Les cylindres de O’Neill pour aller vivre toujours plus loin

Je vous ai présenté la semaine dernière les cylindres de O’Neill, que l’on pourrait construire avec les matériaux lunaires pour vivre au point de libration L5 de notre système Terre-Lune. Mais on peut envisager de les positionner plus loin, sans beaucoup plus de difficultés dans la zone habitable de notre système solaire ou même dans la Ceinture d’Astéroïdes, sans doute moins facilement beaucoup plus loin à proximité des planètes gazeuses et de leurs lunes, jusqu’à l’orbite de Pluton, et peut-être un jour de les utiliser comme vaisseaux multigénérationnels pour atteindre une étoile voisine.

A chaque étape les problèmes évoluent et sont de plus en plus difficiles à résoudre mais on peut les considérer.

Commençons par le point de libration (Lagrange) L5 de notre système Soleil-Terre, « ST ». Il est situé beaucoup plus loin de la Lune et de la Terre que le point L5 du système Terre-Lune, « TL » (150 millions de km au lieu de 385.000 km). On pourrait cependant toujours envoyer les paquets de régolithe de la Lune à L2 (TL) et les convoyer ensuite, groupés, en L5 (ST) pour être transformés. En effet à partir de L2 (TL) l’accélération nécessaire serait la même que pour aller en L5 (TL). La seule différence serait le temps nécessaire au voyage mais, dans une succession d’envois, le temps ne compterait pas.

Voyons ensuite les possibilités dans la zone habitable de notre système solaire. On peut envisager un point de libration martien. Plutôt qu’en L5 ou L4 du système Soleil-Mars (SM), très éloignés de la planète (207 à 249 millions de km), il serait plus intéressant de se placer en L1, c’est-à-dire en pleine lumière du Soleil, entre l’astre du jour et la planète, à une distance de 1.000.000 km de celle-ci, environ (avec l’excentricité de l’orbite de Mars, il y aura des variations). A cette distance on pourrait commander presque en direct des robots en surface de Mars (time-lag de moins de 4 secondes, dans un seul sens) et y descendre assez facilement en cas de besoins ou d’intérêt. Il serait plus coûteux en termes d’énergie de se procurer des matériaux martiens que des matériaux lunaires pour les cylindres positionnés en L5 (TL) mais, plutôt que de descendre sur la planète, on pourrait s’approvisionner sur Phobos. Bien sûr L1 est un point instable (pour donner une image, L1 et L2 sont des sommets, L4 et 5 sont des cuvettes) et il faudrait veiller à maintenir le cylindre à son point d’équilibre mais les dépenses en énergie pour le faire seraient faibles.

On peut plus difficilement envisager une localisation dans l’environnement de Vénus car on aura toujours intérêt à se trouver près d’une source de matière première et Vénus n’offre que ses nuages (elle n’aurait qu’un seul astéroïde troyen, à confirmer, positionné en L4). Ce n’est pas rien mais probablement insuffisant. Imaginez que l’on doive remplacer une tôle de la coque du cylindre parce qu’elle a été endommagée par une micrométéorite ! Par ailleurs l’irradiance est très élevée (2600 W/m2, à comparer à celle de l’orbite terrestre 1400 W/m2) et la chaleur ainsi que l’intensité des radiations pourraient poser problème.

Voyons ensuite la localisation dans la Ceinture d’Astéroïdes. Sur le plan des matériaux, ce serait comme placer un colibri dans un jardin de fleurs. Les constructeurs de cylindres auraient l’embarras du choix. Ils disposeraient de tous les éléments chimiques, y compris le carbone, et aussi de glace d’eau. Par ailleurs la force de libération pour quitter un astéroïde est extrêmement faible puisque sa masse est également très faible. La seule difficulté qui commencerait à ce stade à se révéler, serait le faible niveau de la quantité de lumière car l’irradiance solaire à cette distance diminue sérieusement (on passe de 450 à 700 W/m2 sur l’orbite de Mars à 50 W/m2 sur l’orbite de Jupiter). On devrait donc augmenter la taille des miroirs et leur donner une certaine concavité.

Au-delà de la Ceinture d’Astéroïdes, on arrive aux géantes gazeuses. La proximité trop grande de ces planètes pourrait poser un problème de radiations des plus grosses d’entre elles (Jupiter surtout) mais pas aux points de libration et en particulier aux points L4 et L5 qui en plus présentent l’avantage de disposer de matière, les astéroïdes Troyens (particulièrement abondant pour Jupiter). Alors, les résidents du point L5 du système Soleil-Jupiter se sentiront peut-être un peu isolés mais au lieu d’un seul couple de cylindres, on peut en imaginer une dizaine ou plus et donc, à l’intérieur, une grande variété de climat, de cultures, d’activités. Sans oublier que, du fait de leur faible gravité, quitter L5 (ou L4) pour voyager ne sera jamais un problème puisque la seule énergie nécessaire sera pour l’accélération et la vitesse réelle par rapport aux deux points, non pour seulement échapper à une attirance planétaire très forte (pour les missions interplanétaires partant de la Terre, 90% de l’énergie est dépensée pour sortir de l’attraction terrestre). Dans ces voyages les résidents n’iront peut-être pas (fréquemment) jusqu’à la Terre, lointaine, mais ils iront volontiers dans la Ceinture d’astéroïdes ou vers les points L5 et L4 de Saturne.

Au-delà de Pluton « les choses deviennent plus compliquées » à cause du manque de lumière. Gerard O’Neill évalue la distance maximum à laquelle on pourrait établir une colonie de la taille d’Island 1, sphère de 900.000 m2 (plus petite qu’Island 3), à 3,7 jours lumière soit 640 fois la distance Soleil-Terre (« 640 UA ») donc bien au-delà de Pluton (entre 29 et 49 UA), entre la Ceinture de Kuiper (30 à 55 UA) et le Nuage de Oort interne (1000 à 20.000 UA). A cette distance, un miroir convergeant de la surface nécessaire pour fournir une énergie de 100 MW devrait n’avoir que quelques petits microns d’épaisseur (O’Neill parle de quelques longueurs d’ondes lumineuses) pour que sa masse ne dépasse pas du double celle de l’habitat équipé et habité. Cela implique que l’on pourrait, en-dessous des 640 UA, au sein de la Ceinture de Kuiper, construire d’autres iles de l’espace qui seraient tout aussi confortables que celles de la Ceinture d’Astéroïdes (et nécessiteraient un miroir un peu plus petit).

Vastes perspectives donc, qui offrent de la marge à une expansion de l’humanité pendant encore une très longue période.

Cependant, à 3,7 jours-lumière, nous sommes encore très loin de l’étoile la plus proche, Proxima-Centauri qui évolue à 4,25 années-lumière. Alors est-il possible d’envisager d’utiliser une île de l’espace pour franchir la distance, énorme, qui nous sépare ? C’est terriblement tentant mais terriblement difficile. On peut certes voir l’île comme un vaisseau spatial, non pas simplement pour vivre quelque part mais pour y aller. Il n’y a aucun problème théorique à l’équiper de moteurs (la forme du vaisseau importe peu là où il n’y a ni gravité ni atmosphère. Le problème c’est bien sûr l’énergie et le temps, les deux étant d’ailleurs liés. Pour ce qui est de l’énergie, étant donné que jusqu’à atteindre les confins de Proxima Centauri, il n’y aura pas d’énergie solaire (ou plutôt son équivalent, celle de l’étoile Proxima Centauri), la seule solution sera l’énergie nucléaire. Reste la durée ! A 20% de la vitesse de la lumière il faudrait 20 ans pour atteindre Proxima-Centauri et les ressources énergétiques « classiques » embarquées ne permettront pas d’atteindre cette vitesse. A la vitesse la plus élevée qu’aucune sonde humaine ait jamais atteinte (la « PSP », Parker Solar Probe, qui se déplace aujourd’hui à 175 km/s grâce à l’accélération procurée par la gravité solaire) il faudrait 6.711 ans. A la vitesse de 1% de celle de la lumière (3.000 Km/s), il nous faudrait encore 423 ans, ce qui est évidemment toujours trop long. Il faudra donc améliorer notre système de propulsion pour parvenir à 10% soit 42,3 ans. Mais même si nous y parvenons, il faudra quand même deux générations d’êtres humains pour faire le voyage (aller simple !). Pourquoi pas si l’environnement est confortable. Mais se pose quand même le problème des relations entre les passagers du vaisseau (surtout les descendants de la première génération qui n’auront rien demandé) et celui de l’usure des vaisseaux et de ses équipements (la redondance de certains va s’imposer). Ce sont des problèmes pour après-demain mais il est permis d’en rêver et plus encore, d’y réfléchir.

Illustration de titre : la vision d’une Ile de l’Espace par Jeff Bezos. Vue d’artiste, crédit Blue Origin. Le rêve de Jeff Bezos est bien de construire une telle île. Inspiré par Gerard O’Neill, il semble cependant préférer le concept du tore (comme celui de 2001, Odyssée de l’Espace) à celui du cylindre. NB: vous remarquerez la courbure du sol et du plafond de l’habitat dans la profondeur de l’image, et l’éclairage bilatéral.

Références :

Les villes de l’Espace, de Gerard K. O’Neill chez Robert Laffont (1978), traduction de The High Frontier, chez William Morrow & Co (1976).

Space Settlements, a design study, NASA, Ames Research Center 1977.

Liste des publications sur les voyages interstellaires (Interstellar Research Center):

https://www.interstellarresearchcentre.com/papers

Vous verrez que la littérature est extrêmement abondante !

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 10 08

 

Les cylindres de O’Neill, perspective la plus séduisante pour vivre en-dehors de la Terre

Les cylindres de O’Neill m’ont toujours semblé le vecteur le plus efficace pour vivre et nous déplacer loin dans l’espace profond. Les utiliserons nous un jour ? Les défis technologiques qu’ils posent ont été étudiés en détails dans les années 1970/80 sous l’impulsion de Gerard Kitchen O’Neill, professeur de physique à l’Université de Princeton (décédé en 1992). Il « n’avait pas froid aux yeux ».

La réalisation de ces cylindres qui était difficile alors, le serait sans doute un peu moins aujourd’hui compte tenu des progrès de la robotique et de l’informatique mais malheureusement la volonté semble ne plus être présente. Cependant les idées, tout comme les bactéries, ne meurent pas facilement. Si elles ne sont pas agitées donc nourries, elles dorment, tout simplement. Je tente, à ma modeste échelle, un réveil ou au moins un regain d’attention.

Plusieurs versions de cylindres ont été étudiées, sans ou avec le concours de la NASA. La plus spectaculaire et celle dont il faudrait disposer pour vivre « agréablement » sur une très longue période à l’intérieur du système solaire, est celle que O’Neill avait nommé « Island III ». Il s’agit en fait de deux cylindres reliés entre eux, chacun de 6,5 km de diamètre et de 32 km de longueur offrant donc une surface intérieure de 653 km2. Ils sont en rotation (contraire) pour créer une gravité artificielle sur leur surface intérieure.

Ils sont structurés par une armature de poutres métalliques. L’espace intérieur est isolé de l’extérieur par des plaques de métal ou de verre (50 cm de côté pour ces dernières) fixées à un treillis de ces poutres (comme les structures géodésiques) selon six bandes longitudinales d’égales dimensions. Les trois bandes de plaques de métal alternent avec les trois bandes de plaques de verre. Celles de plaques de métal vont servir de support au sol sur lequel évolueront les habitants (326 km2) ; celles de plaques de verre donneront accès à la lumière et à la chaleur du Soleil. Les deux extrémités du cylindre sont fermées, comme une bouteille de gaz, par des demi-sphères métalliques.

La surface intérieure des bandes de plaques de métal est couverte d’une couche de régolithe d’au moins deux mètres qui servira de sol et d’écran aux radiations. L’intérieur est pressurisé à 0,36 bars avec moitié oxygène (0,18 bars) et moitié azote (0,18 bars). De la glace d’eau est introduite en quantité suffisante pour l’eau liquide (et l’humidification de l’air) nécessaire. Il est prévu d’enrichir le sol des éléments chimiques permettant la vie (molécules azotées et plus généralement humus) et des insectes permettant de la maintenir. Le tout doit, bien entendu, être recyclable au maximum des possibilités. L’énergie est solaire. La construction a lieu dans l’espace à partir de matières premières brutes.

Dans la première phase, ces îles de l’espace seraient établies au point de Lagrange L5 du système Terre-Lune, l’une des régions où la force de gravité de la Terre s’exerçant sur une masse quelconque est exactement équilibrée par celle de la Lune, suivant une orbite presque stable (nuance introduite du fait de l’influence du  Soleil) définie par la force de Coriolis. Dans une seconde phase, Gerard O’Neill les aurait installées en L5 du système Soleil-Terre, sur une vaste orbite stable de 800.000 km. Plus tard, il envisageait de les installer au sein de la Ceinture d’Astéroïdes, puis au-delà de Pluton dans la Ceinture de Kuiper…Restons dans le cadre de la première phase.

Points de Lagrange du Système Terre-Lune. Crédit David A. Kring, LPI-JSC Center for Lunar Science & Exploration.

Les plus grands défis sont l’acheminement et la transformation industrielle des matières premières dans l’espace. Dans le plan de phase 1, la matière première serait essentiellement le régolithe lunaire. Ce régolithe serait extrait par des excavateurs robotiques, compacté, déposé dans des conteneurs qui circuleraient sur un rail utilisé comme une « catapulte électromagnétique ». L’accélération du conteneur magnétique (bobine mobile) étant causée par une succession d’électroaimants (bobines fixes). En fin de rail, la charge serait libérée et le conteneur freiné puis récupéré dans une boucle qui le replacerait à l’endroit qui lui permettrait de reprendre une nouvelle charge.

La matière (plusieurs dizaines de millions de tonnes par petits paquets expédiés très vite les uns après les autres) serait envoyée au point de Lagrange L2, parce qu’il est plus proche de la Lune et moins difficile d’accès compte tenu de la nécessaire précision quant à la direction (on peut envisager un guidage par laser) et à la vitesse du tir. A partir de L2, un convoyeur devrait prendre en charge les masses regroupées, pour les apporter en L5 (très peu d’énergie serait nécessaire puisqu’aucune force de gravité ne contrarierait le mouvement).

L’avantage de la Lune comme source de matière est la faiblesse relative de la vitesse de libération, 2,4 km/s. Il serait possible de l’atteindre avec la catapulte. Son autre avantage est la composition chimique de son régolithe puisque notre satellite est constitué de vastes pans de la croûte et du manteau terrestres qui lui ont été arrachés au début de notre histoire géologique (impact de la protoplanète Théia). Le régolithe fournirait donc de l’oxygène (à partir d’oxydes divers), du silicium (le verre et les panneaux solaires), de l’aluminium ou du titane (pour les poutres et les plaques métalliques), et toutes sortes d’autres éléments. A noter que le silicium, l’anorthosite (pour l’aluminium) et l’ilménite (pour le fer et le titane) sont très abondants dans ce régolithe.

L’azote et le carbone seraient fournis par la croûte terrestre, l’eau et l’hydrogène par notre Océan (aujourd’hui on pourrait envisager de la glace d’eau lunaire).

L’énergie utilisée sur la Lune devrait être nucléaire et non solaire compte tenu des nuits lunaires de 14 jours mais elle serait solaire en L2 et surtout en L5 compte tenu de l’ensoleillement permanent dont jouit l’espace profond. La transformation des matières premières serait faite dans l’espace plutôt que sur la Lune compte tenu de la disponibilité constante de cette énergie et compte tenu des contraintes de masse existant sur tout corp générant une gravité importante (on peut envisager dans l’espace de créer, si nécessaire, une certaine gravité par rotation dans les usines).

La lumière pénétrerait dans les cylindres par les bandes de surfaces vitrées mais ce ne serait qu’indirectement, afin de limiter la dureté des radiations. Les cylindres seraient pointés vers le Soleil et de grandes feuilles réfléchissantes d’une taille au moins égale aux bandes de ces surfaces renverraient la lumière reçue vers ces bandes après l’avoir filtrée (en ne réfléchissant que les rayonnements lumineux et infra-rouge). Fixés sur charnières à l’extrémité du cylindre opposée au Soleil, les miroirs s’ouvriraient et se fermeraient plus ou moins et progressivement sur une fraction variable de 24 heures pour restituer les heures, les jours, les nuits et les saisons terrestres.

Afin de maintenir l’orientation vers le Soleil malgré la rotation, les deux cylindres dont les axes longitudinaux seraient parallèles, tourneraient en sens contraire pour annuler l’effet gyroscopique. Une rotation toutes les deux minutes permettrait de restituer une gravité de type terrestre sur la surface intérieure (entre 1 et 0,7 g) sans désagrément (force de Coriolis) pour les habitants. Distants de 80 km, ils seraient liés entre eux à leurs extrémités par des tiges semi-rigides d’une dizaine de cm de diamètre de telle sorte qu’une cohérence soit donnée à l’ensemble (et que les miroirs puissent s’ouvrir). Profitant de leur vitesse de rotation (vitesse tangentielle extérieure de 650 km/h), des véhicules pourrait faire la liaison-passagers entre les deux cylindres en quelques minutes. Comme les cylindres pointeraient vers le Soleil, son image, à l’intérieur, resterait sur une trajectoire linéaire et on n’aurait pas la sensation visuelle de rotation.

La production alimentaire et textiles (fibres) pourrait se faire à l’intérieur des cylindres dans les vallées mais aussi et de préférence à l’extérieur. En direction du Soleil, une couronne de modules de culture serait établie sur un diamètre largement supérieur à celui du cylindre (la gravité pour les végétaux peut être plus faible que pour les êtres humains ou les animaux). Cela permettrait beaucoup plus de souplesse dans les cultures. La séparation des modules permettrait de régler différemment les conditions environnementales (quantité et couleurs de lumière, température, humidité, taux de gaz carbonique et d’oxygène, pression atmosphérique) afin d’avoir des produits aussi diversifiés que possible toute l’année (même si le stockage cryogénique des produits peut également être envisagé). Ils utiliseraient la lumière du Soleil captée par des réflecteurs coniques. Un écran flottant extérieur pourrait réguler l’arrivée de lumière sur les miroirs réflecteurs pour simuler les jours et les saisons. La pressurisation pourrait être moindre que dans l’habitat car les plantes pourraient très bien fonctionner avec une pression atmosphérique de 0,5 à 0,7 bars (altitude 3000 mètres sur Terre). Avec les techniques actuelles de production on peut envisager facilement de nourrir environ 130 personnes à l’hectare (surface donc mais on pourra étager les cultures sur plusieurs niveaux pour mieux profiter du volume). On utiliserait très peu de pesticide car en cas de contamination du cultivar d’un module on pourrait l’ouvrir à l’espace et le stériliser par le vide et la chaleur solaire (encore les miroirs !).

Les cylindres proprement dits seraient utilisés principalement pour la résidence des hommes, avec des maisons, des arbres fruitiers (des abeilles), des jardins.

D’une façon générale, comme je l’ai dit plus haut, l’énergie sera solaire.  A l’autre extrémité, opposée au Soleil, un vaste disque porteur de panneaux solaires procurera l’énergie électrique suffisante à la vie dans le cylindre. Et dans le prolongement de l’axe du cylindre on pourra avoir divers sites industriels (à commencer par ceux qui raffineront les matières premières brutes) utilisant cette énergie, 24h/24h, à l’aide de miroirs.

Les communications, antennes ainsi que les installations de dockings et de sas pour les véhicules venant de la Terre, se feraient à la pointe des cylindres. Les petits véhicules permettant de joindre un cylindre à son jumeau partiraient de panneaux s’ouvrant latéralement dans leur coque.

Comme vous le comprenez à la lecture de cet article, le gros avantage des cylindres est la possibilité qu’ils offrent de choisir, au sol, une gravité satisfaisante pour la vie humaine sans renoncer aux avantages de la microgravité si l’on se rapproche de l’axe de rotation, une température, un rythme de saisons, et d’une manière générale de pouvoir contrôler son environnement beaucoup moins difficilement que sur une planète. On peut aussi penser qu’ils pourraient servir de refuge en cas de catastrophe pouvant survenir sur Terre.

Comme dit plus haut, ces cylindres sont prévus pour évoluer dans l’espace proche mais on peut aussi les envisager pour des voyages lointains. Je vous en parlerai une autre fois.

Illustration de titre : Island-Three, vue d’artiste, Rick Guidice pour la NASA, credit NASA Ames Research Center.

Références :

Space Settlement, a design study, Editée par Richard Johnson, NASA Ames Research Center et Charles Horlow, Colgate University; publiée en 1977 par le Science and Technical Information Office de la NASA.

Les villes de l’Espace, par Gerard O’Neill, publié chez Robert Laffont (1976).

https://fr.wikipedia.org/wiki/Gerard_K._O%27Neill

https://fr.wikipedia.org/wiki/Catapulte_%C3%A9lectromagn%C3%A9tique

https://en.wikipedia.org/wiki/Mass_driver

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 10 08

Lucy in the sky with diamonds

Ce 16 Octobre 2021, à 05h34 en Floride (11h34 chez nous), la NASA vient de commencer une Odyssée de 12 ans qui permettra à l’homme d’observer pour la première fois les astéroïdes Troyens de Jupiter.

Il s’agit d’étudier des astres qui sont les témoins de notre disque protoplanétaire, très peu modifiés par l’histoire complexe de notre système solaire du fait de leur localisation privilégiée. Aller voir les Troyens c’est un peu comme aller se promener dans la Ceinture de Kuiper, au-delà de Pluton, à une quarantaine d’unités astronomiques (UA, distance Soleil Terre) ou comme remonter dans le temps à quelques 4,56 milliards d’années…mais à seulement 6,4 UA (965 millions de km).

Les points de libration d’un système planétaire, qu’on appelle aussi « points de Lagrange » du nom du scientifique français (d’origine piémontaise) Joseph-Louis Lagrange, qui en a conçu l’existence en 1772, sont les points où les influences gravitationnelles des planètes et de leur Soleil s’équilibrent (plus généralement celle de deux gros corps sur une troisième masse relativement négligeable). Il y en a cinq, dénommés L1, L2, L3, L4, L5. Seuls les points L4 et L5 sont stables (si on en est écarté, on s’en rapproche). Les autres sont instables (si on en est écarté, on s’en éloigne). L1 et L2 sont situés dans l’axe du second corps au premier (ici le Soleil), l’un avant, l’autre au-delà, de part et d’autre du second corps et beaucoup plus près de ce dernier que du premier puisque la masse du second est beaucoup plus faible. L3 est situé sur l’orbite du second corps, diamétralement opposé au Soleil (« de l’autre côté »). L4 et L5 sont situés sur l’orbite du second corps, de part et d’autre de lui (l’un en avance, l’autre en retard) au sommet d’un triangle équilatéral dont l’un des côtés est formé par l’axe du second corps au Soleil.

Les planètes ont plus ou moins de Troyen(s). Les plus grosses masses en permettent davantage, Jupiter est la plus riche (5.879 en L4 et 3.448 en L5). Neptune vient en second avec 24 en L4 et 4 en L5, La Terre, Vénus et Mars en ont aussi (un seul pour la Terre en L4, « 2010TK », 300 m de diamètre). Seule Mercure semble ne pas en avoir.  L’histoire du système solaire a été très violente et peut-être beaucoup d’astéroïdes des planètes proches du Soleil ont-ils été décrochés de leur « nid » au cours des pluies d’astéroïdes qui ont parcouru l’espace proche dans les premiers temps.

A noter en effet que ces Troyens ne sont pas forcément tous « nés » sur place. Il se peut que certains proviennent de beaucoup plus loin à l’extérieur de l’orbite où ils se trouvent aujourd’hui. Mais si c’était le cas, ils résulteraient d’un accident (une rencontre avec un objet déjà sur place) dont l’occurrence a dû être très faible puisque la gravité générée par la masse d’un astéroïde est faible. La force d’impact aurait ainsi été de toute façon relativement faible (faible accélération des masses).

A noter que, comme la Ligne de glace du système solaire se situe à l’intérieur de la Ceinture d’Astéroïdes, et que les petits corps, glacés ou non, y ont été joyeusement mélangés, on est certain que les Troyens seront plus purs, c’est-à-dire qu’ils contiennent leurs « volatiles » d’origine. Ils ont donc un intérêt différent de ceux des astéroïdes que l’on peut rencontrer dans notre environnement (les géocroiseurs) et qui sont secs (sans glace d’eau).

Le nom de Lucy, celui du squelette de cette jeune australopithèque découvert en Ethiopie en 1974 qui a été donné à la sonde, veut exprimer le fait qu’en explorant cette zone où l’on a l’espoir de trouver des fossiles de notre histoire très ancienne, on va faire en quelque sorte de la paléontologie spatiale.

Le lanceur de la mission, parti de Cap Canaveral ce matin, est une fusée Atlas V (401) de l’ULA (United Launch Alliance) comme c’est le plus souvent le cas pour les missions scientifiques américaines. Elle est évidemment gérée par la NASA.

La trajectoire est étonnante par sa complexité (voir image de titre). Après son lancement, Lucy doit effectuer deux survols rapprochés de la Terre pour l’accélérer pour qu’elle puisse rencontrer ses cibles troyennes aussi vite que possible. Dans le nuage L4, de 2027 à 2028, Lucy survolera Eurybates (3548) et son satellite Polymele (15094), Leucus (11351) et Orus (21900). Après avoir à nouveau plongé vers la Terre, Lucy passera « de l’autre côté » et visitera le nuage L5. Elle rencontrera alors, en 2033, l’astéroïde double Patroclus-Menoetius (617). Mais, cerise sur le gâteau, en 2025, pour commencer ses observations, Lucy survolera sur le chemin du L4 un petit corps de la Ceinture d’astéroïdes, 52246, que l’on a nommé Donald-Johanson, en l’honneur du découvreur du fossile Lucy. Après avoir observé Patrocle-Ménoetius, Lucy restera sur sa trajectoire et continuera à parcourir les deux nuages ​​troyens tous les six ans. La mission active aura duré douze ans (et je serai malheureusement très, très vieux !).

La sonde a été construite chez Lockheed Martin. Les instruments sont nombreux :

L’LORRI, Lucy LOng Range Reconnaissance Imager, est une camera à haute résolution

L’Ralph est composé de deux instruments, MVIC (Multispectral Visible Imaging Camera), un imageur en couleurs visibles et LEISA (Linear Etalon Imaging Spectral Array), un spectromètre infrarouge qui recherchera les composés organiques, les glaces, les minéraux hydratés; d’une manière générale il permettra de connaître la composition des astéroïdes approchés.

L’TES, Lucy Thermal Emission Spectrometer, détectera en infrarouge les émissions thermiques des surfaces.

Lucy est équipée d’une antenne à grand gain de deux mètres de diamètre. L’antenne servira évidemment d’outil de communication avec la Terre mais aussi à mesurer l’effet Doppler généré par le déplacement des astéroïdes et en déduire leur masse.

Enfin, avec T2CAM, sa « terminal tracking camera » Lucy, pourra repérer les astéroïdes et, dans une certaine mesure, naviguer ou plutôt orienter ses appareils dans leur l’environnement.

Elle pèse 770 kg sans son carburant et 1500 kg avec (il y aura pas mal de manœuvres de modifications de trajectoires). L’énergie pour le fonctionnement interne et les transmissions sera solaire (panneaux de 7,3 mètres d’envergure qui doivent pouvoir fournir une puissance de 504 Watts au plus loin du Soleil).

Après la mise en orbite de parking, la prochaine étape et l’injection vers l’espace profond le 7 Novembre. Bon vol Lucy!

Illustration de titre, le périple de Lucy. Credit: Southwest Research Institute

référence:

https://www.nasa.gov/mission_pages/lucy/news/index

illustration ci-dessous: vue d’artiste de Lucy avec ses panneaux solaires déployés (crédit NASA):

PS: Pour ceux qui ne s’en souviendraient pas, je rappellerais que Lucy reçut son nom de Louis Leakey à cause de la chanson des Beatles qui tournait en boucle sur le site de fouille au moment de la découverte.

Le mouvement SETI, difficultés, beauté et espérance

L’origine

L’intuition que d’autres intelligences habitent le Cosmos est ancienne. Dans les temps modernes, Giordano Bruno, brûlé sur le bucher par l’Eglise catholique en 1600 pour en avoir proclamé sa conviction, en est peut-être l’expression la plus forte et la plus tragique. Mais longtemps on y a crû sans chercher à communiquer avec elles puisque c’était « hors de l’entendement ». Les rêveurs ont commencé à en envisager la possibilité quand Constantin Tsiolkovski a élaboré sa théorie des fusées à la charnière des XIXème et XXème siècles. Mais on était encore loin de mettre en place une organisation pour recueillir des signaux car on n’avait aucune idée de ce qu’ils pourraient être. La découverte, accidentelle, que les astres émettent des ondes radio ne date que de Karl Jansky en 1933 et personne n’a rien fait de ces « ondes cosmiques » jusqu’après la guerre et plus précisément le début des années 1950.

Pour SETI (« Search for Extra-Terrestrial Intelligence »), « tout » a commencé en 1959 par un article paru dans la revue scientifique Nature, dont les auteurs étaient Giuseppe Cocconi et Philip Morrison (Université de Cornell), « Searching for Interstellar Communications ». Cet article intervenait aux Etats-Unis dans un contexte particulier qui était celui des OVNI, les Américains étant traumatisés par la guerre froide, passionnés par le développement de la science-fiction (le film « La Guerre des mondes » d’après HG Wells date de 1953), et la radioastronomie mondiale étant entrée dans une phase de fort développement après une période de « gestation ». La réalisation des premiers grands radiotélescopes date de ces années : Arecibo (terminé en 1963), Green Bank (1958/59), Parkes (opérationnel en 1961), Jodrell Bank (opérationnel en 1957).

Résumant le problème qui était dans l’air du temps, l’interrogation d’Enrico Fermi, « Where are they ? » remonte à 1950 et l’équation de Frank Drake, à 1961. Il y avait, à l’époque, peu de doute (pour ne pas aller jusqu’à dire « aucun ») sur le fait qu’« ils » existassent, le seul problème était comment établir un contact.

Dans ce contexte psychologique, à défaut de pouvoir les rencontrer lorsqu’ils nous visitaient, puisqu’ils semblaient nous éviter, il paraissait logique de chercher à capter une manifestation de leur vie à sa source même, donc provenant de leur propre monde. Mais l’Univers est vaste. Il fallait donc réfléchir et s’organiser pour avoir le maximum de chances de réussir.

Les modalités du contact

Les télescopes exploitant la lumière visible n’étant pas assez puissants pour nous permettre de voir les planètes hors du système solaire, on se tourna vers les émissions-radio cosmiques, nouvellement découvertes, qui semblaient les seules susceptibles de transmettre beaucoup plus loin une information précise et chargée de sens ou, dans un premier temps, structurées de telle sorte qu’elles apparaissent artificielles. Il fallait ensuite que l’émission puisse arriver jusqu’au sol de la planète (la nôtre et la leur) en supposant que la leur avait a priori, comme la nôtre, une atmosphère qui faisait écran à une bonne partie du spectre électromagnétique. Il fallait ensuite envisager une bande de fréquences qui soient relativement faciles à émettre avec le minimum d’énergie, et qui soient susceptibles d’un maximum de cohésion sur les longues distances. Il fallait ensuite que la puissance de l’émission soit suffisamment forte pour être perçue ou les instruments suffisamment sensibles pour l’identifier.

Cela impliquait d’abord une distance qui ne fut pas trop grande. Les concepteurs du projet voulurent se limiter à une sphère de 1000 années-lumière, estimant que cela correspondrait à la plus lointaine possibilité de réaction à l’exploitation des mines d’argent d’Espagne par les Romains. Cette exploitation avait en effet occasionné une pollution au plomb sans précédent, qui n’aurait certainement pas pu échapper à des observateurs (ou des guetteurs) attentifs (qu’on supposait évidemment beaucoup plus capables technologiquement que nous). Ils auraient pu en prendre connaissance mille ans après le début de l’exploitation et leur réaction aurait mis mille ans additionnels à nous parvenir. Par ailleurs, il fallait que les fréquences ne puissent être confondues ou troublées ni avec celles de l’étoile dont dépendait la planète (impossible, à l’époque, à distinguer de l’étoile, même à courte distance) ni avec celles des zones les plus denses de la Galaxie. Enfin la bande ne pouvait être qu’étroite puisqu’on supposa que les extraterrestres devraient privilégier la puissance du signal avec une énergie disponible forcément limitée (une émission de la puissance de celles que pouvait émettre le radiotélescope d’Arecibo, 1013 watts, pourrait être captée par un récepteur d’une sensibilité de 10-26 watts à la distance de 1000 années-lumière). C’est pour cette raison qu’on choisit la bande qui englobe le « trou d’eau », c’est-à-dire les longueurs d’ondes qui dans le segment « UHF » (Ultra Hautes Fréquences) des micro-ondes se situent entre 18 et 21 cm (entre 1420 et 1666 mégahertz), 18 cm étant la longueur d’ondes du radical hydroxyle et 21 cm celle de l’hydrogène (les deux donnent de l’eau). En effet cette bande constitue une fenêtre « claire », moins polluée par le bruit galactique que le reste du spectre électromagnétique aisément captable.

L’historique

La progression depuis les années déjà lointaines du démarrage du mouvement SETI, malgré les vicissitudes qui expliquent en partie ses multiples formes, montre la difficulté de maintenir cette activité à la marge de la science mais aussi l’intérêt du public et des scientifiques, du moins aux Etats-Unis.

La première application fut le programme Ozma mené en 1960 (200 heures) par Frank Drake avec le télescope de Green Bank (partie du réseau National Radio Astronomy Observatory). Il était orienté vers Tau Ceti et Epsilon Eridani et focalisé sur une seule longueur d’onde : 1420 MHz. Elle ne donna aucun résultat mais fut l’occasion de la première réunion « SETI » en 1961 (celle au cours de laquelle Frank Drake, lança sa fameuse « équation »).

Dans la décennie qui suivit, aucune recherche nouvelle n’eut lieu aux Etats-Unis mais l’URSS leur « répondit », selon les habitudes de compétition alors « en vigueur » entre les deux blocs. Leurs recherches, sans résultat, furent exposées à un congrès animé par Nikolaï Kardachev, qui eut lieu en 1964 à l’Observatoire de Byurakan en Arménie (Kardachev est par ailleurs l’auteur d’une classification des types de civilisations extraterrestres supposées, cette supposition reposant, comme il était commun à l’époque, sur la croyance ferme qu’il existât de telles civilisations).

Puis, pendant les années 1971/72, vinrent les programme Ozpa (9 étoiles, 13 heures) et de 1972 à 1976 Ozma II (674 étoiles, 500 heures). Ces programmes furent également sans succès.

En 1974, on voulut pratiquer SETI « dans l’autre sens », pour dire « On est ici », et on envoya un message aux extraterrestres à partir d’Arecibo. Ce message est maintenant quelque part dans l’espace à 48 années-lumière de chez nous et nous n’avons obtenu aucune réaction.

Entre 1973 et 1995, l’Université d’Ohio, prit le relais avec son radiotélescope « Big Ears » (radiotélescope de 52 m de diamètre). Au cours de son programme, le 15 août 1977, l’astrophysicien Jerry Ehman, capta une émission baptisée ensuite « Wow ! ». Son signal était 30 fois plus fort que le bruit de fond galactique et il nous parvint sur une bande très étroite (moins de 10 kHz), précisément située sur la longueur d’ondes de 21 cm. Il semblait que ce fut exactement ce qu’on cherchait ! Malheureusement elle ne dura que 72 secondes, durée contrainte par la largeur de la fenêtre d’observation et la rotation de la Terre. Il fut impossible après d’en retrouver la suite, tout comme il fut impossible de localiser sa source car il n’y avait aucun objet notable dans la région d’émission. Wow ! est le regret éternel des astrophysiciens spécialisés. A tout hasard on a renvoyé une réponse en 2012 avec le radiotélescope d’Arecibo. Aujourd’hui on attend la réponse à la réponse !

Pendant cette période de la fin du XXème siècle la NASA marqua son intérêt pour le projet, avec Bruce Murray du JPL qui fondera la Planetary Society en 1980 avec Carl Sagan et Louis Friedman. Mais la relation entre les promoteurs de SETI et la NASA ne parvint pas à s’établir durablement, principalement à cause du Sénat américain. Finalement l’Institut Seti fut créé en 1984 comme association à but non lucratif (avec contribution NASA à partir de 1988 pour quelques petites années), par Thomas Pierson, ingénieur en astronautique. Thomas Pierson fut un directeur extraordinaire, portant et développant l’Institut par la force de son énergie, sa puissance de conviction et sa compétence en organisation pendant presque 30 ans (jusqu’en 2012). C’est lui qui trouva les soutiens financiers nécessaires quand les subsides de la NASA s’arrêtèrent en 1993. Mais l’Institut n’est pas le seul pôle de direction du mouvement. A côté, le « Centre de recherche SETI » de l’Université de Berkeley, le « BSRC », gère les programmes SERENDIP, SEVENDIP, NIROSETI ou SETI@home. L’astronome Jill Tarter est, comme Pierson pour l’Institut, l’âme du BSRC. C’est elle qui a inspiré l’astrophysicien Carl Sagan pour l’héroïne de son très beau livre Contact, l’un des chefs-d’œuvre de la science-fiction.

SERENDIP, « Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations » a son origine dans le BSRC. Elle tire sa « matière première » dans les données recueillies, mais non utilisées, par toutes sortes d’autres programmes astronomiques.

SEVENDIP, « Search for Extraterrestrial Visible Emissions from Nearby Developed Intelligent Populations » est un programme qui a « tourné » entre 1997 et 2007. Il a plus ou moins été remplacé par le suivant :

NIROSETI, « Near-InfraRed Optical Search for Extraterrestrial Intelligence ». Ce programme fonctionne avec le Nickel Telescope (Californie) opérationnel en 2015, en collaboration avec le Projet Breakthrough Listen. Il s’intéresse aux émissions provenant de la frontière du visible et de l’infra-rouge (l’infra-rouge est moins occulté que le visible par les nuages de gaz et les poussières).

SETI@home, lancé en 1999, utilise la puissance de calcul des ordinateurs privés partout dans le monde qui, reliés entre eux, constituent un processeur virtuel de très grande capacité, pour analyser le flux de signaux radio que lui transmet le BSRC.

En 1998, l’Université Harvard (Paul Horowitz) rejoignit la recherche SETI et entreprit d’utiliser le rayonnement optique avec un télescope dédié. L’idée était de capter non pas une image mais un rayonnement laser qui pourrait effectivement transmettre beaucoup d’informations, jusqu’au sol. En 2006, le télescope OSETI (« Optical SETI) à Oak Ridge dans le Massachussetts lui fut affecté, avec le soutien financier de la Planetary Society et de l’Institut SETI.

En 2007 des fonds privés permirent à SETI l’utilisation d’un nouveau radiotélescope qui lui est propre. Riche de 42 antennes implantées en Californie, l’Allen Telescope Array, est financé par Paul Allen, le co-fondateur de Microsoft. L’opérateur est l’Université de Berkeley puis, à partir de 2014, Siri International.

En 2015, Youri Milner fondateur de Breakthrough Initiatives, a lancé Breakthrough Listen avec 100 millions de dollars. Il utilise les télescopes de Green Bank et Parkes, ainsi qu’une équipe de chercheurs de l’Université de Berkeley.

Aujourd’hui

Aujourd’hui SETI est un joyeux mélange d’institutions, de départements d’universités, de fondations privées orbitant autour de deux organes principaux, l’Institut SETI et le BSRC. Le mouvement utilise toutes sortes de radiotélescopes, télescopes, certains comme Arecibo ou l’Allen Telescope Array, intensément, d’autres sur des tranches horaires plus ou moins importantes, d’autres encore comme sources de données recueillies dans le cours d’autres observations. On a élargi aussi la bande de fréquences, allant de 1000 à 10.000 Mhz (la longueur d’ondes de la molécule d’eau) puis récemment à 15.000 Mhz. On travaille simultanément sur une multitude de fréquences et des mécanismes automatiques permettent de revenir automatiquement sur un signal anormal (leçon tirée de Wow !).

Les financements suivent cahin-caha. Ils proviennent aussi bien de généreux donateurs anonymes, que de personnalités (Carl Sagan, Paul Allen, Yuri Milner), que de programmes universitaires, notamment à Berkeley, que de sociétés évoluant autour de la NASA, de la National Science Foundation US, de sociétés, de « simples » particuliers. Mais il y a des « accidents ». En avril 2021 le financement de l’Allen Telescope Array (qui a besoin de 1,5 millions par an) a été interrompu, faute d’argent.

Par ailleurs les instruments vieillissent ! Dans la nuit du 30 novembre au 1er décembre 2020, à Arecibo, la plateforme d’instruments dont le foyer vers lequel les ondes radio reçues étaient réfléchies, s’est effondrée sur la surface de l’antenne parabolique suite à une rupture de câble. Elle pesait 900 tonnes ! Les dégâts sont considérables (mais une collecte a aussitôt commencé pour les réparer).

Signe des temps, le radiotélescope chinois, FAST, est, lui, devenu opérationnel fin 2019. Son diamètre possible est de 500 mètres contre 300 pour Arecibo. Il occupe, comme ce dernier, une cuvette naturelle aménagée. Il est évidemment « très moderne ». Sa surface est déformable robotiquement pour corriger son aberration de sphéricité. Sa sensibilité est trois fois celle d’Arecibo. Sa plage de collecte va de 70 MHz à 3 GHz (la recherche SETI n’est qu’un de ses objets, parmi d’autres).

Le nouveau radiotélescope gigantesque en développement, SKA, Square Kilometer Array, qui doit représenter une surface de collecte de 1 km2 est évidemment un projet d’intérêt et certainement il comprendra des programmes SETI. A noter qu’à l’origine on avait surnommé l’Allen Telescope Array, le « One Hectare Telescope ». On voit le chemin parcouru ! Les développements de l’informatique et de la science des télécommunications sont passés par là.

L’espérance

La recherche SETI malgré les vicissitudes se porte toujours bien. Pas plus que le premier jour nous n’avons de résultat ; nous ne savons toujours pas « où ils sont » et « pourquoi ils ne communiquent pas avec nous » mais nous ne sommes pas découragés et nous persévérons.

Le contexte a évolué et on sait maintenant qu’il n’y a pas de petits hommes verts sur Mars. On sait aussi que leur existence « ailleurs » n’est pas si évidente ou normale qu’on le pensait en 1959. On a encore réalisé la difficulté de la recherche, car non seulement il faut regarder dans la bonne direction mais il faut regarder au bon moment dans la mesure où les émissions pourraient ne pas être en continu dans notre direction ou parce qu’elles auraient pu ne pas encore commencer ou se seraient déjà éteintes. Avec le temps, l’activité de la recherche SETI a débordé du cadre strict de la recherche de vie intelligente et s’intéresse aussi aux formes de vie élémentaires et aux conditions dans lesquelles Elle a pu apparaitre. Ce phénomène serait visible dans l’atmosphère des planètes observées mais leur détection est très difficile.

Il ne faut pas se moquer de cette persévérance. Il est normal que nous cherchions à savoir et que nous fassions tout ce que nous pouvons pour comprendre. L’interrogation, la poursuite de la recherche même en dépit de la déception, sont des qualités éminemment humaines. Il faut soutenir la recherche SETI.

Illustration de titre : vue de l’Allen Telescope Array. Photo : SETI Institute

SETI Institute: https://www.seti.org/

BSRC:  https://seti.berkeley.edu/FAQ.html

https://www.seti.org/thomas-pierson-1950-2014

https://spacenews.com/cutbacks-curtail-seti-institute-search-alien-radio-signals/

Rapport d’activités de l’Institut SETI (10 Septembre 2021) : https://www.seti.org/q2-2021-activity-report-seti-institute

https://fr.wikipedia.org/wiki/Search_for_Extra-Terrestrial_Intelligence

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 09 11

Sommes-nous seuls dans l’Univers ? Paradoxe de Fermi, Equation de Drake…et autres

Equation de Drake : si N>1, il y a au moins une autre vie intelligente et communicante que la nôtre dans l’Univers !

L’interrogation est ancienne. En 1950, le physicien Enrico Fermi partageait un repas avec des collègues physiciens et, dans le contexte des OVNI, la discussion porta sur les raisons pour lesquelles on ne parvenait pas à obtenir de preuve sérieuse de l’existence des « autres ». En 1961, l’astronome fondateur de SETI, Frank Drake, proposait une mise en équation de cette interrogation (image de titre). En 1975 l’astrophysicien Michael Hart présentait un peu différemment les hypothèses à prendre en compte.

Avec le temps et l’accroissement des connaissances, la prise de conscience évolue et la formulation de l’interrogation également, en se faisant plus pertinente. La réflexion actuellement la plus complète semble être celle de Stephen Webb avec son ouvrage « If the Universe is teaming with aliens, where is everybody? » (2002), la dernière proposition, « where is everybody ? » reprenant les termes de Fermi (mort en 1954) « where are they ? »…mais on reste toujours sur les mêmes problématiques dans la même incertitude.

Equation de Drake

Revenons sur la fameuse formule de Drake. Regardons les variables choisies par l’auteur mais notons tout d’abord qu’elle date d’une époque où l’on n’avait pas encore observé d’exoplanète (le haut fait de Michel Mayor et Didier Queloz date de 1995) et où l’on n’avait pas encore pris conscience de la variété de toutes les conditions à remplir pour passer de la matière inerte à la vie.

R*        nombre d’étoiles qui se forment annuellement dans notre galaxie ;

fp          fraction de ces étoiles dotées de planètes ;

ne         nombre de planètes potentiellement propices à la vie, par étoile ;

fl          fraction de ces planètes où la vie apparaît effectivement ;

fi          fraction de ces planètes où apparaît la vie intelligente ;

fc          fraction de ces planètes capables et désireuses de communiquer ;

L          durée de vie moyenne d’une civilisation, en années.

Pour moi cette liste n’a aucune utilité puisque nous n’avons absolument aucun moyen de répondre aux termes « fl » et « fi ». Mais reprenons le détail des différents termes :

« R* ». Le fait que des étoiles nouvelles se forment chaque année dans notre galaxie me semble sans rapport avec le sujet. Que des étoiles nouvelles se forment, prouve simplement que le creuset galactique continue son œuvre mais ne dit rien sur la probabilité que ces étoiles nouvelles soient porteuses de vie plus que les autres. Avec R* on est dans la croyance que le nombre apporte une solution à un problème. Je trouve cet argument extrêmement faible car il faut au moins deux éléments pour dire ou envisager sérieusement « plusieurs ». Comme l’écrivait mon lecteur « Martin » en commentaire d’un article précédent de ce blog (le 03/09/21), ce n’est pas parce qu’on a trouvé des kangourous en Australie qu’il devrait y en avoir au moins quelques-uns dans le reste du monde (à part dans les zoos, bien entendu !).

Le terme « fp » est du même ordre (la solution recherchée, par le nombre !). On sait évidemment aujourd’hui que les étoiles sont toutes entourées de planètes, du moins depuis plusieurs milliards d’années (c’était encore une spéculation à l’époque de Fermi et de Drake).

Le terme « ne » est plus sérieux. Il est pertinent mais il est beaucoup trop général. En tout cas la présence de la planète dans une zone habitable est une condition nécessaire même si elle n’est pas suffisante.

Le terme « fc » sort du sujet puisqu’on recherche des civilisations intelligentes et communicantes, pas des dauphins (même si, bien sûr, la vie intelligente mais non-communicante est un préalable à la vie intelligente et communicante).

Le terme « L » est une remarque pertinente sur la durée de vie d’une civilisation au regard des durées extrêmement longues dans le contexte desquelles elles se situent. Nous communiquons par radio depuis cent ans seulement et sans doute nos émissions antérieures à 1960 ne pourraient-elles être captables par une civilisation extraterrestre (jusque-là, elles ne sortaient pratiquement pas de l’atmosphère terrestre). Par ailleurs, nous ne savons pas si nous survivrons longtemps en gardant les capacités de communication que nous avons développées à ce jour.

Deux observations générales peuvent être faites après considération de ces différentes variables :

(1) Elles sont comme des poupées gigognes, une succession d’inconnues dont la suivante qualifie la précédente. Si bien que si l’on ne peut répondre à l’une, l’interrogation posée par la suivante n’a pas de sens. Au stade actuel, on ne peut s’avancer au-delà de « ne ».

(2) Le sous-jacent non exprimé mais présent de la formule de Drake semble être que, s’il y a des planètes bien situées par rapport à leur étoile, il doit y avoir de la vie et au bout d’une certaine évolution, de la vie intelligente et communicante. C’est l’application d’un principe dit « de médiocrité » qui repose sur beaucoup de simplification et sur un automatisme supposé du processus biologique.

Hypothèses de Hart

Les hypothèses de Hart prennent le problème « de l’autre côté », en fait celui d’Enrico Fermi (pourquoi ne les avons-nous pas encore rencontrés ?) :

(1) il se peut que la probabilité d’apparition d’une civilisation technologiquement avancée soit très faible, si bien qu’un univers de la taille du nôtre est nécessaire pour qu’elle ait une chance de se produire une fois (mais beaucoup moins probablement deux) ;

(2) il se peut que les extraterrestres existent mais que, pour une raison ou une autre, la communication et le voyage interstellaires soient impossibles ou ne soient pas jugés souhaitables ;

(3) il se peut que la vie existe ailleurs, mais en des lieux rendant sa détection difficile – par exemple dans des océans protégés par une couche de glace, organisée autour d’évents hydrothermaux ;

(4) il se peut enfin que les extraterrestres existent et nous rendent visite mais d’une manière indétectable avec les moyens techniques actuels.

Franchement, je préfère cette formulation (selon les termes de l’article de Wikipedia) plus « modeste », à celle de Drake même si je n’adhère absolument pas à la dernière hypothèse de Hart (4) qui me semble un peu « complotiste ». Quant à l’avant-dernière (3) je pense qu’elle ne peut permettre de préjuger qu’un jour ces êtres vivants seront capables de communiquer en dehors de leur milieu, même s’ils peuvent atteindre le niveau d’intelligence des baleines.

Comme vous l’avez compris je fais partie des sceptiques et suis partisan de l’hypothèse « Rare Earth » exposée en 2000 par le paléontologue Peter Ward et l’astrobiologiste Donald Brownlee et défendue encore en 2009, en Suisse, par André Maeder, professeur en astrophysique de l’Université de Genève, dans son livre dont je recommande vivement la lecture : « L’unique Terre habitée ? », publiée chez Favre (2012).

Pour moi la vie n’est possible que sur la base de l’atome de carbone et il a fallu un certain nombre de milliards d’années pour que des étoiles suffisamment massives en aient produit suffisamment par leur nucléosynthèse. Mais la complexité nécessaire de notre environnement chimique ne s’arrête pas au carbone car le corps des animaux vivants est un cocktail extraordinairement riche en éléments divers. Peut-être le Soleil et son système appartient-il à la première génération qui puisse satisfaire ce critère de variété.

Nous avons vu ces dernières semaines que ni les naines-rouges, ni les étoiles géantes ne peuvent avoir été des hôtes de l’aboutissement du processus de vie à la vie. Si l’on se réfère aux étoiles de type solaire ou proches, on doit probablement exclure les systèmes à étoiles multiples ou ceux des systèmes à étoile unique où s’est formé un jupiter-chaud. Il faut aussi compter sur la présence de beaucoup d’eau liquide. Or, du fait du rayonnement très fort des jeunes soleils, les planètes en zone habitable (en deça de la limite de glace du système) sont, par nature, pauvres en élément légers, dont la vapeur d’eau. Une bonne partie de cette eau doit donc résulter d’un apport extérieur, fourni par des astéroïdes provenant d’au-delà de la limite de glace du système, ce qui suppose un événement rare comme celui de notre rebroussement de Jupiter ou le passage déstabilisateur d’une autre étoile dans l’environnement très proche de la première.

Si l’on se situe ensuite sur une planète habitable d’un système comparable à celui du Soleil, il faut regarder en face la difficulté de reproduire le processus prébiotique puis biologique qui a conduit jusqu’à nous. A l’origine, les principaux obstacles ont été les suivants :

Passage de la matière inerte à la matière vivante. Pour le moment nous n’avons aucune indication que ce passage ait été facile. Il n’a pu se produire à une certaine époque, que dans des conditions environnementales qui ont vite disparu (eau, température entre la congélation et l’ébullition, pression atmosphérique moyenne, radiations « tamisées », pH de l’eau très différents du pH du sol au fond des océans, proximité d’un gros satellite permettant un balancement des marées très important).  N’oublions pas que tous les êtres vivants (par définition terrestres) on le même LUCA (Last Universal Common Ancestor). Ce LUCA a vécu il y a environ 4 milliards d’années et aucune autre souche n’est ensuite apparue pour venir ajouter ses gènes à sa descendance.

Passage des procaryotes aux eucaryotes. Il n’est survenu qu’après plus de deux milliards d’années. Il a été démontré qu’il est extrêmement improbable. Archées et bactéries devaient plutôt se détruire mutuellement que fusionner (tout comme aujourd’hui). Leur endosymbiose a eu lieu, une fois, parce qu’une archée a trouvé un moyen d’absorber dans son cytoplasme, sans la détruire, un type de bactérie capable de respirer l’oxygène, poison pour la quasi-totalité des êtres vivants à l’époque mais dont le pourcentage dans l’atmosphère avait considérablement augmenté du fait de la prolifération des cyanobactéries dont l’oxygène était le rejet métabolique. Cette endosymbiose effectuée, les chimères résultantes, nos ancêtres eucaryotes, ont eu un avantage considérable sur les formes de vie concurrentes puisque l’oxygène est le meilleur oxydant possible.

Passage des eucaryotes unicellulaires aux animaux. C’est uniquement du fait de cet accident permettant l’utilisation de l’oxygène, que des cellules ont pu se réunir pour former les organismes pluricellulaires. Cependant le passage ne s’est produit que plus d’un milliard d’années après les premiers eucaryotes, comme quoi il n’était pas évident. Là encore des assemblages de cellules indépendantes ont évolué pendant très longtemps pour acquérir des spécialisations qui très lentement sont devenues génétiquement reproductibles. Mais les premiers animaux, les vendobiotes, il y a quelques 600 millions d’années, n’étaient que des sortes de méduses.

Je ne continuerai pas l’histoire mais toute cette évolution a été difficile et lente et a résulté non seulement d’une adaptation à l’environnement mais aussi d’accidents planétaires et d’interactions multiples.

Enfin notre situation est précaire. Nous en avons bien pris conscience depuis quelques temps après avoir réalisé que notre vie même avait une action sur notre environnement, comme lui sur nous. Il en est de même des autres civilisations (éventuelles). Elles peuvent être apparues et avoir disparu, ne laissant derrière elles que l’équivalent de nos araignées et de nos rats au milieu d’amoncellements de débris de toutes sortes. Si nous ne sommes pas dans le créneau de temps où une émission partie pendant une période ou l’expression était possible chez eux et captable aujourd’hui par nous, nous ne saurons jamais rien de leur existence.

SETI, the Search of Extraterrestrial Intelligence, est la seule réaction que nous pouvons avoir pour systématiquement rechercher un message ou plutôt un signal émanant de manière évidente d’une autre civilisation. Les personnes qui y travaillent ne sont assurées d’aucun succès dans leur entreprise mais nous devons les soutenir. Je vous en reparlerai prochainement.

Illustration de titre : l’équation de Drake, crédit image, University of Rochester (N.Y.).

Liens:

https://www.journaldugeek.com/dossier/extraterrestre-contact-paradoxe-fermi/

https://www.amazon.fr/Universe-Teeming-Aliens-Where-Everybody/dp/0387955011

https://en.wikipedia.org/wiki/Fermi_paradox

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 09 11