisée à La Chaux-de-Fonds en 2018 (« EMC18 »), que Jean-Luc Josset (un des sponsors de EMC18) et Blaise Mulhauser ont commencé à discuter de son principe. Ensuite ce fut le plaisir d’y retrouver « ma » double-horloge (« dual clock ») réalisée par Vaucher Manufacture Fleurier pour Baselword 2016 avec mon conseil (voir mon article du 17 mars 2016 sur ce blog)*. Ce bel objet (dimensions : 80 cm x 40 cm) montrant à la fois l’écoulement des temps martien (cadran ocre) et terrestre (cadran bleu), avait, après Baselworld, été exposé à la Convention EMC18 (outre sa présentation à la conférence à l’U3A de Neuchâtel en 2016 à l’invitation de Philippe Terrier et à la conférence à la commune du Val de Travers, organisée par Caroline Houriet, à l’occasion de la célébration du changement d’heure de 2019). Les deux parties de l’horloge sont reliés par un mouvement central instituant un rapport de 1,0275, correspondant à celui existant entre la journée terrestre de 24h00 et le « sol » martien de 24h39 (avec en plus, un décompte de 22 mois martiens et 12 mois terrestres).

*C’était Katia Della Pietra (alors responsable de la communication de Vaucher) qui m’avait contacté et nous en avions discuté avec Pierre-Yves Grüring (constructeur mouvement, chef de projets). Je les salue tous les deux ainsi bien sûr que Caroline Houriet et Philippe Terrier, s’ils lisent ce blog.

Ceci dit je n’émets aucune réserve sur la qualité de l’exposition. Chacun pourra réfléchir sur la probabilité d’une vie martienne à partir de l’excellente documentation présentée. Jusqu’en décembre, Mars sera à Neuchâtel. Vous pourrez même y mettre le pied car une expérience de réalité virtuelle vous permettra de vous promener autour de Rosalind Franklin comme si vous y étiez (et lui aussi !).

liens:

https://www.space-x.ch/

https://hal.science/tel-03572179/document

https://www.jbneuchatel.ch/

NB: Vous pourrez accéder facilement au Jardin botanique de Neuchâtel avec le bus 109 ou le bus 106, en dix minutes à un quart d’heure, à partir de la Place Pury.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 03 17

Continuation du Dialogue entrepris à Venise en 1624 par Galilée + annonces de bas de page

Cette semaine, Christophe de Reyff reprend avec son propre Dialogue, celui initié par Galilée, en l’ouvrant sur les perspectives de l’Univers résultant de ce que nous savons de son état actuel et des potentialités que nous lui connaissons du fait de l’étude de son passé.

En réfléchissant à ces perspectives et au fait que le Dialogue se déroule à Venise, je ne peux m’empêcher de penser à l’histoire de cette ville magnifique et à ses propres perspectives. Après un début éclatant qui l’a portée au plus haut de la Civilisation dans tous les domaines, Venise se meurt depuis des siècles, en fait depuis le coup de poignard qui lui a été infligé par les Grandes Découvertes et ses conséquences économiques et donc politiques. Cependant, comme l’Univers, elle a continué sur sa lancée initiale et n’a jamais perdu de sa splendeur. Le 18ème siècle, totalement décadent, a été sans doute la période où la Ville a brillé avec le plus d’éclat, comme le début du bouquet final d’un feu d’artifice. Souvenez-vous de Vivaldi et écoutez sa musique dans vos têtes comme elle devait emplir les murs de la Basilique Saint-Marc. Aujourd’hui ses vestiges dont toute force politique a été évacuée et dont la population native diminue année après année, attirent encore comme un aimant la curiosité, l’admiration et l’affection de l’humanité toute entière. Venise se meurt mais Venise n’est pas morte. Elle est simplement mourante, en représentation, comme une cantatrice d’un des splendides opéras qui sont nés ici. Elle est de plus en plus dégradée, de plus en plus menacée par les flots et le tourisme de masse, et pourtant, dans la flamboyance de son Automne, elle est toujours plus belle, attirante et émouvante. Cela dure depuis des siècles et cela durera encore des siècles car l’humanité entière fera tout pour que Venise ne disparaisse jamais complètement tant qu’elle même restera consciente. On peut dire sans se tromper que laisser cette image grandiose de ce que nous avons été, disparaître, serait entrer dans la barbarie définitive ou le néant de la Civilisation et sera sans doute le signe ultime de notre déliquescence. C’est un peu (seulement « un peu » car à la différence de Venise nous n’y pourrons vraiment rien) comme l’Univers qui perdra petit à petit au fil des milliards d’années à venir son éclat pour tout observateur possible, et dont l’énergie un jour sera tellement diluée qu’elle ne pourra même plus porter son souvenir. Mais jusqu’au bout, la grandeur, la force et la beauté de l’Univers restera le plus merveilleux des concepts que l’on puisse imaginer, hormis celui de son éventuel créateur. Pour ressentir l’analogie vous pouvez toujours écouter un lento de Vivaldi.

Après cette introduction un peu longue, je passe la parole à Christophe de Reyff.

Nous reprenons le spectacle après l’entracte hebdomadaire mais, avant de continuer, je vous en rappelle les toutes dernières lignes (interventions de Salviati et Simplicio) :   

Salviati : On doit donc admettre que l’Univers a eu une phase d’expansion décélérée, est ensuite passé par un état d’« hésitation », comme l’a joliment écrit le chanoine Georges Lemaître, puis a repris une accélération qui se poursuit actuellement.

Simplicio : Vous me rassurez, Maître. Donc nous allons bien avoir un de ces jours notre feu d’artifice ?

Salviati : Du calme, Signor Simplicio ! Il faut regarder les choses d’un point de vue astronomique. Ce ne sera pas demain ! Je reprends la suite de mon raisonnement. La vitesse d’expansion subit donc une accélération, mais jusqu’où cela ira-t-il ? Jusqu’à la vitesse de la lumière ? Au-delà ? Remarquez bien : ce ne sont pas les galaxies qui « bougent » en s’éloignant radialement de nous, ce que montre le décalage vers le rouge de leur spectre ; c’est bien plutôt le « tissu » de l’espace-temps lui-même qui se dilate, transportant les galaxies, disons, pour prendre une image parlante souvent utilisée, un peu comme des raisins secs de Corinthe dans un soufflé qui gonfle au four : chacun s’éloigne de chacun de ses voisins sans bouger lui-même, car c’est la pâte qui gonfle. Il est donc possible, sans violer aucune loi, que cette vitesse dépasse la vitesse de la lumière ; l’espace « vide » peut se dilater à n’importe quelle vitesse, même supérieure à celle de la lumière. Cela, du reste, a déjà lieu depuis longtemps. Si l’on prend la valeur du « paramètre de Hubble », son inverse est une durée, nommée « temps de Hubble » (mais ce n’est pas du tout l’« âge de l’Univers », comme on le lit ici ou là). Si l’on multiplie cette durée par la vitesse de la lumière, on obtient une distance, dite justement « rayon de Hubble ». C’est tout simplement la distance à laquelle, depuis notre point d’observation, et j’insiste sur cela, la vitesse apparente de fuite des galaxies franchit la vitesse de la lumière. On ne pourra donc depuis ici plus jamais rien voir au-delà de cette distance, car aucun signal lumineux ou autre ne pourrait nous parvenir d’objets qui depuis là-bas sont plus rapidement transportés que la vitesse des photons qu’ils émettraient vers nous. Mais …

Simplicio : Ah ! J’ai compris, c’est l’horizon cosmologique ou horizon de visibilité, comme on l’appelle …

Sagredo : Mais voyons, Signor Simplicio, laissez notre Maître poursuivre son explication !

Salviati : Non, Signor Simplicio ! Ce « rayon de Hubble », ce n’est pas cela. On confond – et même d’éminents astronomes le font – l’« horizon cosmologique » et ce « rayon de Hubble », où la vitesse de fuite des galaxies dépasse la vitesse de la lumière. L’« horizon cosmologique » est, tout simplement, la distance qu’ont pu parcourir les photons de la lumière émise par des objets les plus lointains, et les plus anciens, vus de la Terre, durant la durée que représente l’âge de l’Univers ; c’est le temps maximal actuel qui est à leur disposition pour nous faire parvenir leur lumière. Si l’Univers a quelque 13,8 milliards d’années d’âge, notre horizon de visibilité est bien situé à 13,8 milliards d’années-lumière de la Terre, cela, par définition. Mais si l’on calcule le « rayon de Hubble », le nôtre, à ce jour bien entendu, avec la meilleure valeur actuelle du « paramètre de Hubble », on arrive à déjà 14,4 milliards d’années-lumière. Ce rayon de Hubble est donc, actuellement du moins, situé encore bien au-delà de notre « horizon cosmologique ». Ce qui est intéressant pour nous autres Terriens, c’est que chaque année qui passe augmente ainsi notre horizon cosmologique d’une année-lumière ; on a donc des chances chaque année de pouvoir observer l’un ou l’autre nouvel objet céleste lointain, et ancien, qui entre enfin dans notre horizon, disons, en moyenne, probablement une nouvelle galaxie par an. De son côté, puisque le paramètre de Hubble décroît, le « rayon de Hubble » continue aussi de croître, mais de plus en plus lentement, dans la même mesure où le « paramètre de Hubble » diminue continûment avec le temps qui passe ; ce qui est le cas.

Simplicio : J’ai bien compris : il ne faut pas confondre ni identifier l’« horizon cosmologique » et le « rayon de Hubble » qui, pour l’instant, ne coïncident pas. Mais un jour viendra …

Salviati : C’est cela, très bien, Signor Simplicio ! Continuons : après le Russe Alexandre Friedmann et le Belge Georges Lemaître, d’autres savants ont montré par leurs équations, que le « temps de Hubble », donc l’inverse du « paramètre de Hubble », a toujours été supérieur à l’âge de l’Univers jusqu’à aujourd’hui. Le passionnant dans tout ça, c’est que, même si l’expansion accélère, il va arriver un jour prochain où l’âge de l’Univers va « rattraper » exactement le « temps de Hubble », autrement dit, que la distance de notre horizon va coïncider exactement avec le « rayon de Hubble ». Cela se fera dans plus d’un milliard d’années. Que se passera-t-il au-delà de cette époque ? Simplement dit, la distance limite de visibilité que représente aussi le « rayon de Hubble », mais pour une autre raison, celle de la vitesse de fuite qui dépasse celle de la lumière, cette distance, donc, se substituera à notre horizon actuel : les objets nouveaux qui apparaîtraient sur cet horizon disparaîtraient aussitôt, cela étant dû à leur vitesse de fuite qui dépassera tout juste celle de la lumière.

Simplicio : Je ne vois toujours pas venir mon feu d’artifice …

Salviati : Ce qui va vous décevoir, je le crains, Signor Simplicio, c’est qu’il n’y en aura probablement pas, car un certain feu d’artifice a déjà eu lieu il y a des milliards d’années, quelque trois-cent quatre-vingt mille ans après le Big Bang à l’origine de l’expansion de l’Univers ! Du fait de l’expansion accélérée, nos galaxies lointaines, puis celles de plus en plus proches vont toutes être accélérées et, un jour, elles vont comme « franchir la vitesse de la lumière » et, par-là, vont donc sortir de notre horizon en passant à la distance de notre « rayon de Hubble » atteint ce jour-là. Le ciel va peu à peu littéralement se vider de son contenu, sous nos yeux ! Notre Univers proche – mais est-ce tout l’Univers -, du moins notre Univers visible ne sera plus qu’un Univers-île, formé de notre Galaxie, familièrement appelée la Voie Lactée, avec ses immédiates galaxies voisines du Groupe Local, retenues toutes ensemble en un amas par la gravitation. Mais le ciel sera vraiment noir au-delà. Il y a un physicien hollandais qui a prévu cela, sans savoir que ce serait le destin ultime de l’Univers, Willem de Sitter : son Univers théorique est quasi vide, homogène, de courbure spatio-temporelle positive, mais de courbure spatiale quelconque, éventuellement nulle (on parle alors d’espace plat ou euclidien), et en expansion, rempli seulement de… presque rien, de quoi ? De ce qui correspond à une densité d’« énergie du vide », exprimée sous la forme mathématique d’une « constante cosmologique » positive, ayant une valeur bien définie, minuscule, quoique non nulle. Notre Univers évolue inéluctablement vers cet état de vacuité qu’il atteindra de façon asymptotique dans un temps indéfini. Cela, ce sera notre point de vue de Terriens ; mais, dans n’importe quel autre endroit de l’Univers, le point de vue sera le même : tout aura disparu à l’horizon de chacun, à sa propre distance de visibilité qui sera autant de réalisations locales du « rayon de Hubble final », atteint asymptotiquement.

Sagredo : Vos explications sont lumineuses, Maître, mais, en contraste, quel tableau sombre vous nous faites là. Au fond, dites-nous encore, qu’est-ce que cette « constante cosmologique » positive qui va remplir tout l’Univers ?

Simplicio : … Et moi qui m’attendais à une explosion grandiose …

Salviati : Gardons encore les pieds sur notre Terre, voulez-vous, Messeigneurs ! Vous avez raison de vous poser ces questions qui sont des plus pertinentes. Qu’en est-il, tout d’abord, du destin de ce « paramètre de Hubble » ? Va-t-il diminuer toujours pour aller vers zéro lorsque le temps va tendre vers l’infini ? La réponse est : non ! Comme je vous le disais, c’est un quotient d’une vitesse par une distance. Toutes deux tendent vers l’infini. Le quotient de l’infini par l’infini, comme celui de zéro par zéro, est indéterminé en bonne mathématique. Mais, tout aussi mathématiquement, ce quotient peut être fini ! Et ce sera bien le cas ici. Le « paramètre de Hubble » va diminuer, et de plus en plus lentement, le « temps de Hubble » va croître, mais de plus en plus lentement au fur et à mesure que l’âge de l’Univers va continuer de passer. Le « rayon de Hubble » va aussi croître de plus en plus lentement. Ils vont tous deux atteindre, asymptotiquement, une valeur limite, déterminée uniquement par la valeur de cette « constante cosmologique » qui caractérise le vide. Je ne vous dirai pas ici comment, ni leurs valeurs numériques. Pour le savoir il faudrait lire attentivement tout un autre article…

Simplicio : C’est bien noté, on le lira.

Sagredo : D’accord ! Mais je ne vois pas très bien cette situation finale …

Salviati : Je le redis autrement : nous aurons comme une sorte de « bulle », invisible et non transparente, autour de nous, qui sera notre rayon de l’Univers, le « rayon de Hubble final » qui ne croîtra quasiment presque plus, et cela indéfiniment. Tous les objets que nous voyons actuellement au-delà de notre Groupe local de galaxies, auront franchi cette limite. On peut se consoler, en se disant qu’il en est de même pour chaque point de l’Univers. Le centre de l’Univers n’étant nulle part, on peut considérer qu’il est partout, et chaque point de l’Univers sera entouré d’une telle bulle limitant dès lors son horizon. Rien ne semblera plus changer dans le ciel. L’Univers, notre Univers sera devenu comme statique.

Simplicio : Dites-moi, Maître, ce sera alors à ce moment-là la fin du monde ?

Salviati : Oui et non ! Ce sera en quelque sorte une fin qui durera, une fin qui ne finira pas ! Le temps pourra indéfiniment continuer de couler. L’Univers continuera de vieillir ; il le fait déjà, mais ce sera indéfiniment, comme un ralentissement du temps. Justement, le modèle d’Univers prévu par de Sitter prédit que le temps semble aller de l’avant en se figeant de plus en plus. Nos descendants, s’ils ont encore un Soleil, un autre soleil, bien sûr, pour les réchauffer, auront beau observer avec leurs télescopes, ils ne verront plus rien du tout en dehors de notre Groupe local de galaxies, et, avec leurs radiotélescopes, ils ne pourront même plus mesurer le fonds diffus cosmologique du rayonnement fossile qui se sera à tel point dilué, du fait de l’expansion de l’Univers, qu’il sera devenu strictement indétectable, passant des 2,73 degrés kelvin actuels à quasiment zéro, sans pourtant jamais l’atteindre. On se retrouvera dans la situation expérimentale de la cosmologie du début du XXe siècle, où l’on ignorait même l’existence d’autres galaxies en dehors de la nôtre et où l’on croyait l’Univers statique et perpétuellement le même. Mais il est certain que d’ici là notre Soleil et toutes les étoiles de notre Galaxie se seront depuis longtemps éteints. Comme l’a bien décrit le chanoine Georges Lemaître, « le feu d’artifice se terminera en laissant ici ou là quelques escarbilles finissant de rougeoyer… » Mais plus personne ne sera là pour les contempler.

Sagredo : Eh bien ! Ces considérations nous ont passablement échauffés et assoiffés. Le jour tombe, Messeigneurs ; il est temps que nous nous rendions maintenant à bord de la gondole que j’ai commandée et qui doit déjà nous attendre au pied de ce palais, avec quelques rafraîchissements à bord, pour nous permettre de prendre le frais de la soirée et de nous désaltérer en parcourant nonchalamment la Laguna. Venez, descendons et embarquons-nous !

Illustration de titre : Ca’ Sagredo (Palazzo Morosini Sagredo).

Salutations à Jakob qui a la chance de se trouver actuellement à Venise et qui m’a envoyé une photo de la Ca’ Sagredo:

 

Mise à jour sur Relativity Space:

Les déçus de l’échec du lancement le 11 mars de la fusée GLHF de Relativity Space (mon article du 11 mars) peuvent se réjouir car un nouvel essai, le 22 mars, a été couronné de succès. Ses objectifs ont été atteints (notamment passage au point Max-Q) et un nouveau concurrent dans le monde astronautique est né ce jour. L’Europe doit “faire quelque chose” si elle veut rester en lice.

Annonce exposition “Traces de vie”.

A partir de lundi 26 mars, l’exposition “Traces de vie”, certitude sur Terre, hypothèse sur Mars, est ouverte au public dans le beau cadre de la villa du jardin botanique de Neuchâtel. Préparée avec soin par des spécialistes incontestables, elle est à voir absolument. Je vous en parlerai la semaine prochaine plus longuement. L’exposition restera ouverte jusqu’au 3 décembre.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 03 17