L’appel de l’espace profond et la problématique du Voyage

Partir ! Partir loin ; partir au-delà de l’ISS, au-delà de la Lune ; partir voyager dans ce qu’on appelle l’« espace-profond » ; y vivre. C’est mon rêve comme celui de beaucoup de mes contemporains. L’opportunité apparaît nous être ouverte par l’évolution récente de nos technologies. Mais est-ce réaliste ? Et jusqu’où ?

NB : Le présent article et les suivants reprennent, après remaniement et quelques améliorations (je l’espère !), un des tous premiers articles de ce blog (« Voyage »). Il n’avait pas retenu beaucoup l’attention mais comme je pense qu’il est important, je lui donne une seconde chance !

Pour répondre à ces questions il faut considérer l’énergie dont on dispose pour se libérer de l’emprise de la gravité terrestre puis pour survivre; les moteurs et la « tuyauterie » capables de l’utiliser; la vitesse que l’on peut acquérir par rapport aux distances à parcourir pour aller « quelque part »; le volume où l’on va vivre, son enveloppe et ses équipements internes; les systèmes de support-vie que l’on peut faire fonctionner (auto-régénératifs de type MELiSSA, pour durer longtemps); les capacités de résistance de notre corps aux conditions extrêmes et notamment aux radiations spatiales et aux « débordements » d’activité de nos microbes commensaux (notre microbiote), de ceux de nos compagnons et de notre environnement qui tous voyageront avec nous à l’intérieur du super-microbiome d’un vaisseau spatial (avec ou sans notre autorisation) ; les compétences des membres de l’équipage forcément très réduit en nombre; les capacités de résistance et d’adaptation de notre esprit à un environnement particulièrement stressant ; nos chances de retour sur Terre, car pour le moment il n’est pas question comme certains l’envisagent avec inconscience, de ne pas revenir. Enfin je n’oublierai pas de mentionner un autre sujet qui n’est pas négligeable (mais pas non plus rédhibitoire), le coût, car il faut évidemment se payer le voyage.

L’objet de ce blog est de vous convaincre que la réponse, après étude sérieuse de ces sujets complexes et souvent interagissants, peut-être positive pourvu que l’on soit raisonnable. Cela ne veut pas dire que l’on ne prenne pas de risques importants (vitaux ou mortels selon le point de vue où l’on se place) mais que ces risques ne sont pas impossibles à prendre (c’est-à-dire qu’ils impliquent une trop forte probabilité de mort). Il faut donc être réaliste tout en restant audacieux. Dans ce contexte, notre objectif ne peut être aujourd’hui que la planète Mars parce qu’elle se situe à la limite de nos possibilités énergétiques et physiologiques, parce que son environnement est moins hostile que celui des autres corps célestes sur lesquels nous pourrions aller, qu’il nous offre des possibilités d’« ISRU » (« In Situ Resources Utilization ») qui nous dispenseront d’apporter trop de masse avec nous et parce que s’y établir serait une déclaration d’intention convaincante pour aller ensuite encore plus loin.

In fine ce qui est essentiel c’est de vouloir puisqu’on le peut.

Image à la Une: Aurora (ESA), credit ESA et Pierre Carril. Cette illustration a été commandée à Pierre Carril par l’ESA à l’époque du lancement du programme Aurora de cette dernière. Pierre Carril est l’un des meilleurs illustrateurs scientifiques français se consacrant à l’espace. Ses dessins sont toujours extrêmement rigoureux et porteurs de sens. 

Ce sont des lutins qui ouvrent la voie du programme Breakthrough Starshot

Les premiers progrès technologiques nécessaires pour mener à bien le projet Breakthrough Starshot sont en bonne voie. Rappelons que l’objet de ce projet est d’explorer les systèmes de Proxima et d’Alpha Centauri (les étoiles les plus proches du Soleil) avec une flotte de sondes ultralégères emportées par des voiles qui seront propulsées par la lumière.

Sur le plan organisationnel, Breakthrough Starshot est un programme de recherche et d’ingénierie fondé en Mars 2016 par Youri Milner, Stephen Hawking et Marc Zuckerberg qui s’appuient sur un Comité de conseillers scientifiques reconnus (surtout américains). Il est doté pour sa phase initiale de 100 millions de dollars. Les promoteurs se sont donnés vingt ans pour aboutir*.

Voir mes articles précédents sur le sujet. (21 et 28 décembre 2016; 4 janvier 2017) 

Proxima Centauri se trouve à 4,24 années-lumière de la Terre. Il faudrait 20.000 ans à un vaisseau doté d’une propulsion classique pour l’atteindre. Le principe du Programme est d’une part de réduire au maximum la masse à projeter tout en la dotant d’une charge utile permettant un minimum d’ajustements de trajectoire, la collecte d’informations sur le système stellaire visité, la transmission à la Terre des données collectées et, d’autre part, de fournir l’énergie lumineuse la plus puissante possible pendant la très courte période pendant laquelle les vaisseaux ne seront pas trop éloignés, pour que la vitesse acquise à la fin de cette période permette un retour d’informations dans un délai acceptable par rapport à la durée d’une vie humaine.

Ce principe implique (1) la miniaturisation des vaisseaux et leur fonctionnement coordonné (en essaim), (2) l’allègement et la réflectivité maximum des voiles photoniques et (3) la mise au point de lasers ultra-puissants.

Il semble théoriquement possible d’atteindre une masse d’un seul gramme pour le vaisseau et une masse d’un seul gramme pour la voile (qui aurait quatre m2). Le dispositif de propulsion serait une forêt de lasers, quelque part en altitude à la surface de la Terre, qui diffuseraient une énergie lumineuse de 100 milliards de W pendant 10 minutes en direction des voiles (larguées précédemment dans l’espace proche), durée nécessaire pour impulser aux vaisseaux une vitesse relativiste de 0,2c (20% de la vitesse de la lumière) et atteignent une distance de 2 millions de km (après laquelle les lasers deviendraient inefficients).

Une fois acquise, la vitesse de 0,2c se conserverait (puisque rien ne freine un objet lancé dans l’espace au-delà de la sphère de Hill* de la planète dont il provient, si ce n’est la force de gravité de plus en plus faible du Soleil) et permettrait d’atteindre le système de Proxima Centauri en 20 ans. Le grand nombre de vaisseaux prévus (un millier) doit permettre une observation commune de la cible et aussi procurer une redondance pour pallier les défaillances d’un certain pourcentage d’entre eux.

*sphère à l’intérieur de laquelle sa gravité s’exerce de façon sensible.

En juillet dernier, un test a été effectué sur une première série de vaisseaux miniaturisés, dénommés « sprites » (« lutins », en Français) conçus par Zac Manchester, ingénieur en aérospatial de l’Université Cornell. Lancés le 26 juin, en orbite basse terrestre, ils fonctionnent et communiquent avec la Terre. Tout petits (mais pas encore assez !) ils mesurent 3,5 x 3,5 cm et pèsent 4 grammes. Il s’agit en fait d’une carte électronique dans laquelle sont intégrés des capteurs (magnétomètre et gyroscope) un microprocesseur, un transmetteur radio et des cellules photovoltaïque pour fournir au vaisseau l’énergie dont il a besoin pour fonctionner (puissance 100 milliwatts).

Bien sûr il reste beaucoup à faire pour que le projet, très complexe et très futuriste, atteigne ses objectifs mais la miniaturisation du vaisseau est une étape incontournable et on peut déjà féliciter Zac Manchester pour la prouesse réalisée. Pour comparaison, on peut se référer à IKAROS de l’agence japonaise JAXA, qui lancé et déployé en 2010, a été le premier vaisseau spatial à propulsion photonique. Comme les sprites il fut placé en orbite basse terrestre mais il pesait 315 kg dont 300 kg pour le vaisseau et 15 kg pour la voile (de 14,1 mètres de côté, soit 178 m2) ! L’objet était de tester le déploiement de la voile et de démontrer sa capacité à naviguer sur instructions données de la Terre. L’engin prévu pour un minimum de 6 mois, fonctionnait encore en 2015. Les progrès en miniaturisation sont donc très remarquables et laissent espérer encore mieux. NB : IKAROS utilisait la lumière du Soleil, ce qui n’est pas tout à fait la même chose que d’utiliser la lumière de lasers puisque la première est diffuse et la seconde concentrée et donc que la première nécessite une voile plus grande, mais dans les deux cas il s’agit de propulsion photonique.

Une inquiétude que j’ai et qui ne pourra être testée facilement, c’est l’effet qu’auront les GCR (« Galactic Cosmic Ray », radiations galactiques) sur les circuits miniaturisés pendant une longue période (les 20 ans du voyage). A l’intérieur du système solaire nous sommes un peu protégés de ces radiations par le rayonnement solaire. Les impacts de HZE (noyaux d’éléments lourds, tels que le fer) constituent un pourcentage faible des GCR (2%) ; ils sont néanmoins très dangereux par leur énergie et leur masse. Qu’en sera-t-il en dehors de la sphère de protection du soleil ? Seront-ils plus abondants ? Peut-être que les HZE ne seront pas plus nombreux puisque de toutes façons ils sont très peu arrêtés par les radiations solaires. Même si c’est bien le cas, la redondance prévue des sondes sera-t-elle suffisante pour que le dispositif reste utilisable après 20 ans de voyage malgré les impacts ? C’est ce que la suite de l’histoire nous dira ! Souhaitons donc bonne continuation à Breakthrough Starshot !

Image à la Une: un sprite, premier vaisseau spatial conçu dans le cadre du programme Breakthrough Starshot.

lien: https://breakthroughinitiatives.org/News/12

Image ci-dessous: ce à quoi pourrait ressembler un vaisseau spatial du programme quand il sera au point (voile de 4 m2 emportant un vaisseau de un gramme):

La Mer d’Eridania, une nouvelle piste pour la vie

On a identifié sur Mars le bassin d’une vaste mer asséchée qui est potentiellement très prometteur sur le plan exobiologique. Ce bassin est situé dans la région d’Eridania, dans les Hautes-Terres-du-Sud pas très loin des Basses-Terres-du-Nord, au Nord-Est du bassin d’Hellas et au Sud du Cratère Gusev (celui qu’a exploré le rover Spirit, jumeau d’Opportunity, avant de s’ensabler), auquel il est relié par le canal de déversement de Ma’adim Vallis (le Cratère Gusev étant situé en contrebas, à la limite de la dichotomie crustale de la planète).

D’après la compréhension que nous avions jusqu’à maintenant des conditions nécessaires à l’émergence du processus de vie, c’était les sources hydrothermales qui, sur Mars, semblaient lui offrir les conditions les plus propices. C’est sur cette hypothèse que deux des trois sites d’atterrissage de la prochaine mission « lourde » de la NASA, dénommée « Mars-2020 », les Columbia Hills (cratère Gusev, Spirit) et le Nord-Est de Syrtis Major (entre Isidis Planitia et Nili Fossae), ont été présélectionnés (le troisième étant le magnifique delta fluvial s’ouvrant dans le cratère Eberswalde).

On pense que pour que la vie soit apparue (sur Mars comme sur Terre), il a fallu de l’eau liquide et active (qui soit dans un état chimique et physique qui puisse permettre les liaisons chimiques), une abondance de minéraux dissous et circulants (grâce à des mouvements de l’eau), un différentiel de pH incitatif aux réactions thermodynamiques, de la chaleur mais pas trop (60°C plutôt que 100°C). Sur Terre trois types de sites présentent ces caractéristiques : certaines zones intertidales (ou de « balancement » des marées) dans les régions volcaniques, les rivières s’écoulant des sources géothermales de type Yellowstone et certaines cheminées de dorsales médio-océaniques (les moins chaudes, qui ont une vie très longue, type « Lost City »). Malheureusement, la planète Terre étant restée très active (tectonique des plaques et érosion), il reste très peu de roches de cette époque, juste postérieure à l’Hadéen et formées dans ces sites, qui n’aient pas été métamorphisées et soient toujours lisibles. Sur Mars au contraire, on trouve beaucoup de roches très anciennes puisque la surface a peu changé depuis 3,5 milliards d’années (pas de tectonique des plaques et très peu d’érosion) mais on n’a pas eu de zones intertidales (absence de gros satellite de type Lune) et on n’a pas eu non plus de dorsale médio-océanique (absence de tectonique des plaques horizontale). C’est pour cela qu’on recherchait d’abord des vestiges de sources géothermales de type Yellowstone.

Un document d’étude publié le 10 juillet 2017 dans Nature, « Ancient hydrothermal seafloor deposits in Eridania basin on Mars », par Joseph Michalski et al. (y compris Paul Niles, un des spécialistes de paléobiogéologie de la NASA), présente et analyse les mérites du bassin de la Mer d’Eridania, le faisant apparaitre comme un site comparable, disons de la même famille que ces sources géothermales mais encore plus intéressant. En effet on y observe un type de relief dont l’origine pourrait se situer entre ces sources et les cheminées des dorsales médio-océaniques. L’époque des vestiges remonte à 3,8 milliards en moyenne. Elle se situe après le dernier grand bombardement météoritique (« LHB ») et donc après que la planète ait pu suffisamment se refroidir et alors que son atmosphère était encore suffisamment épaisse pour que sa pression permette une gamme importante de températures entre point de glaciation et point d’ébullition de l’eau (facteur de stabilité pour les réactions chimiques). C’est à ce moment que la vie est apparue sur Terre (et ce ne pouvait être avant). La mer a persisté du Noachien tardif à l’Hespérien tardif, époque à laquelle le site a été resurfacé par volcanisme (soit une longue période de quelques 400 millions d’années).

La Mer d’Eridania contenait de grandes quantités d’eau, sans doute nettement plus que n’en contient la Mer Caspienne (le double lors de la période la plus humide), sur 500 à 1500 mètres de profondeur. Au fond, la pression a pu atteindre les 20 à 30 atmosphères ce qui n’est pas autant que celle que l’on trouve dans l’environnement des dorsales médio-océaniques (plusieurs centaines d’atmosphères) mais nettement plus qu’en surface et cette pression élevée a pu être un facteur facilitant la complexification des molécules organiques, puisque caractéristique de ces endroits profonds. En même temps l’épaisseur de la couche d’eau a pu fournir par elle-même une protection contre les radiations (solaires ou gactiques). En complément (indispensable), le magma était proche du sol sous-marin, donc source d’émissions volcaniques et de percolations d’eau chaude chargée de sels minéraux. Les roches qui tapissent le fond de cette ancienne mer, forment des « chaos » constitués de buttes concaves de type « kīpuka* » du fait des circonstances de leur formation subaquatique et du fait que leur formation a été suivie d’un nappage volcanique. Les buttes témoignent de concrétions et d’hydratation dans d’excellentes conditions à partir des roches magmatiques (« ultra-mafiques » c’est-à-dire riches en fer en magnésium et aussi en calcium) et sur la durée. On trouve sur une grande épaisseur (supposée de 400 m à 1 km), dans les bassins occidentaux du site (Ariadnes Colles et Atlantis Chaos), un énorme volume (de l’ordre de 10.000 km3) de dépôts d’argiles, de carbonates, et de sulfites qui n’ont pu se former que dans un environnement hydrothermal sous-marin. La nature du fer présent sous forme de fer ferreux, Fe2+ (non oxydé), dans les dépôts indique un milieu réducteur tout à fait comparable à celui qui existait dans les océans terrestres primitifs anoxiques. Par ailleurs le magnétisme résiduel est l’un des plus élevés de la planète, ce qui témoigne de l’activité du magma à cet endroit, de l’ancienneté du lieu et du fait qu’il n’a pas été trop perturbé après sa formation (les épanchements de lave sur le fond du bassin tôt dans l’histoire – fin de l’Hespérien – ont servi à conserver ce qui se trouvait en dessous mais n’ont pas noyé l’ensemble du relief -les buttes, sauf dans sa partie Est).

*Un kīpuka, terme d’origine hawaïenne, est une portion de terrain entouré par des sols d’origine volcanique plus récents qu’elle, généralement des coulées de lave.

Les facteurs favorables sont donc les suivants : l’époque, l’environnement aqueux, le différentiel de pH, l’épaisseur de la couche d’eau, la chaleur, la richesse en nutriments minéraux, la longue durée de cette situation. On se trouve effectivement en présence d’un milieu original et sans doute plus prometteur pour la recherche exobiologique que les sites actuellement retenus pour l’atterrissage de MARS-2020…mais il est trop tard pour l’introduire dans la sélection ! Nous aurions déjà une base habitée sur Mars, on pourrait envoyer sur les lieux une équipe de paléobiogéologues pour prélever des échantillons, sans attendre.

Image à la Une : site de la Mer d’Eridania (crédit Joseph Michalski et al. / Nature Communications)

Image ci-dessous : modèle géologique de la Mer d’Eridania (crédit idem):

Pour leur mesure du Temps les Martiens resteront en partie des Terriens

On dit souvent que les Sumériens ont inventé le calendrier. Je dirais plutôt qu’ils ont été les premiers à écrire à propos du calendrier que nous utilisons tous aujourd’hui et qu’ils nous en ont transmis des éléments secondaires, importants certes mais non essentiels.

NB: cet article a été écrit à l’occasion de la conférence que je donne demain samedi 28 octobre (17h00, salle de spectacle du collège de Môtiers) dans le cadre de la célébration du changement d’heure. Une telle célébration est organisée tous les six mois par la ville horlogère de Fleurier (commune du Val-de-Travers). 

Sur Mars on sera soumis comme sur Terre à des contraintes locales, déterminantes pour le choix des repères temporels mais, en plus, on ne pourra s’abstraire d’autres contraintes résultant de notre histoire.

Sur Terre, il est évident que l’année solaire, le jour et la nuit, le midi et les mois lunaires sont des concepts universels car ils résultent d’observations qu’on ne peut pas ne pas faire.

Le jour a été dès l’apparition de la vie en surface de la Terre, une évidence biologique pour tout être vivant. Le demi-jour (irradiance solaire croissante puis décroissante) s’impose presque aussi fortement puisque chaque être vivant ressent le réchauffement puis le refroidissement de son environnement au cours de la journée et lie bien évidemment cette évolution au parcours du soleil dans le ciel.

Le mois, venant de l’observation du cycle des changements apparents de la Lune est sans doute autant que le jour, l’un des plus anciens repères de temps. La notion de mois existe dans toutes les cultures de la Terre quelles que soient leurs origines. Ainsi, le terme mois = Lune se retrouve dans toutes les langues indo-européennes et remonte donc à l’origine commune de ces langues ; les Mayas comme les Japonais, les peuples du moyen orient ou les Européens ont tous eu un mois lunaire.

L’année solaire était un concept presqu’autant universel mais son évidence a manqué à quelques populations bénéficiant d’un climat tropical, sec ou humide, trop égal. Dans les régions tempérées l’évidence s’imposa très tôt (Stonehenge) et s’accompagna de la perception des saisons avec reconnaissance des solstices et des équinoxes rythmant les années en quatre parties, un peu en décalage avec les cycles lunaires. Le problème majeur qui agita le monde des observateurs du ciel pendant des millénaires fut celui de la réconciliation de la durée de l’année lunaire (28 jours x 12) avec celle de l’année solaire (360 jours + 5). On a fini par généraliser l’année solaire mais pour certaines cultures archaïques qui ont conservé le mois lunaire comme référentiel, le problème n’est toujours pas résolu.

Pour les subdivisions du mois, de la nuit et du jour ou du demi-jour on n’est soumis à aucune contrainte, ce qui a permis quelques fantaisies (comme le calendrier des anciens Romains ou celui des révolutionnaires français). Le choix de 7 jours pour une semaine est arbitraire à l’intérieur de la contrainte (ou de la facilité) de choisir un multiple contenu exactement dans la durée d’un mois lunaire (on aurait pu choisir une unité de 14 jours ou pas de subdivision autre que le jour). Les choix d’un douzième pour l’heure par rapport au demi-jour de même que le choix de 60 unités comme subdivision de l’heure ont bien été faits par les Sumériens car ils avaient un système de numérisation duodécimal ou sexagésimale (ce qui revient au même). Comme ces bases sont aussi physiques (on compte sur les phalanges de ses doigts et on constate le nombre de cycles lunaires sur une année) on peut imaginer que les mêmes subdivisions aient pu exister ailleurs et aussi avant (même si les autres cultures, n’ayant pas imaginé l’écriture avant les Sumériens, n’ont pu manifester leur identité de vue en même temps).

Sur Mars, les repères fondamentaux sont différents. La planète effectue une révolution autour du Soleil en 669 « sols » (soit 688 « jours ») et il n’y a pas de Lune !  On pourrait donc imaginer des repères différents. Naturellement ceux qui s’imposeront dans la vie locale sont le sol (jour de 24h39), le midi, l’année solaire et les quatre saisons marquées par les équinoxes et les solstices. Cette base étant posée, plusieurs faits devront être pris en compte : (1) les Martiens seront des êtres humains venus de la Terre ; (2) ils « fonctionneront » avec des équipements sophistiqués fabriqués sur Terre ; (3) leurs premiers partenaires resteront pendant très longtemps les Terriens. Leurs référentiels devront donc être doubles, locaux d’une part, pour toutes les activités à mener en surface de la planète hôte et universels d’autre part, pour toutes relations avec la Terre (ou autres lieux dans l’espace) et tout suivi historique (personnel ou civilisationnel). Autrement dit, tout Martien utilisera un décompte terrestre de son âge biologique (il n’y aurait aucun intérêt et aucun sens à adopter un décompte martien) ; tout événement à mémoriser, même purement martien, le sera selon le référentiel des années terrestres décomptées depuis la naissance théorique de Jésus-Christ ; toute machine dont le fonctionnement ne sera pas contraint par la durée du jour martien, utilisera comme base de calcul du temps la seconde terrestre*. Cette dernière est la seule unité de mesure vraiment universelle maintenant qu’elle a été déconnectée de la vitesse de rotation de la Terre.

*9’192’631’770 périodes de radiation correspondant à la transition entre les deux niveaux hyperfins F3 et F4 de l’état fondamental 6S1/2 de l’atome de césium 133, à 0°Kelvin.

Par contre toute opération se situant dans un cadre temporel martien (sol, année, saison) devra être vue et suivie dans le cadre d’un référentiel martien. La journée martienne sera divisée en 24 heures martiennes (1,0275% de l’heure terrestre) et pour faciliter les repérages, les quatre saisons seront divisées chacune en trois mois (on pourrait choisir plus mais cela ne présenterait aucun intérêt et on voudra rester « simple » en recherchant l’analogie avec le système terrestre). Cela sera d’autant plus nécessaire que l’année martienne n’est pas exactement le double d’une année terrestre et que la durée des saisons est inégale compte tenu d’une orbite planétaire très elliptiques ce qui implique une vitesse nettement différente au périhélie et à l’aphélie (de 26 à 21 km/s). A l’intérieur de chaque saison (d’un solstice à une équinoxe et d’une équinoxe à un solstice), chaque mois balaiera donc le même secteur du ciel (1/3 de 90°) mais dans un laps de jours nettement inférieur au périhélie qu’à l’aphélie (mois de 44 à 66 jours).

Cette double contrainte imposera des systèmes de mesure du temps du type « dual » comme celui conçu par Vaucher-Manufacture-Fleurier, soit deux cadrans reliés entre eux selon les rapports entre les deux référentiels. Bien entendu il y aura aussi des fuseaux horaires sur Mars (en fait ils existent déjà* et sont utilisées par les missions robotiques ou les observateurs terrestres), 12 à l’Est et 12 à l’Ouest du Méridien puisqu’on choisira une heure martienne égale à 1/24ème du jour martien, et on devra changer d’heure en passant de l’un à l’autre. *NB : le Méridien a été fixé par rapport à un cratère sans aucun intérêt (« Airy-0 », en bordure oriental du plateau « Meridiani-Planum » ). Il est totalement arbitraire mais a le mérite d’être accepté par « tout le monde ».

Enfin, il est possible que d’autres événements périodiques remarquables soient retenus et utilisés comme repères additionnels. Je pense au pic d’activité solaire tous les onze ans qui sera redouté comme une mauvaise période en raison de la plus grande probabilité des éruptions solaires (cela impliquera qu’on prévoie moins de missions lointaines ou de constructions à l’extérieur); aux dates d’arrivée des vaisseaux terrestres tous les 26 mois (ils seront porteurs de nouveaux visages et de nouveaux produits, tant attendus, ils emporteront aussi connaissances et amis) ; aux quinze sols annuels pendant lesquels la Terre et Mars seront en conjonction et donc les communications directes impossibles (qui pourront être considérés comme des vacances).

La structuration du temps martien est déjà une appropriation par l’homme. Petit à petit on prépare notre arrivée sur Mars et cette réflexion déjà indispensable pour nos machines, y contribue.

Image à la Une: horloge “dual-time” réalisée par Vaucher-Manufacture-Fleurier, avec ma participation (conseil). Les deux mécanismes sont reliés par un rapport 1,0275 correspondant au rapport entre journée de 24h00 et “sol” de 24h39. Dimensions: 80 cm x 40 cm.

Le Projet-Bleu veut chercher une autre Terre dans le système d’Alpha Centauri

« Project-Blue » consiste à réaliser un petit télescope spatial dédié dont la seule fonction sera de rechercher une planète de type terrestre orbitant l’une des étoiles Alpha Centauri A ou B situées à 4,37 années-lumière du Soleil. Il s’agit d’abord de définir précisément les spécifications avant la mise en réalisation. Un crowdfunding a été lancé à cet effet. Il se termine dans quelques jours.

Le système stellaire d’Alpha Centauri est notre voisin le plus proche (rappelons que notre galaxie, la Voie Lactée, a un diamètre de 100.000 années-lumière et que Pluton se trouve, au plus loin, à 7 heures-lumière du Soleil). Il comprend trois étoiles, Alpha Centauri A, B et C que l’on nomme aussi « Proxima Centauri »* car c’est l’étoile actuellement la plus proche de notre Soleil (4,24 années-lumière). Nous avons déjà trouvé une planète rocheuse (« Proxima b ») de masse quasi terrestre (1,3 fois la Terre ou peut-être un peu plus) dans la zone habitable de cette dernière ; malheureusement Proxima Centauri est une toute petite étoile (0,123 masses solaires mais tout de même 128 fois Jupiter) et sa zone habitable en est extrêmement proche (neuf fois plus que l’orbite de Mercure ne l’est du Soleil). Cela expose sa planète à des radiations extrêmement dangereuses et bloque sa rotation par force de marée, de telle sorte qu’elle présente toujours la même face à son étoile, comme la Lune est bloquée par la masse de la Terre. Il est donc difficile d’envisager qu’elle puisse être une seconde Terre. Néanmoins un projet, déjà présenté dans ce blog (« Breakthrough Starshot »), envisage de l’explorer avec des voiles solaires propulsées à 20% de la vitesse de la lumière par des rayons laser.

NB : il n’est pas certain que Proxima Centauri appartienne bien au même système qu’Alpha Centauri. Elle pourrait n’être qu’un astre de passage, actuellement dans le voisinage des deux autres (dont elle est séparée de 13.000 Unités Astronomiques – « UA » – tout de même; une UA = distance Terre / Soleil ).

Le principe de Project-Blue est que, puisque nous avons trouvé une planète de type terrestre orbitant autour de Proxima, nous avons quelques chances d’en trouver une autre autour de l’une de ses étoiles sœur, Alpha Centauri A ou B. Ce serait plus intéressant car Alpha Centauri A (« ACA ») a une masse de 1,1 masse solaire et Alpha Centauri B (« ACB »), une masse de 0,907 masse solaire. Les deux étoiles sont donc de « vrais » soleils. Elles sont juste un peu plus vieilles que le nôtre (4,85 à 6,8 milliards d’années au lieu de 4,57) mais elles ont toujours la même composition et émettent presque les mêmes radiations (pas tout à fait car ACB émet un peu trop de rayons X), générant la même zone habitable. Leurs planètes de type terrestre en zone habitable, si elles existent, pourraient se trouver à la même distance de leur étoile. Compte tenu du différentiel très fort de lumière émis par l’étoile par rapport à celle réémise par ses planètes, il serait très difficile d’en distinguer une, visuellement, si elle était aussi proche de Proxima Centauri que l’est la planète Proxima-b. Cependant dans le cadre de Project-Blue, on cherche une planète plus lointaine de son étoile (à la distance d’une UA) et on utilisera un coronographe (ou deux?) qui occultera chacune des deux étoiles (ou les deux à la fois?). A noter que ce système permettant une détection visuelle d’objets aussi petits, n’est encore possible que pour les planètes des systèmes stellaires les plus proches de la Terre, peut-être quatre ou cinq seulement (et parmi eux, aucun autre n’est centré sur une étoile de type solaire).

Nous avons une chance et nous devons la saisir. Mais ne nous faisons pas d’illusion ; nous n’avons aucune certitude quant à ce qu’on pourra trouver. Le doute le plus fort provient de la nature binaire du système d’Alpha Centauri. De plus ACA est très proche de ACB. La distance varie entre 36,5 UA (distance de Pluton au Soleil) à seulement 11 UA (distance de Saturne au Soleil). Dans un tel système on ne peut savoir quels types de planètes les forces antagonistes et les distorsions d’orbite résultant de la proximité relative des étoiles entre elles, peuvent permettre. Il est en tout cas impossible que l’équivalent de Saturne ou de Jupiter existent. A supposer qu’une planète orbite néanmoins autour de l’une ou l’autre, ce pourrait être un « Jupiter chaud » qui, partant d’au-delà de la limite de glace du système (2,7 UA pour la Terre et sans doute une distance équivalente pour ACA et ACB), aurait balayé toute matière disponible jusqu’à proximité de l’étoile ; ces planètes sont très fréquentes dans notre environnement galactique. A supposer que ce soit une planète rocheuse de masse égale à la Terre (c’est possible pour une étoile de type solaire), rien ne nous dit qu’elle aurait reçu l’eau nécessaire à l’évolution vers la vie. Et même dans ce cas, rien ne dit que l’évolution ait conduit vers l’émergence d’une vie de type bactérien qui ensuite aurait généré de l’oxygène qui aurait permis l’apparition d’organismes vivants utilisant cette forme d’oxydant qui aurait permis une vie de type eucaryote mono-cellulaire puis de type eucaryote-métazoaire (les végétaux, les animaux puis nous-mêmes).

Les promoteurs de Project-Blue sont peut-être un peu optimistes ou présomptueux. Mais si nous trouvons une planète de type terrestre enveloppée par son cocon atmosphérique, quel incitation et quel défi ce serait ! Nul doute qu’à ce moment le projet Breakthtough Starshot ne soit ré-orienté vers cette possible Terre et que les agences interviennent massivement pour « aller voir ».

L’aventure est tentante d’autant plus que le programme proposé peut commencer avec peu de moyens financiers. Il s’agit pour le moment de définir précisément les spécifications du télescope avant d’en organiser la réalisation et ce premier stade ne coûterait que 175.000 dollars. Les promoteurs du projet, personnes très respectables et compétentes dans leur domaine* sont regroupées au sein du « BoldlyGo Institute », un organisme privé dont la devise est « advancing the frontier of Space science and exploration ». Ils bénéficient du soutien moral (mais pas financier !) de la NASA. Ils ont lancé le 6 septembre un crowdfunding qui sera clos fin octobre. Il a le 20/10, réuni 69% des fonds de ce premier stade (121.426 dollars). La totalité du projet (lancement compris) devrait coûter in fine environ 30 million de dollars, ce qui est très peu au regard des « gros projets » qui atteignent communément les centaines de millions. La raison en est que le télescope qui utilisera les dernières technologies optiques, n’aura qu’un seul objectif (on pourrait dire un seul réglage), rechercher cette planète.

*des universitaires américains de l’Université d’Arizona, du Carl Sagan Center for Research at the SETI Institute (Dr. Nathalie Cabrol), de l’Université du Massachussetts, Lowell, de Yale, de l’Université de Victoria (Colombie Britannique), de Penn State et du Bay Area Environmental Research Institute.

Alors, rejoignez-les! rejoignez nous ! Il reste une douzaine de jours. Dans quelques années nous pourrions ensemble découvrir peut-être l’hypothétique Polyphème et son plus gros satellite (dans le film Avatar, Pandora est un satellite rocheux de cette géante gazeuse supposée orbiter ACA)? Le lancement du télescope est prévu pour 2021, la première image pour 2022. Elle nous montrera l’environnement des deux étoiles tel qu’il était à peu près aujourd’hui. (4 ans et 4 mois auparavant). Il faut en effet le temps que la lumière fasse le chemin qui nous sépare de nos voisines et nous apporte l’information à la « petite » vitesse de 300.000 km/s !

Image à la Une : Vue d’artiste du télescope Project-Blue.

Liens :

http://www.projectblue.org/

http://boldlygo.org/

images ci-dessous,

1) Photo prise par le télescope Hubble du système binaire Alpha-Centauri-A (à gauche) et Alpha Centauri-B (à droite):

2) design conceptuel de Project-Blue:

Le passage de Florence, un avertissement sans frais

Le 1er septembre un astéroïde nommé « 3122 Florence » (d’après l’infirmière Florence Nightingale), est passé à proximité de la Terre (à 7 millions de km soit 18 fois la distance Terre/Lune). Cet événement a fait l’objet d’un article d’Olivier Perrin dans Le Temps du 30 août mais, comme on dit, le monde a « continué à tourner », la nouvelle ayant dû « passer au-dessus de la tête » de l’immense majorité de nos frères humains. Pourtant l’évènement est un rappel du danger vraiment terrible que présentent les astéroïdes et il mérite d’être souligné.

Rappelons les faits. Florence a un diamètre d’environ 4,5 km, à comparer aux 10 km de l’astéroïde de Chicxulub qui a causé la mort des dinosaures il y a 65 millions d’années et aux 19 mètres seulement de celui de Tcheliabinsk qui a causé l’effroi (et 1500 blessés tout de même), localement, lorsqu’il s’est écrasé en février 2013 (en fait il s’est fragmenté avant de toucher le sol). L’énergie libérée par la pénétration dans l’atmosphère de ce petit corps a été de 440 kilotonnes, c’est-à-dire 30 fois la puissance de la bombe d’Hiroshima (standard de comparaison usuel)*. Le 12 octobre, hier, un autre « petit » astéroïde, nommé « 2012-TC4 », d’à peu près la même taille que celui de Tcheliabinsk (entre 10 et 15 mètres de diamètre), est passé à 42.000 km (soit un peu plus de trois diamètres terrestres). Cette distance n’est rien par rapport à l’immensité de l’espace. Pour mémoire, le corps céleste le plus proche, La Lune, se trouve en moyenne à 385.000 km et la planète la plus proche, Vénus, au plus près à 40 millions de km (Mars à 56 millions de km).

Nous ne sommes évidemment pas « tirés d’affaire ». Le nombre d’astéroïdes géocroiseurs (« NEO » ou « Near Earth Objects », en Anglais) de plus de 140 mètres, susceptibles de passer à moins de 0,05 UA (unités astronomiques) c’est-à-dire 7,5 millions de km, doit être de quelques 25.000. On a choisi 140 mètres un peu arbitrairement mais considérant que les dommages causés par la masse qu’ils représentent seraient très importants. Sur cette population, les gros astéroïdes du type de Florence sont rares, c’est en fait le plus gros depuis qu’on a décidé de les repérer systématiquement en 1998, mais il y en a d’autres. Les Américains (que l’on peut incidemment remercier) ont pris l’initiative. La recherche (« NEO Observation Program ») est l’un des objets principaux d’un organisme fédéral, le « Planetary Defense Coordination Office » , rattaché à la NASA.  En 2006  cet « office » a reçu l’objectif de déterminer les orbites de 90% des géocroiseurs d’au moins 140 mètres avant la fin 2020.

Vous voici donc rassurés ? Vous auriez tort. D’abord parce qu’il restera 10% de ces petits corps non identifiés ; ensuite parce qu’il faudra décider ce qu’on fait si on constate que l’un d’entre ceux qui sont identifiés, menace de percuter la Terre. Enfin parce qu’il faut avoir présent à l’esprit que des corps de ce type, autres que les NEO (c’est-à-dire en fait, les mêmes, très loin de la Terre), se comptent par milliards dans le système solaire. Nous avons d’abord ceux de la Ceinture d’Astéroïdes située entre Mars et Jupiter, des myriades d’objets qui n’ont pu constituer une planète du fait de la proximité de Jupiter. Ils sont soit des agglomérats de roches sèches, soit des agglomérats de roches et de glace d’eau, selon qu’ils se trouvent en-deçà ou au-delà de la Ligne-de-glace (limite de rejet des éléments les plus volatils du disque protoplanétaire à l’époque de la formation du système solaire, passant à peu près au milieu de la Ceinture d’Astéroïdes). Nous avons ensuite, au-delà de Neptune, ceux de la Ceinture de Kuiper, encore une « ceinture » et, encore plus loin (au-delà de 20.000 UA et jusqu’à 100.000 UA), ceux du Nuage d’Oort, une sphère ou plutôt un cocon qui enveloppe le système . Ces corps sont plus ou moins stabilisés depuis que les planètes se sont formées (ayant terminé leur accrétion, ne pouvant que rester sur la même orbite) mais rien n’interdit d’envisager des perturbations, soit internes (variations dans le rayonnement solaire, ou accumulation d’un effet local très lent), soit externes (le passage un peu rapproché d’une étoile voisine, le souffle d’une émission de radiations d’une étoile proche devenue nova en fin de vie). De temps en temps nous avons des comètes qui proviennent de ces régions éloignées, après des dizaines d’années de voyage et avoir évité tous les obstacles intermédiaires, en particulier les grosses planètes gazeuses et leur champs de gravité très étendus. De tels astres pourraient causer autant de dommages que des astéroïdes, tout dépend de leur masse et de leur cohésion interne.

La prochaine étape prévue est le passage de l’astéroïde Apophis, 325 mètres de diamètre, à 30.000 km de la Terre en 2029, mais il peut y avoir des imprévus !

Tout cela pour dire que nous ne pouvons pas être tranquilles et que nous ne devons pas nous sentir en sécurité car nous ne le sommes pas. Nous faisons partie d’un monde dangereux où les catastrophes naturelles sont possibles (cf aussi les récents ouragans qui ont dévasté les îles « paradisiaques » des Antilles). La probabilité de certaines, comme les chutes de gros astéroïdes, sont très faibles mais très graves. Il serait déraisonnable de ne pas les considérer et donc de ne pas s’y préparer. On peut réfléchir à la façon de se débarrasser de ceux qui paraîtraient dangereux, soit en les détruisant (mais certains gros débris resteraient sur leurs trajectoires initiales, soit en les déviant de leur trajectoire (par exemple en recouvrant une partie de leur surface d’une couche réfléchissante ou plus sombre pour les déséquilibrer). La difficulté vient de ce que les vitesses peuvent être très élevées (variables, mais la Terre se déplace autour du soleil à 30 km/s ; les objets provenant de la Ceinture d’Astéroïdes et d’au delà, sont sur des orbites beaucoup plus aplaties et en approchant du soleil, ils vont beaucoup plus vite) et que de ce fait leur inertie est très élevée. Il faudrait donc intervenir très loin de la Terre et à une vitesse très grande (peut-être à plusieurs années de voyage avec nos lanceurs actuels compte tenu des manœuvres d’approche nécessaires). C’est une des raisons pour lesquelles il serait de notre intérêt en tant qu’espèce intelligente et technologiquement capable, d’entreprendre notre sauvegarde, créer une branche de l’humanité sur Mars, par exemple. Mars peut, bien entendu, comme la Terre, être heurtée par un gros astéroïde mais il est extrêmement improbable que les deux planètes subissent en même temps une catastrophe de ce type. Bien entendu cela n’exclut pas qu’on continue à identifier les astéroïdes menaçant la Terre et qu’on réfléchisse aux moyens de les détourner.

Image à la Une : la trajectoire de Florence.

*autres astéroïdes notables récents : Toutatis, 4 à 5 km, de diamètre, passé à la distance de la Lune en 2004 ; « 2014-JO25 » 1,3 km de diamètre, passé à 1,8 millions de km de la Terre le 19 avril 2017.

NB1 : Les astéroïdes sont nommés d’après l’année où ils ont été découverts ; certains, plus connus ou remarquables, reçoivent un « vrai » nom.

NB2 : plutôt que d’utiliser le terme « diamètre », il serait plus correct de parler d’”encombrement”, les astéroïdes n’étant pas sphériques (leur masse est insuffisante). Disons que ce « diamètre » est la plus grande dimension.

Liens :

Communiqué NASA:

https://www.nasa.gov/feature/jpl/large-asteroid-to-safely-pass-earth-on-sept-1

Article d’Olivier Perrin dans Le Temps du 30 août :

https://www.letemps.ch/opinions/2017/08/30/deux-asteroides-potentiellement-dangereux-bientot-froler-terre

 

Etats d’âme à propos du projet d’Elon Musk

Les dernières illustrations de la présentation faite le 27 septembre par Elon Musk à l’IAC* d’Adelaïde me dérangent. On y voit un petit établissement martien qui se transforme très vite en mégalopole comme il y en a malheureusement tant sur Terre. Je veux le dire franchement, je n’aime pas cet horrible objectif.

*l’IAC est l’International Astronautical Congress. Il a lieu tous les ans à la même époque dans un pays différent.  

Pour moi la Planète-rouge est un sanctuaire que l’on doit approcher avec respect et précautions. Il n’est pas question de la saccager comme ont été saccagés tant de territoires à la surface de notre Terre. Nous devons tirer la leçon de nos erreurs et ne pas considérer les terres vierges où nous pouvons nous installer comme de simples supports à la prolifération de notre espèce et aux souillures d’une activité débridée et désordre. Mars comme la Terre est un être vivant que l’on peut approcher et auquel on pourra s’intégrer mais le but ne doit pas être de le détruire pour ensuite aller ailleurs. Où donc, d’ailleurs ? les autres planètes du système solaire sont beaucoup trop inhospitalières et Alpha Centauri n’est pas « la porte à côté »*.

*Je n’ai pas oublié la possibilité d’îles de l’espace comme Gerard O’Neill en rêvait  mais la faisabilité n’en est pas évidente, du moins encore aujourd’hui!

Je comprends bien entendu que le respect de Mars n’aille pas jusqu’au refus de l’explorer et de s’y installer (an contraire!) mais je pense qu’on ne peut pas s’y installer en négligeant l’intérêt scientifique de Mars et qu’on ne peut pas le faire sans attention à l’environnement. L’intérêt scientifique de Mars est évidement celui d’une planète assez semblable à la Terre sur laquelle l’évolution des molécules organiques a pu aller très loin, peut-être même jusqu’à la vie, une autre vie. Il faut pouvoir l’étudier et en tirer tous le profit possible pour l’avancement de notre compréhension de l’Univers ; ce sera passionnant et long ! L’attention à l’environnement est nécessité par l’obligation de ne pas transformer ce nouveau monde en véritable enfer écologique ce qui serait beaucoup plus facile que sur Terre compte tenu de sa pauvreté et de sa fragilité relative.

Elon Musk a beaucoup de qualités et ces qualités nous permettront, je l’espère ardemment, d’aller sur Mars tout bientôt. Mais Mars n’est pas un jouet et la conquête de Mars n’est pas un jeu vidéo. Ce n’est pas parce qu’on est un ingénieur et un homme d’affaires génial qu’il est permis de n’avoir aucune sensibilité écologique / planétologique ou plutôt qu’il soit permis que ce manque de sensibilité s’exprime sans retenue aucune.

Je terminais mon article précédent en remarquant qu’Elon Musk ne tenait aucun compte des recommandations sécuritaires trop strictes du COSPAR* (il ne les considère même pas). Je voudrais cependant qu’à un moment donné, assez vite après l’arrivée sur Mars des premiers vaisseaux d’Elon Musk, un lobby écologiste mondial se manifeste pour contrôler ses projets d’installations afin éventuellement de les infléchir en les humanisant. Il faut trouver, dans notre intérêt à tous, une voie moyenne entre les exigences du COSPAR et l’indifférence d’Elon Musk.

*Le COSPAR est le “Committee on Space Research”. C’est un  organisme international dont le but est d’organiser les travaux scientifiques en relation avec l’exploration spatiale. Il a publié en 1964 les premières recommandations relatives à la protection des “corps célestes”. Sa politique de protection planétaire (COSPAR Planetary Protection Policy) doit être appliquée par ses membres (les institutions scientifiques des grands pays capables d’accéder à l’espace) depuis 1984. Voir mes articles à ce sujet: 1 et 2.  

Dans son fameux triptyque des années 1990 (« Mars la rouge », « Mars la verte », « Mars la Bleue »), l’auteur de science-fiction américain Kim Stanley Robinson, imagine que, très vite après les débuts de la colonisation, le problème abordé aujourd’hui se pose, avant d’être résolu de manière violente. Dans cette perspective qui est peut-être inéluctable, je prends déjà parti. Je suis contre l’effacement de ce qui fait la particularité de Mars par rapport à la Terre, contre la terraformation. Je suis pour que Mars reste une terre largement vierge, peu peuplée et propre, un modèle et un espoir pour ceux qui seront restés sur Terre. Je veux aller sur Mars et y aller avec d’autres pour y ancrer une nouvelle branche de l’humanité mais je suis et je resterai toujours un « Rouge »*. Mars est notre seconde chance, ne la gâchons pas !

*terme désignant les opposants à la terraformation dans le roman de Kim Stanley Robinson.

Image à la Une: l’aboutissement du rêve d’Elon Musk (image crédit SpaceX) .

Image ci-dessous (crédit SpaceX): seconde phase du visuel de la colonie imaginée par Elon Musk (précédant “l’Image à la Une” dans sa présentation). Vous voyez la différence entre “trop” et “assez”.

N.B. Ces illustrations sont évidemment symboliques et ne doivent pas être “prises au pied de la lettre”. Cependant la dernière (celle de la mégalopole) traduit une intention inquiétante.

Elon Musk confirme : son premier vaisseau spatial atterrira sur Mars en 2022

Le 28 septembre à Adelaïde (Australie) dans le cadre du 68ème IAC*, Elon Musk a fait le point sur l’avancement de son projet annoncé il y a un an de créer une colonie terrienne sur Mars. Le public n’a pas été déçu. L’objectif de 2022 pour l’atterrissage des premiers vaisseaux (cargo), est confirmée. Le premier vol habité devrait avoir lieu lors de la fenêtre suivante, en 2024.

*International Astronautical Congress

Cette année, certains tests nécessaires pour atteindre ces objectifs ambitieux ont été effectués avec succès, d’autres sont en cours. (1) L’énorme réservoir d’oxygène liquide (cryogénique) en fibre de carbone (1000 m3) a résisté à la pression nécessaire plus marge de sécurité. (2) Le moteur « raptor » dont 31 exemplaires doivent équiper le lanceur « BFR » (pour « Big Fucking Rocket » !), peut donner l’impulsion nécessaire pour le temps nécessaire pour la mise en orbite basse terrestre (« LEO ») et à l’atterrissage sur Mars. (3) Le système de récupération du lanceur a fonctionné 16 fois de suite sans échec (sur la fusée plus petite en service actuellement, « Falcon 9 »). (4) L’automatisation de la manœuvre de rendez-vous en orbite (qui sera nécessaire pour le remplissage des réservoirs avant le saut vers Mars) est en cours avec les vaisseaux-capsules Dragon-1 qui desservent l’ISS. Elle se déroule correctement. La prochaine étape, qui conduira à l’automatisation totale, doit se faire en décembre de cette année avec le vaisseau Dragon-2. (5) La technologie de protection thermique par bouclier contre les températures extrêmes que le vaisseau devra supporter pendant les rentrés atmosphériques, est également testée avec les Dragons.

Par rapport au projet martien présenté l’année dernière il y a deux différences importantes. Le lanceur BFR avec son vaisseau sera plus petit que l’ITS (« Interplanetary transport System »), 106 mètres de hauteur et 9 mètres de diamètre au lieu de 127 mètres et 12 mètres. Compris dans ces dimensions, le vaisseau proprement dit, « Mars Transit », sera à peu près de même hauteur (48 m / 49,5 m) mais plus fin (9 mètres au lieu de 17 mètres). Surtout le lanceur proprement dit sera nettement plus petit (58 mètres au lieu de 77 mètres). Le groupe moteurs sera donc nettement moins puissant (31 moteurs raptors au lieu de 42). Le résultat c’est que la poussée sera de 5.400 tonnes (au lieu de 13.000 tonnes !) pouvant emporter 4400 tonnes (au lieu de 10.500 tonnes !). Le vaisseau ne pourra donc monter que 150 tonnes en orbite basse terrestre (LEO) au lieu de 550 tonnes. Cette réduction de puissance est très importantes mais le Saturn V qui a permis les missions Apollo sur la Lune et qui était jusqu’à présent le plus gros lanceur, ne pouvait lever que 135 tonnes. La nouvelle configuration (complétée par 6 moteurs au lieu de 9 pour la partie vaisseau du système) permettra quand même d’emporter, comme précédemment, 100 tonnes ou 100 passagers plus leur support vie à la surface de Mars. Après l’arrivée sur l’orbite basse terrestre, le vaisseau sera réapprovisionné en carburant (méthane et oxygène) pour lui permettre de donner l’impulsion pour atteindre Mars (au moyen de quatre BFR tankers). Une fois l’impulsion donnée, le BFR lanceur retournera sur sa base et sera réutilisé. La partie vaisseau continuera seule vers Mars et pourra en repartir avec l’impulsion de ses seuls moteurs car la gravité martienne est seulement d’un tiers de celle de la Terre (vitesse de libération de 5 km/s au lieu de 11,2 km/s). La poussée pourra lui permettre de remporter jusqu’à 50 tonnes sur Terre.

Les conditions de voyage seront assez confortables puisque le volume pressurisé du vaisseau sera de 825 m3 soit plus que celui d’un A380). Les passagers pourront disposer de 40 cabines (pour 2 ou 3 personnes) et d’espaces communs assez vastes.

La deuxième différence par rapport au projet présenté en 2016 c’est que le système lanceur plus vaisseau sera non seulement 100% réutilisable mais aussi universel. Elon Musk veut simplifier, pour rationnaliser, modulariser, produire en chaîne, afin de réduire les coûts. A terme, il n’y aura plus de Falcon 9, de Falcon Heavy (dont le premier vol n’aura lieu qu’en décembre !) ou de capsule Dragon mais un seul lanceur et un seul vaisseau (version cargo ou habitable). Cette structure unique pourra être utilisée pour n’importe quelle mission dans l’espace, soit mise en orbite de satellites de quelque taille que ce soit (10 fois Hubble !), soit récupération de satellites en fin de vie, soit missions vers d’autres destinations dans l’espace (Lune !) et même vols intercontinentaux sur Terre. Elon Musk a conclu sa présentation en montrant que n’importe quel point de la Terre serait accessible en moins d’une heure. Avec cette versatilité, le coût unitaire des lancements quels qu’ils soient, vont plonger. Elon Musk estime qu’il coûtera moins que celui du Falcon 1 pourtant aujourd’hui le moins cher et qui ne peut lever que 0,7 tonnes en LEO. La réutilisabilité a déjà donné à SpaceX un avantage compétitif extraordinaire. La croissance du nombre de ses lancements est exponentielle. En 2020 la société devrait réaliser 20 lancements et en 2018, 30 lancements soit la moitié de tous les lancements effectués dans le monde. Les grandes agences (dont l’ESA) vont souffrir !

Sur ces bases, les perspectives financières sont bonnes et le rêve devient possible. Les deux vaisseaux cargos de 2022 rechercheront des sites où la glace d’eau sera exploitable, vérifieront les risques (radiations ou microbes martiens), mettront en place les équipements pour produire l’énergie, extraire les matières premières et l’infrastructure de support vie pour les premiers colons. En 2024 les quatre vaisseaux suivants (deux cargos et deux habités) débarqueront l’usine de production d’ergols (méthane et oxygène) à partir de l’atmosphère et de l’eau martienne et les premiers colons commenceront à construire la première base. Ce sera la première page de l’histoire humaine sur Mars. Je le verrai peut-être malgré mon âge !

NB : vous aurez remarqué que lors de cette conférence, le nom du COSPAR et des règles de précaution biologique ultra-strictes que ce docte organisme international a édictées, n’ont même pas été mentionnés ! A trop demander, on obtient rien.

Image à la Une :  Le premier vaisseau Mass Transit se pose sur Mars (illustration SpaceX).

Lien vers la présentation d’Elon Musk : http://www.spacex.com/mars

Images ci-dessous : le vaisseau Mars-transit et la comparaison des coûts de lancements (images SpaceX)

Lire aussi dans le Temps:  https://www.letemps.ch/economie/2017/09/29/big-fucking-rocket-elon-musk-prepare-conquete-mars

Les éruptions solaires, expression de la puissance de notre étoile

Début septembre, notamment le 6 et le 10, notre père le Soleil était en colère. Il nous a bombardé de flux de radiations intenses qu’on appelle tempêtes solaires. Le 10, il a même envoyé une bouffée de matière ultra chaude (sous forme de plasma) qu’on appelle CME (Coronal Mass Ejection) qui a touché les Amériques (très atténuée!). Cet événement est inhabituel. Il met en évidence que le soleil est un astre qui vit et donc qui varie dans son rayonnement, qu’il est dangereux de par sa puissance, aussi bien que bénéfique, et qu’il ne peut être facilement prévisible.

Le soleil est une énorme boule d’hydrogène et d’hélium, comme 98% de l’univers actuel. En dehors de cette composition chimique, le fait le plus important qui le caractérise est sa masse : 1,9891 x 10³⁰ kg soit 330.432 fois la masse de la Terre. C’est cette masse qui détermine la pression en son centre (on parle de « compression gravitationnelle ») et donc le niveau de nucléosynthèse (par fusion nucléaire) qu’elle effectue continûment. Le soleil étant une étoile moyenne (de type « G2 » dans une classification spectrale progressant selon les lettres  OBAFGKM), cette nucléosynthèse consiste à transformer son hydrogène en hélium (d’autres étoiles plus massives produisent du carbone et, en fin de vie, des éléments plus lourds). Cette fusion dégage de la chaleur (elle est exothermique), de la lumière (diverses longueurs d’onde dont la lumière visible et les UV) et un vent de particules ionisées, principalement des protons (c’est-à-dire des noyaux d’hydrogène privés de leur unique électron).

L’activité solaire est rythmée par des cycles durant entre 8 et 14 ans et de 11,2 ans en moyenne (qui ne sont pas encore totalement expliqués même si on a fait récemment de grands progrès*). Ceci veut dire qu’elle est en principe plus intense en haut de cycle. Cette intensité, qui peut varier du simple au triple, se manifeste par des éruptions plus fréquentes (à partir des fameuses « taches noires »), qui peuvent donner lieu à des phénomènes très violents de CME (comme les 6 et 10 septembre), à l’occasion desquelles de la matière solaire dépasse la vitesse de libération du soleil (617 km/s contre 11,2 km/s pour la vitesse de libération de la Terre). Ils peuvent durer de quelques minutes à une heure ou un peu plus.

*article d’Olivier Perrin dans le Temps du 14 /07/ 2017 .

Les émissions solaires, résultant de l’activité « normale » de notre étoile, nous chauffent et nous éclairent. Si nous n’avions pas plusieurs couches de protection naturelle (atmosphère épaisse, couche d’ozone, champs magnétique déterminant une magnétosphère qui piège les radiations et particules ionisées dans la Ceinture de Van Allen), nous recevrions outre les particules ionisées mentionnées ci-dessus, des UVc (les UV les plus dures) et beaucoup plus d’UVa et UVb ; autant dire que la surface terrestre nous serait impraticable sans scaphandre protecteur, comme l’est celle de la planète Mars et encore plus l’espace profond. Toutefois au cours des tempêtes solaires et ceci d’autant plus qu’elles sont plus fortes, nous subissons des dommages : perturbation des communication, des réseaux électriques et des appareils électroniques. Dans l’espace les particules ionisés peuvent détruire les molécules organiques et causer des lésions dans le corps des astronautes (donc des dérèglements, induisant des cancers, des dommages neurologiques, des maladies dégénératives des tissus ou même la mort par syndrome radiatif aigu). On peut supporter quelques lésions mais pas une abondance de lésions en même temps. Il faut donc se protéger.

L’intensité varie beaucoup d’un événement à l’autre. On remarque en particulier qu’une abondance de taches est beaucoup moins grave qu’une énorme tache. Les Etats-Unis suivent le temps solaire avec leur « SWPC » (« National Oceanic and Atmospheric Administration’s Space Weather Prediction Center »). L’avantage que nous avons c’est que les taches naissent et croissent sur une certaine durée. On peut donc les observer, tenter de prévoir les éruptions et d’évaluer quand elles pourraient nous frapper, en prenant en compte que le soleil tourne sur lui-même en 27 jours (ce qui donne un préavis). L’éruption est directionnelle, mais elle diffuse son jet de radiations ou de particules en spirale (il est donc difficile de savoir quel endroit de la planète elle va toucher). L’inconvénient est que les émissions se déplacent extrêmement vite dans l’espace ; les radiations photoniques, les moins dangereuses, bien sûr à la vitesse de la lumière (300.000 km/s), mais les particules avec masse, les plus dangereuses, moins vite ; le plasma d’une CME à une vitesse de seulement 400 à 800 km/s (il a été freiné au départ par la gravité solaire).

Ce qui est surprenant dans l’événement dont nous venons d’être témoins le 10 septembre, c’est qu’il se soit produit en période de moindre activité par rapport au pic qui devait avoir lieu en 2013 (le cycle de onze ans a commencé en janvier 2008), et aussi que sa force est inhabituelle (événement « X », sur une échelle A, B, C, M, X), le plus fort depuis 12 ans, d’autant plus que le cycle était réputé « calme ».

La leçon à tirer est que nous avons encore beaucoup à apprendre du soleil et qu’en conséquence la science de la prévision des événements solaires est aussi difficile (sinon plus !) que celle des prévisions météorologiques. Il est toujours préférable de savoir le temps qu’il va faire avant de sortir et nous nous apprêtons à le faire beaucoup plus que par le passé puisqu’après les missions lunaires d’il y a quarante ans, nous nous préparons à repartir physiquement dans l’espace profond (au-delà des Ceintures de Van Allen). Ce qui complique la problématique c’est (1) que lorsqu’une fusée est lancée, il n’est pas possible d’interrompre la mission dont elle est le vecteur ; (2) qu’un voyage vers la Lune dure 3 jours mais qu’un voyage vers Mars dure 6 mois ; (3) que dans l’espace profond nous sommes exposés en même temps aux radiations solaires et aux radiations galactiques ; (4) que prises individuellement les particules lourdes galactiques sont beaucoup plus dangereuses que les particules solaires (y compris les protons) ; (5) que lorsque l’activité solaire est forte, elle repousse et nous protège des radiations galactiques ; (6) que la densité des averses de protons lors d’une tempête peut facilement être mortelle à très court terme tandis que c’est plutôt sur la durée que les radiations galactiques (constantes) sont nuisibles ; (7) qu’on peut se protéger d’un bombardement de protons mais qu’on ne peut pas se protéger du rayonnement galactique.

Alors que faire ?

Il vaudra mieux malgré tout voyager pendant les périodes de pics d’activité solaire en espérant ne pas avoir à subir de tempêtes avant d’arriver à destination, sur Mars par exemple (on y bénéficiera de la protection de l’atmosphère martienne qui donnera la même protection que celle dont on bénéficie dans la Station Spatiale Internationale et on peut aussi, comme sur la Lune se mettre sous la protection d’une couche épaisse de régolithe ou dans une cavité du sol). En temps « normal » on pourra toujours porter des gilets antiradiations du type « astrorad »* de la société Stemrad. Si jamais on était surpris par une tempête solaire, il faudrait se mettre en plus à l’abri dans un caisson de sécurité le temps qu’elle passe. Ce caisson pourrait être constitué par un cylindre autour duquel seraient disposées les réserves d’eau et de nourriture. Le noyau des atomes d’hydrogène de l’eau, en fait des protons, ne seraient pas explosés par les projections de protons solaires, au contraire des noyaux d’éléments lourds qui du fait de leur composition (plusieurs protons et éventuellement plusieurs neutrons), généreraient de multiples rayonnement secondaires très agressifs, dont des rayons gamma.

* article sur astrorad daté du 16 /11 /2017 dans mon blog.

Ce risque est une des raisons pour lesquelles, dans l’espace profond il vaut mieux aller sur Mars que nulle part ailleurs (meilleure protection que sur la Lune, sur Phobos ou dans l’espace profond, et voyage de six mois maximum).

Il faut donc, en même temps que nous devons le remercier pour l’énergie dont il nous comble à profusion, toujours se méfier des colères du Dieu Aton.

lien (film de l’éruption) : https://www.youtube.com/watch?v=N4u7Il-U0OI

Image à la Une : éruption solaire du 10 septembre 2014 (catégorie 1,6X) crédit : NASA/GSFC/SDO. NB: l’explosion du 10 septembre 2017 était beaucoup plus forte (9,3X). Image ci-dessous: l’éruption du 10 septembre 2017.

Good-by Saturn!

Le 15 septembre 2017, à 13h55, notre heure en Suisse (11h55 TU), la sonde Cassini s’est abimée dans les nuages de Saturne après avoir étudié la planète géante et ses satellites pendant 13 ans (et 20 ans après avoir quitté la Terre). C’est une destruction volontaire, la sonde n’ayant plus assez de propergol pour manœuvrer et ses pilotes ayant décidé d’éviter qu’elle ne s’écrase “n’importe où” (c’est-à-dire sur la surface d’une des lunes qu’elle aurait risqué de contaminer avec nos microbes terriens). Une des plus belles pages de l’exploration de notre système solaire vient d’être tournée.

La dernière photo est banale et décevante car elle ne dévoile aucun détail, peut-être parce que prise à plus de 630.000 km (un peu moins de deux fois la distance Terre/Lune), elle était trop lointaine. Nous n’aurons pas d’image de la rentrée dans les nuages car dans les dernières heures l’antenne ne pouvait plus être pointée vers la Terre compte tenu des frottements atmosphériques, de plus le temps nécessaire à la collecte de l’information et à sa transmission juste avant que l’antenne ne puisse plus servir, n’était pas suffisant (il n’y avait pas de transmission instantanée possible compte tenu d’une puissance informatique trop faible). L’on ne sait donc toujours pas à quoi ressemble ce monde quand on s’en approche à le toucher (façon de parler puisque ce qu’on voit est l’extérieur d’une couche de nuages de 200 km d’épaisseur). On ne sait donc pas non plus à quelle altitude au-dessus de cette couche de nuages, la sonde s’est désintégrée avant de se consumer. C’est bien dommage et cela donne envie de revenir, n’est-ce-pas !?

Ceci dit nous commençons à bien connaître le système et la planète en particulier, comme le montre le diagramme de sa structure ci-après (crédit: Wikimedia Common) et il reste énormément de données recueillies, notamment les dernières (dans les données il n’y a pas que des images !), à rassembler, à confronter et sur lesquelles réfléchir. Quelle différence entre avant et après cette mission ! On parlera encore longtemps de Cassini et de son abondante documentation.

Ce que l’on sait c’est que Saturne, l’une de nos géantes gazeuses comme Jupiter, Uranus et Neptune, est constituée essentiellement d’hydrogène et d’hélium mais qu’elle a quand même un noyau rocheux qui a une masse de 9 à 22 fois la Terre (beaucoup par rapport à nous, peu en proportion de la masse totale qui fait 95 fois la Terre). Bien entendu, compte tenu de la compression gravitationnelle, l’hydrogène et l’hélium deviennent de plus en plus denses au fur et à mesure qu’on s’approche du noyau (jusqu’au métal !). Les différentes couches de sa structure interne lui permettent, par effet dynamo, de générer une puissante magnétosphère (comme Jupiter ou la Terre).

Mais le plus intéressant, à mon avis, dans le système de Saturne ce sont ses satellites. Encelade petite boule de 500 km de diamètre possède, grâce aux forces de marée générées par Saturne toute proche (170.000 km!), un océan global sous sa croûte de glace. On a d’abord vu à contre-jour des geysers s’en échapper et on a vérifié ensuite qu’il s’agissait bien d’eau, salée (avec peut-être un peu d’ammoniac). Plus important encore, Titan, le plus gros satellite du système solaire avec ses 5150 km de diamètre (plus que la Lune, 3474 km, mais moins que Mars, 6778 km), possède une atmosphère épaisse (1,47 bar en surface, donc plus que celle de la Terre) et outre l’azote (95 à 98,4%), très riche en méthane (1,6 à 5%) et en molécules organiques diverses. Les températures très froides en surface, en moyenne -180°C (Titan est très loin du Soleil) et la pression au sol du fait de la masse du satellite, permettent à ces hydrocarbures d’être liquides, d’où les grands lacs de méthane en surface, surtout près du pôle Nord, et apparemment largement intermittents en fonction des saisons (sur une année de trente ans, du fait de l’inclinaison de 28% de l’axe de rotation). Cette richesse de l’atmosphère a sans doute permis des liaisons entre atomes et molécules et, malgré le froid, permis une évolution vers une complexification importante de ces molécules. On ne trouvera pas la vie sur Titan mais un développement important de la chimie pré-biotique.

La sonde Huygens, de l’ESA, détachée de Cassini à son arrivée dans le système de Saturne en décembre 2004, a pris quelques photos de la planète, en altitude puis au sol, mais elle n’est pas restée longtemps opérationnelle en raison de la rigueur des conditions environnementales (02h20 de descente dans l’atmosphère et 05h30 au sol). On devrait y retourner avec les équipements adéquats. On pourrait naviguer sur une des mers de méthane ou déployer un dirigeable (la portance serait facile compte tenu de la forte densité de l’atmosphère). Imaginez les paysages fantastiques de montagnes de glace d’eau dominant une mer lisse d’un noir intense sous la lumière orangée diffuse des hydrocarbures en suspension!

Cinq missions dans le système de Saturne sont en préparation à la NASA. Elles sont évidemment robotiques car Saturne est très éloignée (1,43 milliards de km du Soleil) et qu’il faut 6 à 7 ans de voyage pour l’atteindre (en fonction de la position respective des planètes). Elles se situent dans le cadre du programme “New Frontiers” qui est conçu pour des projets simples, rapides et peu coûteux (maximum un milliard de dollars, ce qui est peu par rapport à un budget annuel d’une vingtaine de milliards de la NASA, surtout que les dépenses seront étalées dans le temps). L’ESA serait associée à certaines d’entre elles.

NB: les autres projets concernent la collecte d’échantillons au pôle Sud de la Lune, l’étude de la surface de Vénus, l’exploration des satellites troyens de Jupiter, la collecte d’échantillons sur une comète.

Le choix du lauréat (un seul!) doit être fait en 2019 pour lancement en 2025 : (1) la mission “SPRITE” (Saturn PRobe Interior and aTmosphere Explorer) plongerait une sonde dans l’atmosphère de Saturne pour l’analyser pendant 90 minutes (temps de résistance maximum à l’écrasement), qui pour ce faire, serait équipée d’une coque très résistante (que n’avait pas Cassini); (2) la mission « ELF » (Enceladus Life Finder), un orbiteur, effectuerait 10 survols rapprochés d’Encelade en traversant à chaque passage le nuage de matière éjectée par les geysers de son pôle Sud;  (3) la mission “Titan Dragonfly”, serait un drone hélicoptère qui exploiterait la bonne portance de l’atmosphère de Titan pour faire plusieurs sauts qui lui permettraient d’analyser le sol et l’atmosphère (l’énergie serait fournie par un générateur électrique nucléaire, “RTG”); (4) la mission “Oceanus”, un orbiteur, étudierait la formation des molécules organiques complexes dans la haute atmosphère, et la croûte de Titan (épaisseurs et failles) pour connaître les relations entre l’eau liquide du sous-sol et la surface (un “océan” pourrait se trouver sous la croûte de glace qui recouvre le satellite). (5) la mission ELSAH (Enceladus Life Signatures and Habitability) peut-être la même que “Explorer of Enceladus and Titan” (E2T) est encore mal connue (de moi-même, en tout cas!);

Les missions habitées ce sera pour (beaucoup) plus tard en raison de la durée du voyage et des conditions de séjour très dures. Elles réclameraient beaucoup d’énergie une fois sur place car la lumière naturelle est très faible puisque l’irradiance solaire au niveau de Saturne et Titan n’est que de 14 Watt/m2 (contre 1400 au niveau de la Terre et de 490 à 750 au niveau de Mars) et que cette lumière est encore atténuée par une atmosphère épaisse et riche en particules. Il y fait aussi très froid. On pourrait théoriquement y installer des éoliennes mais cela suppose un transport de masse que pour le moment on est bien incapable de réaliser. Il faudrait aussi trouver une huile (ou équivalent? boue locale?) qui ne gèle pas à -180°C et mettre au point un dispositif qui puisse débarrasser les pâles et le mécanisme des hydrocarbures qui pleuvent en surface !

Image à la Une: Dernière photo reçue de Cassini. Elle date de 21h59 le 14 septembre. La distance à Saturne est d’environ 634.000 km (moins de deux fois la distance Terre/Lune). Crédit : NASA/JPL-Caltech/Space Science Institute.

Ci-dessous: Saturne dans toute sa splendeur, crédit NASA: