Artemis, les missions habitées en perspective

Partie le 16 novembre de la Terre, la mission Artemis 1 a placé en orbite lunaire la capsule Orion de la NASA et le module de service ESM de l’ESA, qui lui permet de fonctionner. Les tests successifs sont positifs ; tout va bien à bord ! Ce succès donne de la substance à ce qui n’était jusqu’à présent qu’un rêve, le retour de l’homme sur la Lune.

Le vaisseau est allé explorer l’orbite qui sera utilisée lors des missions suivantes, à commencer par Artemis II et Artemis III. Il s’agit d’une « DRO » (Distant Retrograde Orbit) et c’est une « première » puisqu’on ne l’a jamais utilisée. Elle a l’avantage d’être très stable en raison de l’interaction qu’elle permet avec les points de Lagrange (Terre-Lune) L1 et L2, donc très peu consommatrice d’énergie. On l’appelle « rétrograde » parce que la rotation se fait dans le sens opposé à celui de la Lune autour de la Terre. Elle est circulaire et se situe à environ 64.000 km de la Lune (Terre-Lune = 385.000), entre les deux points de Lagrange, en dehors de l’influence directe de la Lune (d’où le terme « distant »). Dans le cas d’Artemis 1, Orion parcourra entre une et une DRO et demi. Pour se placer sur cette orbite, il a fallu effectuer un survol de la Lune à seulement 128 km d’altitude. Lors d’Artemis II, le même vaisseau, composé de la capsule Orion et de son ESM parcourra cette même orbite avec quatre astronautes. Lors d’Artemis III, le Starship « Human Landing System » (HLS) y sera assigné un bon moment (jusqu’à 90 jours) avant de recevoir ses quatre passagers venant de la Terre grâce à un dispositif semblable à celui d’Artemis 1, pour en descendre ensuite deux sur la Lune. Si un jour on construit la Lunar Gateway, ce sera aussi sur cette orbite qu’elle évoluera (et elle servira pour les missions Artemis successives) à moins que le Starship SLS ne puisse être finalisé. Dans ce cas on adopterait une orbite de halo (un peu moins stable que les DRO) qui permettrait un périapside proche (3000 km) pour un apoapside identique (64.000 km).

Le voyage en cours a pour avantage de permettre d’étudier sans risque humain le comportement de la capsule Orion et son ESM sur cette orbite un peu spéciale, de tester les manœuvres à effectuer  par le module de service (nombreuses corrections de trajectoire), de tester les systèmes de pressurisation, chauffage et refroidissement à l’intérieur de la capsule, de tester le système de télécommunication (l’orbite DRO permet de rester en contact constamment avec la Terre) et d’observer les conséquences des éventuels impacts de micrométéorites (ou, dans le voisinage de la Terre, de débris orbitaux).

Le voyage continuant paisiblement après un départ tumultueux, nous pouvons réfléchir aux perspectives qu’il ouvre.

Le retour sur la Lune

Puisque la NASA a réussi la première partie de la mission d’Artemis I, nous pouvons penser qu’elle aura une suite, c’est-à-dire une série de missions du même nom, comme on a eu les missions Apollo. Après une préparation très longue, nombreux (dont moi-même) étaient ceux qui doutaient de la capacité du SLS à prendre son envol. Avec le « Block 1 » (version actuelle du lanceur), on dispose maintenant de la possibilité technique de mener à bien Artemis II.

Pour ce qui est d’Artemis III, celle qui doit amener à nouveau des hommes sur la Lune, c’est un peu plus compliqué. Il faudra encore que le Starship HLS soit finalisé, c’est-à-dire que SpaceX puisse déjà faire voler son « Starship-standard » au moins une fois en orbite autour de la Terre. On en est toujours aux tests de mise à feu statique des moteurs Raptor (test réussi de 14 moteurs fonctionnant ensemble mi-novembre mais on n’en est pas encore aux 29 prévus pour le vol orbital). Une fois le Starship-standard testé, il faudra construire le Starship-station-service et plusieurs Starship-tankers et surtout réussir à transférer les ergols (LOx et Méthane liquide) de quatre voyages de tankers successifs dans le Starship-station-service puis de ce dernier dans le HLS. La réussite n’est pas certaine et c’est pour cela qu’on peut encore douter de la date prévue de 2025 pour Artemis III. En effet, malheureusement, le module de service ESM n’a pas la capacité comme l’avait le module des missions Apollo, de transporter depuis la Terre, avec la capsule, un module d’atterrissage sur la Lune incluant un module de retour en orbite pour ensuite repartir pour la Terre avec la capsule laissée en orbite. Si le HLS fonctionne, il sera positionné en orbite lunaire, attendra l’arrivée de la capsule Orion+ESM lancée par le SLS et portant les astronautes, descendra ces derniers sur le sol lunaire et les remontera jusqu’à la capsule Orion+ESM restée en attente sur l’orbite DRO, afin que l’ensemble Orion+ESM retourne vers la Terre (où seule atterrira la capsule, sans son ESM).

Il y a donc un « petit » bémol, la faisabilité du Starship, à ajouter à la faisabilité de la suite de la série des missions Artemis (après la deuxième). Mais le plus gros problème semble quand même avoir été la démonstration de faisabilité du SLS. En effet, au cas où le Starship ne pourrait pas fonctionner, on pourrait reconsidérer les propositions de Blue Origin ou d’Aerojet Rocketdine qui étaient des alternatives au HLS. Par contre si le Starship-standard fonctionne, on ne voit pas bien l’intérêt de persister à utiliser le SLS. Celui-ci ne peut pas permettre d’arriver sur la Lune et d’en repartir seul ; le Starship, lui, le pourrait. Par ailleurs un lancement de SLS coûte plus de 4 Milliards de dollars et n’est pas réutilisable (on ne sait pas encore pour le Starship mais les tout premiers ne devraient coûter qu’environ 1 milliard). On ne peut donc pas dire que ce soit satisfaisant ! Ce SLS ressemble beaucoup à une solution d’urgence pour passer le relai au Starship aussitôt que possible.

Si le Starship fonctionne on n’aura donc pas besoin de SLS, ni d’Orion avec son ESM, ni d’atterrisseur lunaire, ni de véhicule pour repartir de la Lune, ni de rien d’autre. Mais si SpaceX ne parvient pas à finaliser son Starship, il semble préférable (mais toujours non indispensable !) de disposer d’un Lunar Gateway, genre de Station Spatiale Internationale parcourant de façon stable et pérenne l’orbite DRO et pouvant être utilisée comme relais entre un MAV (Moon Ascent Vehicle) et un ERV (Earth Return Vehicle). C’est encore une complication car le Gateway est très loin d’être prêt mais dans l’attente du Starship, la doctrine n’est pas complètement arrêtée.

La course à la Lune

L’urgence qui justifie l’utilisation de cet SLS, très imparfait, c’est la concurrence chinoise. Les Chinois ont un « Chinese Lunar Exploration Program » (CLEP) et il avance sans doute plus vite que le craignaient les Américains. Les Chinois ont exécuté avec succès les phases 1 et 2 de ce programme (missions orbitales puis atterrissages avec sondes puis rover). Parallèlement leur phase 3 (retour d’échantillons) s’est aussi déroulée avec succès. La phase 4, est en cours de préparation. Cette phase qui comportera les missions Chang’e 6, 7 et 8 (Chang’e étant la Déesse de la Lune) vise l’exploration robotique du Pôle Sud de la Lune, tout comme l’Artemis III des Américains, et la première, Chang’e 6, doit se dérouler en 2024 (Les Américains doivent mener leur mission robotique préparatoire en 2023 et Artemis III, avec équipage, doit avoir lieu en 2025). Chang’e 6 raménera des échantillons de cette même zone. Elle sera effectuée par une fusée CZ-5 (Chang zheng, Longue marche) identique à celle qui a déposé le premier rover chinois dans les Basses Terres du Nord de Mars. Il y a donc peu de doute que cette mission aura lieu. Les vols habités qui suivront, dans le cadre de la phase suivante du CLEP, doivent être menés avec une nouvelle version de la CZ-5, la CZ-5G. Avec cette fusée, la Chine prévoit une première mission habitée sur le Pôle Sud de la Lune au début des années 30. Leurs capacités se rapprochent donc vite de celles des Américains et leur objectif est le même, le Pôle Sud.

Or le Pôle Sud offre des possibilités très intéressantes mais qui sont rassemblées dans « un mouchoir de poche ». Il s’agit de s’installer dans un site éclairé au moins 90% du temps par le Soleil (n’oublions pas que sur la Lune les nuits durent 14 de nos jours, qu’on ne peut utiliser les panneaux PV et qu’alors il y fait extrêmement froid !). Ce site doit a priori être situé au sommet d’un mur de cratère et aussi proche que possible d’un gisement de glace d’eau. On en a constaté la présence dans le fond de quelques cratères qui, dans cette région, ne sont jamais éclairés par la lumière du Soleil (PSR, Permanently shadowed Region) et ont ainsi pu conserver toute l’eau qu’ils ont reçue depuis la formation de la Lune, très probablement via des comètes de passage. Le plus connu de ces cratères est celui de « Shackleton ». Comme la sphère de la Lune est beaucoup plus petite que celle de la Terre, la surface de ses régions polaires sont également beaucoup plus restreintes. Et si l’on veut se trouver sur un terrain à peu près plat, en surface duquel on puisse se déplacer relativement facilement plutôt que sur une crête, il y a encore moins de surfaces possibles. Un site privilégié est le pont (« ridge ») qui joint les murs du cratère Shackleton à ceux du cratère voisin, « de Gerlache », un rectangle d’une dizaine de km2 seulement. Ce bout de Lune, très bien exposé est ensoleillé au maximum. Il est à proximité immédiate de plusieurs PSR et il est probable que son sous-sol immédiat contienne aussi de la glace (voir photo ci-dessous). Il risque donc d’être très disputé. Pour commencer c’est là que les Américains veulent envoyer en 2023, leur rover VIPER (pour « Volatiles Investigating Polar Exploration Rover ») qui doit mesurer précisément, en volume et qualité, les gisements d’eau accessibles…Ce que veulent faire aussi les Chinois avec un autre rover qui sera apporté par Chang’e 7 en 2024 !

Les Etats-Unis adhèrent bien sûr à la convention internationale qui interdit l’appropriation par un pays, d’un territoire dans l’espace (Outer Space Treaty, article 2). Mais en même temps ils se sont donnés le droit d’exploiter les ressources « locales » et ont fait savoir qu’ils pourraient protéger leur champ d’activité par une « no interference zone ». Les Chinois ne manqueraient pas de faire de même mais la situation serait catastrophique pour les Etats-Unis s’ils arrivaient second. Les Européens quant à eux savent qu’ils ne sont pas dans la course mais ils veulent y participer et proposent donc (idée lancée par Johann Wörner, directeur de l’ESA, en 2015) un « village lunaire » qui serait développé par l’ensemble des nations spatiales, en coopération, sans avoir aucunement les moyens de l’imposer. On est donc dans le flou complet et les Etats-Unis ne veulent manquer pour rien au monde d’être les premiers même robotiquement, dans leur petit coin de paradis, faute, autrement, de ne pas avoir le droit d’y accéder.

Alors, « On a marché sur la Lune (version 2) » est dans tous les esprits mais c’est surtout pour des raisons politiques. La Lune n’étant qu’à un peu plus d’une seconde lumière de la Terre, on peut y travailler, faire des recherches, par robots interposés. L’homme c’est un peu le folklore ou le rêve de Tintin. Ce n’est pas le cas de Mars ou, contrairement à la Lune, on doit subir un long « time-lag » (3 à 22 minutes dans un seul sens) pour mener toute action. Ce n’est pas du tout la même chose. Mais Mars, hélas, est encore loin, dans le temps, puisque la Lune doit servir de terrain d’essai avant le grand départ. Et j’ai peur, encore une fois, qu’on l’oublie en commençant à jouer sur la Lune !

Illustration de titre : Capture d’écran NASA lors du passage d’Orion à quelques 138 km de la surface de la Lune.

Illustration ci-dessous : architecture de la mission Artemis III sans Gateway. Crédit NASA. Pourquoi les passagers ne partiraient-ils pas de l’orbite terrestre avec le SLS une fois que le HLS aurait rempli son réservoir ? Il suffirait en fait que le Starship ne soit pas un HLS mais un starship équipé d’une protection thermique lui permettant de revenir se poser sur Terre.

https://blogs.nasa.gov/artemis/

https://en.wikipedia.org/wiki/Starship_HLS

https://en.wikipedia.org/wiki/Starship_HLS#/media/File:Artemis_III_CONOPS.svg

https://www.thespacereview.com/article/3418/1

https://www.nasa.gov/feature/orion-will-go-the-distance-in-retrograde-orbit-during-artemis-i

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 22 11 03

Artemis 1 a finalement pris son envol vers et autour de la Lune

Ce 16 Novembre à 07h47, heure d’Europe Centrale (UTC+1), le Space Launch System (SLS) de la NASA portant la mission Artemis I est partie pour la Lune. Après deux échecs, l’envol était moins que certain et les ingénieurs et dirigeants de la NASA peuvent maintenant « respirer ». De leurs côté tous les partisans de l’exploration spatiale par vols habités se réjouissent car quoi qu’on puisse penser de ce SLS par rapport au système SuperHeavy/Starship de SpaceX, un succès dans ce domaine de l’astronautique, si difficile à maitriser, est incontestablement une bonne nouvelle. Saluons donc la persévérance et la performance, et félicitons la NASA en espérant que de son côté SpaceX continuera à faire progresser son Starship. La concurrence a toujours été le moteur de l’amélioration d’une entreprise.

L’objectif de cette première mission Artemis est de tester le dispositif de base des futurs missions habitées autour de la Lune (Artemis II) et sur la Lune (Artemis III). Il s’agissait d’abord de démontrer que le SLS, en l’occurrence « SLS Block 1 » (il y aura un « Block 2 », plus puissant), conçu et réalisé par un consortium conduit par Boeing et en gestation depuis 2007 (sous le nom d’Ares), pouvait voler. C’est fait ! Il s’agissait ensuite de démontrer le fonctionnement du second étage du lanceur, constitué par ce qu’on appelle l’IPCS (Interim Cryogenic Propulsion Stage) et chargé d’injecter le vaisseau spatial proprement dit sur sa trajectoire translunaire. C’est fait. Il s’agit maintenant de démontrer la maniabilité du vaisseau (capsule Orion porté par son module de service) tout au long d’une trajectoire qui doit le conduire autour de la Lune. Soulignons que le module de service, cet instrument très complexe qui est en fait le troisième étage de la fusée, s’appelle l’European Module Service (EMS) car il a été fourni par l’ESA. Ce choix est une reconnaissance par la NASA des capacités de l’Agence spatiale européenne dans les véhicules spatiaux de service automatisés (démontrée lors des vols d’approvisionnement de l’ISS par les modules automatisés ATV). Il n’y a pas de raison de douter qu’il donne moins de satisfaction car le système est largement éprouvé.

Maintenant nous ne sommes qu’au début de la mission. Il faudra au moins 8 jours pour atteindre la Lune (380.000 km) ; il faudra au moins 6 jours pour parcourir une à deux orbites autour de la Lune (à 61.000 km d’altitude) ; et ensuite au moins 9 jours pour revenir sur Terre. La mission ne sera évidemment terminée qu’à ce moment là et on ne pourra en tirer les conclusions qu’après examen de tous les capteurs embarqués dans la capsule à la place des hommes. Il n’est évidemment pas question d’entreprendre Artemis II, avec un équipage à bord, si l’on a le moindre doute sur le fonctionnement de l’ensemble du système. Nous ne sommes plus à l’époque des premiers vols russes ou même des missions Apollo où les risques humains étaient pris plus légèrement. Ce qu’on peut espérer de plus que ces vérifications, outre bien sûr les données que recueilleront les nombreux cubesats embarqués (dont parle très bien Hugo Ruher dans Le Temps daté du 17 novembre), ce sont de belles vidéos de la Lune et surtout de la Terre derrière la Lune. On aura de très beaux levers et couchers de Terre car pour la première fois depuis Apollo, on sera dans la position très particulière de se retrouver derrière la Lune par rapport à la Terre.

Au-delà de cette première mission, le décollage d’une fusée n’est pas suffisant pour considérer que la suite se passera bien. On ne peut généraliser à partir d’un seul vol même s’il faut bien commencer par une première fois pour construire la confiance. Certains aspects du SLS me semblent préoccupants :

1) L’utilisation de l’hydrogène comme carburant. On a vu lors d’une précédente tentative de décollage avortée que le très grand froid auquel se présente l’hydrogène liquide ou gazeux très comprimé à la sortie du réservoir pose problème pour les matériaux à l’entrée des moteurs qu’il faut réfrigérer à température très basse pour que le choc thermique de l’arrivée de ce carburant soit supportable. On peut se demander pourquoi les concepteurs du SLS n’ont pas préféré utiliser le méthane (CH4) au lieu de l’hydrogène comme carburant, comme veut le faire SpaceX pour son Starship. L’Isp du méthane est moins bonne que celle de l’hydrogène (373 contre 435 secondes) mais le méthane a un point de liquéfaction beaucoup plus haut (-161°C contre -252,85°C) et se conserve donc beaucoup mieux d’autant que la molécule d’hydrogène étant la plus “petite” (masse moléculaire la plus faible) il est très difficile de l’empêcher de fuir.  Par ailleurs, le méthane liquide est beaucoup plus dense que l’hydrogène liquide 422,8 kg/m3 contre 71kg/1met cela implique des réservoirs beaucoup plus volumineux (et donc aussi une masse de métal plus importante pour les contenir). Peut-être la préférence a-t-elle une justification écologique, par le fait que le produit de la combustion du CH4 dans l’O2 est le CO2 ? Mais il faudrait savoir ce que l’on veut, lancer le système le plus efficace et gérable possible, ou faire plaisir à une partie de l’opinion qui de toute façon condamne ce qu’elle considère comme un gaspillage d’argent public.

2) La non réutilisabilité des éléments du système. Forcément cela va jouer si le Starship peut voler avec son SuperHeavy. Si ce dernier système, récupérable et réutilisable, peut fonctionner, le SLS sera immédiatement déclassé, non seulement pour des raisons écologiques mais surtout pour des raisons économiques. Personne aujourd’hui n’imaginerait que le Boeing ou l’Airbus à bord duquel il voyage pour traverser l’Atlantique, devrait être jeté après avoir servi une seule fois.

Ensuite il faut bien voir qu’on est toujours loin d’Artemis III, c’est-à-dire du retour de l’homme sur la Lune (en l’occurrence l’« homme » sera la femme) prévu pour 2026 car il faut finaliser le vaisseau HLS (Human Landing System), version lunaire du Starship « commun » (utilisable dans un environnement sans atmosphère à l’atterrissage) qui prendra le relai du SLS dans l’environnement lunaire. A ce propos le test réussi de la mise à feu simultanée de 14 moteurs Raptor de SuperHeavy cette semaine, est une information encourageante. Reste qu’il faudra faire fonctionner 29 moteurs à la fois et que le test d’essai de cette semaine n’a duré que 10 secondes. On ne pourra croire vraiment à la date de 2026 (mais 2027 serait très bien aussi !) que lorsque le Starship avec son SuperHeavy auront parcouru au moins une orbite terrestre et se seront reposés au sol en bonnes conditions.

Mais chaque chose en son temps et le moment présent est celui de simplement exprimer notre satisfaction pour cette réussite qui redonne espoir dans l’exploration spatiale.

Illustration de titre : la mission Artemis 1, crédit NASA.

Illustration ci-dessous : La capsule Orion et son module de service, volant vers la Lune, panneaux solaires déployés. Tout ce qui reste du SLS après que les deux premiers étages aient été largués. Capture d’écran NASA TV.

Liens :

https://en.wikipedia.org/wiki/Artemis_program

https://www.esa.int/Space_in_Member_States/France/Module_de_service_europeen_fabrique_en_France

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Orion/The_making_of_the_European_Service_Modules

https://www.lefigaro.fr/sciences/la-nasa-tente-pour-la-3e-fois-de-faire-decoller-sa-mega-fusee-pour-la-lune-20221115

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 22 11 03

NEO Surveyor, instrument essentiel pour la Protection Planétaire, cadeau de nos amis Américains

En juin 2021 la NASA a confirmé la poursuite de l’étude et de la réalisation de la mission NEO Surveyor qui doit permettre, à partir d’un télescope spatial dédié, le recensement de tous les astéroïdes de plus de 140 mètres de diamètre susceptibles d’impacter la Terre. Ce sera, avec la mission DART, l’action de protection planétaire la plus effective jamais réalisée. La fusée portant le télescope doit quitter le sol terrestre en 2026.

NB : Le nom développé de la mission est « Near-Earth-Object Surveyor space telescope » et elle est maintenant dans sa phase « design préliminaire » après avoir fait l’objet d’une « mission review ».

Le rayon de l’investigation de ces NEO est un tore de 30 millions de km de petit rayon (rayon du disque dont la rotation engendre le tore) à partir de l’orbite de la Terre autour du Soleil (déterminant le grand rayon du tore soit 1 UA ou 150 M de km). Ceci correspond bien à ce qu’on peut appeler notre environnement au sens large, puisque les planètes qui nous sont voisines sont au plus près, à 41 M de km (Vénus) et à 54,6 M de km (Mars). A noter que dans le cas où l’on s’intéresserait à une recherche similaire dans l’environnement martien, l’aphélie de l’orbite martienne atteint 1,67 UA et la limite inférieure de la Ceinture d’Astéroïdes évolue à 1,7 UA, la région centrale de la Ceinture d’Astéroïdes se situant entre 2,06 et 3,27 UA. En km, 1,7 UA-1,666 UA = 5 millions de km seulement et 2,06 UA-1,666 UA = 59 M de km. La proximité de Mars de la Ceinture d’Astéroïdes impliquerait donc une recherche de NMO (Near Mars Objects) extrêmement sérieuse dans la perspective de missions habitées.

La taille de 140 mètres a été retenue comme taille minimum des astéroïdes qu’il fallait identifier car c’est la taille minimum de ceux qui, à coup sûr, pourraient arriver jusqu’au sol terrestre en y créant un cratère. Un tel astéroïde frappe la Terre tous les 20.000 ans, en moyenne*, en libérant 300 mégatonnes d’énergie (bombe d’Hiroshima 13 kilotonnes), en moyenne. Le repère suivant, 50 mètres minimum, est celui des astéroïdes qui pénètrent dans notre atmosphère tous les 2000 ans, en moyenne, en libérant 10 mégatonnes d’énergie, en moyenne. Le repère suivant est celui des astéroïdes de 25 mètres de diamètre, du type de celui qui a explosé au-dessus de la Toungouska le 13 juin 1908 provoquant un souffle au sol balayant 2000 km2 de forêt sous-jacente, quelques morts et de nombreux blessés (dans une zone très peu peuplée). Ces derniers astéroïdes font intrusion dans notre monde tous les 200 ans, en moyenne, libérant 1 mégatonne d’énergie, toujours en moyenne. Les premiers sont à détourner à tout prix et nous avons tout intérêt à détourner les deuxièmes et même encore les troisièmes. A noter que les astéroïdes NEO d’une taille supérieure à 1 km ont tous été identifiés en 2010 (il y en a, en principe, 857).

*La précision « en moyenne », répétée, est évidemment très importante.

L’objectif, fixé par la NASA en 2005, était d’identifier, avant 2020, 90% des astéroïdes de 140 mètres et 50% de ceux de 50 mètres. Un « Science Definition Team » de la même NASA publié en 2017 et évaluant les astéroïdes de 140 mètres à quelques 25.000, estimait que cela permettrait que 99% de ces astéroïdes puissent être détectés avant impact (remarquez la prudence du « 1% », évidemment compréhensible). En 2017 on n’en avait identifié que 7.800 (aujourd’hui 10.293), avec essentiellement (mais pas uniquement, voir WISE) des télescopes au sol, et on avait réalisé alors qu’on ne parviendrait pas à atteindre l’objectif simplement avec ces mêmes installations. Il fallait réagir et la réaction est en cours.

En juin 2018 un « National Near-Earth Object Preparedness Strategy and Action Plan » fut présenté par un « Interagency working group for detecting and mitigating the impact of earth-bound Near Earth Objects » presidé par le National Science & Technology Council. En décembre de la même année, le Congrès vota un « Authorization Act » pour financer le télescope spatial dédié demandé. L’action était lancée sur le plan politique.

En décembre 2020, le projet est bien entendu repris dans le document officiel du gouvernement « The National Space Policy of the United States of America » qui résume les grands principes de la politique spatiale des Etats-Unis puis en janvier 2021, dans un « Report on Near-Earth Impact Threat Emergency Protocol ».

Je cite ces différentes étapes et documents pour montrer le long processus qui mène et qui ensuite accompagne le début d’une réalisation et pour montrer que même ce qui semble facile, logique et nécessaire est entouré d’énormément de dépenses d’énergie sur le plan politique et administratif. A noter que le projet sera réalisé sous le contrôle du PDCO (Planetary Defense Coordination Office) directement par la NASA, en-dehors des divers programmes d’exploration spatiale (il était prévu au début de la réflexion sur le sujet que ce soit un projet « Discovery », sous le nom de NEOCam). Cela a permis de le sortir de la compétition avec d’autres projets scientifiques contre lesquels il ne parvenait pas à émerger et de supprimer les contraintes, notamment de coût, auxquelles ces projets doivent se soumettre…ce qui montre bien l’urgence de la réalisation pour les autorités américaines. En fin de compte il ne devrait pas coûter plus de 600 millions de dollars ce qui est un montant raisonnable (500 millions est le seuil actuel pour les missions de type Discovery, qui sont de « petites » missions, je rappelle que le JWST a dépassé les 10 milliards).

J’en arrive presque au projet précis qui est sorti de tout cela, la mission NEO Surveyor, mais auparavant il faut préciser deux choses :

(1) L’avantage d’un télescope spatial est de poursuivre l’observation jour et nuit et aussi de n’être pas troublé par les multiples interférences résultant de l’observation du ciel à partir du sol terrestre dans le domaine infrarouge proche qui est évidemment celui retenu pour les astres froids (en complément du visuel à partir de la Terre) comme le sont les astéroïdes.

(2) Le télescope à infrarouge WISE (Wide Field Infrared Survey Explorer) devenu NEOWISE, de la NASA, avait commencé la recherche des NEO dans le cadre de son projet généraliste d’utilisation de l’infrarouge pour identifier les astres froids (y compris pour repérer les naines brunes ou les exoplanètes). Mais NEOWISE était et reste moins puissant que NEO Surveyor et moins bien placé dans l’espace (orbite circulaire synchrone-Soleil à 525 km autour de la Terre). Par ailleurs, sa mission en infrarouge « vrai » a été très courte (une année entre 2009 et 2010) en raison de l’épuisement rapide de ses réserves limitées de liquide réfrigérant (H2). Il continue aujourd’hui, et jusqu’en 2023, ses observations généralistes en mode dégradé, sur des longueurs d’onde à la limite du visible (3,4 à 4,6 microns).

La mission NEO Surveyor disposera d’un télescope doté d’un miroir primaire de 50 cm de diamètre qui captera les ondes infrarouges entre 4 et 10 microns (IR moyen et début de l’IR profond). Le télescope sera positionné en orbite autour du point de Lagrange Terre/Soleil « L1 » (c’est-à-dire entre la Terre et le Soleil, à 1,5 millions de km de la Terre). Compte tenu de cette position et de l’importance de voir les astéroïdes dont la trajectoire pourrait provenir de derrière le Soleil, il « regardera » autour de notre astre du jour sous la protection d’un coronographe. L’ellipse large autour du point L1 lui permettra aussi d’observer en direction opposée, au-delà de la Terre. Et bien sûr c’est toute la sphère céleste, sur tout le parcours de la Terre autour du Soleil, qui sera « passée au peigne fin » puisqu’il nous accompagnera en position identique par rapport au Soleil pendant toute cette course. D’une masse de 1,3 tonnes il pourra facilement être embarqué à bord d’un Atlas V ou d’un Falcon 9.

Aux dernières nouvelles on annonce qu’il pourra distinguer les astéroïdes d’une taille descendant à 30 mètres (la taille de l’astéroïde de la Toungouska) et qu’il devrait atteindre son objectif d’identification des astéroïdes de plus de 140 mètres à 90% dans les 10 ans. Sa mission durera 12 ans.

La mission DART est bien sûr le complément à cette mission d’identification car si on détecte un danger, il faudra bien faire « quelque chose ». Par ailleurs, pour ne pas voir tout en noir, on peut imaginer que la mission permette d’identifier (par spectrographie) quelques astéroïdes riches en minerais rares exploitables et qui seraient accessibles depuis la Terre par une expédition de minage.

On peut imaginer à partir de là qu’on fera un jour de même pour la protection de Mars, même si comme on l’a vu la semaine dernière, le besoin de précision (taille des astéroïdes) pour les hommes sur cette planète sera beaucoup plus élevé en raison de la proximité de la Ceinture d’Astéroïdes et de la ténuité de l’atmosphère. Bien entendu la recherche menée pour la protection planétaire de la Terre pourra bénéficier à celle de Mars et réciproquement car, j’insiste, ces télescopes ne se contenteront pas de repérer les astéroïdes, ils en détermineront la trajectoire (compte tenu de leur proximité, le déplacement des NEO est nettement perceptible, à partir du moment où on les a repérés bien sûr).

Illustration de titre : vue d’artiste du télescope NEO Surveyor. Credits: NASA/JPL-Caltech.

Illustration ci-dessous : trajectoire de mise en orbite pour NEO Surveyor, puis orbites successives. La Terre est le point bleu à droite, L1 est le point émeraude à gauche. Le Soleil est dans l’alignement des deux points, vers la gauche. Vous remarquerez la très belle orbite de Lissajous (trajectoire orbitale quasi-périodique que tout objet céleste parcourt sans propulsion autour d’un point de Lagrange). Rappelons quand même que L1 est un point d’équilibre instable et qu’il convient de temps en temps de procéder à une correction. Capture d’écran, crédit : Wikipedia Commons (Horizon system, JPL, NASA).

Liens:

https://www.nasa.gov/feature/nasa-approves-asteroid-hunting-space-telescope-to-continue-development

https://spacenews.com/nasa-to-develop-mission-to-search-for-near-earth-asteroids/

https://www.nasa.gov/feature/new-report-assesses-status-of-detecting-near-earth-asteroids

https://www.nasa.gov/sites/default/files/atoms/files/pdco-neoreport030825.pdf

https://www.astronomy.com/bonus/asteroidday

https://www.nasa.gov/sites/default/files/atoms/files/ostp-neo-strategy-action-plan-jun18.pdf

https://en.wikipedia.org/wiki/Wide-field_Infrared_Survey_Explorer

https://neowise.ipac.caltech.edu/

https://www.clubic.com/mag/sciences/conquete-spatiale/actualite-374812-neo-surveyor-la-nasa-accelere-son-projet-pour-surveiller-les-asteroides.html

https://cneos.jpl.nasa.gov/

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 22 11 03

Les météorites sur Mars, un danger auquel il faudra penser

La veille de Noël 2021, à 22h38, un mouvement sismique important puisqu’il fut classé au-dessus de 4 sur l’échelle de Richter, fut enregistré par le sismomètre SEIS* déposé sur le sol de Mars par la sonde InSight* de la NASA. Le 18 septembre un autre impact à peine moins important avait été enregistré. Ces enregistrements purent être faits grâce à la capture des ondes sismiques P et S puis R** provenant de ces événements, qui sont exceptionnels puisqu’aucun mouvement sismique comparable (d’origine externe) n’avait été ressenti depuis l’atterrissage de la sonde fin Novembre 2018. Ces ondes de nature et de vitesse différentes permirent de les localiser assez précisément. Plusieurs mois plus tard, la caméra HiRISE embarquée à bord de l’orbiteur MRO, de la NASA, repéra, là où ils devaient être, deux magnifiques cratères encore « frais ». Une étude à leur sujet a été publiée dans la revue Science du 27 octobre 2022 (référence en fin d’article).

*SEIS est l’acronyme de Seismic Experiment for Interior Structure, InSight est celui de Interior Exploration using Seismic Investigations, Geodesy and Heat Transport.

**Les ondes P et S sont des ondes volumétriques. Les P (Primaires) sont longitudinales et les S (Secondaires), un peu plus lentes, sont transversales. Un second type, les ondes de surface (R et L), sont de deux types, « de Love » ou « de Rayleigh », les premières verticalement et horizontalement, les secondes en mouvement tournant en rouleaux. Les deux impacts mentionnés furent à l’origine d’ondes de ce second type enregistrées sur Mars pour la première fois.

Les cratères se trouvent assez loin d’InSight (la sonde se trouve au Nord de Curiosity, dans Elysium Planitia). Le premier (S1094b) à 3460 km (soit à 58,5° sur la sphère martienne), dans Amazonis Planitia (à l’Ouest NO du socle de Tharsis). C’est le plus important ; il a environ 150 mètres de diamètre. L’astéroïde qui l’a creusé devait avoir une masse de 250 à 650 tonnes pour une dizaine de mètres de diamètre. Le second (S1000a) est situé à 7455 km (à 126°) dans la région de Tempe Terra ; il a environ 130 mètres de diamètre (et le cratère principal est entouré de plusieurs cratères secondaires). Le plus lisible est S1094b parce qu’il est plus près de SEIS et sur un terrain plat relativement homogène alors que le second est séparé par près de la moitié de la sphère planétaire, ce qui a induit l’interférence de la masse du noyau de la planète sur les ondes émises. Il est aussi situé derrière un graben (fossé) qui a agi comme un écran entre le choc et le sismographe.

Ces impacts ont permis une meilleure vision de l’intérieur de la planète et amélioré ce qu’on savait déjà de l’épaisseur des différentes couches qui la structurent (croûte, manteau, noyau) et sur l’inhomogénéité de la croûte (la planète ressemble de ce fait plus à la Lune qu’à la Terre). Mais ce qui m’intéresse le plus ici c’est l’impact lui-même, d’une part par ce qu’il montre du sous-sol immédiat qu’il a découvert et d’autre part par le danger des météorites sur Mars dont il nous rappelle la réalité.

Concernant le premier point, ce qui a été le plus remarqué c’est que S1094b a révélé de la glace d’eau cachée sous le régolithe. Elle n’était pas totalement sublimée quelques mois après l’impact, ce qui implique qu’il y en avait bien davantage car la latitude est basse (température au dessus de 0°C possible dans la journée). C’est de fait la plus basse (35°N) à laquelle on a constaté visuellement de la glace dans le sous-sol immédiat (précédent 39°N). Comme rien ne laissait présager cette présence, cela renforce l’intérêt de mener la mission I-MIM équipée d’un radar puissant pour sonder les premiers mètres du sol, mission dont j’ai parlé la semaine dernière. Cela confirme aussi l’idée qu’on pourra facilement extraire de la glace d’eau un peu partout sur Mars (la profondeur du cratère est de 21 mètres en moyenne).

Mais ces impacts posent aussi le problème du danger des météorites qu’encourront les humains qu’on enverra un jour sur Mars. Certes les impacts de grosses météorites comme ces deux-ci sont probablement rares mais il risque d’y en avoir nettement plus, et de toute taille, que sur Terre. En voici les raisons :

1) Mars est tout près de la Ceinture d’Astéroïdes et peut-être, du fait de ce voisinage, ceux qui évoluent dans l’environnement martien (les NMO, Near Mars Objects) sont-ils moins rares que ceux qui évoluent dans notre environnement (les NEO, Near Earth Objects, “astéroïdes géocroiseurs” en Français).

2) La sphère de Hill de Mars (son ère d’attractivité gravitationnelle dominante) est très inférieure à celle de la Terre. Cela réduit donc le nombre et la taille des astéroïdes qu’elle peut attirer vers elle.

Toutes choses égales par ailleurs, on peut donc estimer qu’il y a au moins autant d’astéroïdes qui arrivent dans l’atmosphère de Mars que dans celle de la Terre. C’est à partir de là (prise en compte de l’action de l’atmosphère) que se manifeste la vraie différence entre Mars et la Terre.

Je passe, rapidement, sur une première différence qui est celle de la gravité du corps sur lequel tombe l’astéroïde. La même masse impactant la Terre, Mars, la Lune ou Arrokoth (petit astéroïde orbitant dans la Ceinture de Kuyper découvert par la sonde New Horizon), n’aura pas du tout le même effet. La force de l’impact résulte de la différence relative des vitesses de déplacement et de la force de gravité des astres en présence. Ceci dit la différence entre la Terre et Mars fait qu’une masse de 250 à 650 tonnes pèsera quand même 100 à 250 tonnes sur Mars.

Je passe aussi sur la composition minéralogique des astéroïdes NEO et sans doute NMO. Il est évident que tous ces petits corps sont d’une grande variété mais 75% (type C) sont des chondrites carbonées; 17% (type S) sont riches en silicates, fer, nickel et magnésium; les astéroïdes purement métalliques (type M) sont de quelques pourcents. Leur densité est également variable et fonction de cette composition. Quoi qu’il en soit les astéroïdes peu denses sont la grande majorité.

La différence de densité d’atmosphère joue un rôle beaucoup plus important. L’atmosphère terrestre forme un écran protecteur qui manque presque totalement pour Mars (pression au sol 6 mb en moyenne). Il faut en effet bien voir qu’en dessous d’une certaine masse le freinage par l’atmosphère est très sensible autour de la Terre, et la vitesse d’arrivée au sol est d’autant plus faible que la masse est faible. Ce freinage est synonyme de dissipation d’énergie. On estime qu’en dessous de 100 mètres de diamètre, un astéroïde rocheux libère la plus grande partie de son énergie dans l’atmosphère terrestre et qu’en dessous de 10 mètres la totalité de l’énergie y est dissipée. Et il y a non seulement dissipation d’énergie mais modification de la structure de la masse à l’occasion de cette dissipation. L’atmosphère terrestre brûle en totalité les micrométéorites mais elle disloque aussi les météorites plus grosses. A fin de comparaison il faut savoir que la météorite S1094b faisait une dizaine de mètres de diamètre et que la météorite de Tcheliabinsk devait avoir entre 12 et 17 mètres. Cette dernière s’est fragmentée entre 40 et 20 km d’altitude ce qui sous-entend que sur Terre S1094b ne serait certainement pas arrivé au sol.

On voit bien que sur Mars presque rien ne va freiner l’astéroïde avant l’impact au sol. Je dis « presque » parce que l’atmosphère martienne va quand même ralentir et même brûler les plus petites masses (ce que ne peut pas faire l’environnement lunaire puisque la Lune n’a pratiquement pas d’atmosphère mais la force de gravité lunaire est deux fois moins grande). Dans son étude en référence (un peu ancienne, 1969, mais sans doute toujours valable), Robert Dycus nous dit que l’atmosphère offre très peu de protection contre les météorites de masse supérieure à une tonne et qu’à partir de 10 grammes et en-dessous, elles sont totalement freinées (mais peuvent arriver au sol en chute libre). Ce qui laisse beaucoup de possibilités d’impacts très rudes.

Certes on pourra recenser les plus gros NMO comme on le fait pour les NEO terrestres estimés dangereux. Mais le critère des 140 mètres de diamètre minimum adopté pour la Terre* ne sera pas suffisant pour Mars pour limiter les catastrophes. Et plus on descendra en taille, plus les astéroïdes seront nombreux, plus ils seront difficiles à détecter de loin. On n’arrivera jamais à descendre suffisamment bas pour être « tranquille » car même une brèche de quelques cm dans un habitat pressurisés serait un événement grave nécessitant d’être traité en urgence. Il faudra donc vivre avec ce danger.

*c’est l’objectif du recensement demandé au télescope NEO Surveyor qui doit être lancé par la NASA au premier semestre 2026.

C’est un risque qu’il faudra prendre en compte quand l’homme créera une base habitable sur Mars. Sa concrétisation sera relativement rare mais sérieuse. Cela veut dire qu’il y aura des accidents certes peu fréquents mais beaucoup moins rares que sur Terre et plus dangereux puisque l’air extérieure sera très ténu et irrespirable. Que pourra-t-on faire pour se protéger ?

Pour ce qui est des habitats il faudra privilégier les habitats enterrés plutôt que les structures édifiées en surface (si elles le sont, la couverture de régolithe sera indispensable). Deux mètres de régolithe, recommandé pour les radiations, seront également efficaces contre les petits astéroïdes. Par ailleurs, il faudra segmenter les habitats par des portes coupe-feu ou coupe-dépressurisation pour qu’en cas d’impact sur un volume viabilisé aérien, tout l’air respirable de la base ne s’échappe dans l’atmosphère.

Pour les petits impacts, toute personne « à l’extérieur », en « EVA » comme on dit, (« Extra Vehicular Activity ») devra porter avec elle une boite avec des patchs permettant de stopper les accidents de dépressurisation (mais de toute façon il faudra se prémunir contre les conséquences d’accrocs divers). De même les passagers de véhicules pressurisés devront emporter dans leur trousse de secours des plaques de matériaux et un équipement pour les souder, permettant de colmater les trous dans la coque ou la carrosserie de leur véhicule (mais de toute façon la « trousse à outil » devra pouvoir remédier à toute perforation d’un habitat pressurisé).

Cela ne va quand même pas nous empêcher d’aller sur Mars. Il y aura probablement beaucoup moins d’impacts d’astéroïdes (quelques 200 par an estimés) que d’accidents de voiture sur Terre.

Illustration de titre : cratère d’impact de l’astéroïde S1094b. Photo HiRISE (orbiteur MRO) crédit NASA.

Illustration ci-dessous : une magnifique météorite métallique (fer/nickel) de 5 cm de diamètre rencontrée par Curiosity le 30 Oct. 2016. Crédit NASA/JPL-Caltech/MSSS.

Liens :

https://www.cieletespace.fr/actualites/la-sonde-insight-detecte-deux-gros-impacts-meteoritiques-sur-mars

https://www.science.org/doi/10.1126/science.add8574#:~:text=On%2024%20December%202021%2C%20the%20InSight%20Mars%20lander%20recorded%2C%20for,details%20of%20the%20martian%20crust.&text=A%20satellite%20image%20of%20the,by%20the%20Mars%20Reconnaissance%20Orbiter.

https://www.science.org/doi/10.1126/science.abq7704

https://mars.nasa.gov/insight/mission/overview/

https://iopscience.iop.org/article/10.1086/128793/pdf

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 22 11 03