Peut-on envisager une solution technologique au problème de l’exposition aux radiations lors de voyages interplanétaires ?

Je passe aujourd’hui la parole au Dr. Pierre-André Haldi, Ing.-physicien EPFL retraité :

Parmi les épouvantails que certains dressent sur le chemin de l’exploration humaine de la planète Mars et au-delà, le risque engendré par une longue exposition aux rayonnements cosmiques et solaires occupe une place “privilégiée”*. Au point de se demander si le voyage vers Mars en particulier est réalisable sans mettre gravement en danger la santé des équipages. Il s’agit-là bien sûr d’une position extrême et passablement exagérée si l’on considère qu’il a été évalué1 que la dose de radiations à laquelle serait exposé un astronaute lors d’une mission martienne de deux ans et demi (6 mois aller, 6 mois retour, et séjour de 18 mois sur la planète rouge) l’exposerait à un risque accru de développer un cancer mortel d’à peine 1 % sur une période de 30 ans suivant son retour sur Terre, faisant passer ce risque de 20 % sans cette exposition (estimée être de 500 millisieverts environ) à un peu moins de 21 %.

*N.B. : Je ne m’étendrai pas ici sur la nature et la qualité de ces rayonnements, le sujet ayant déjà été traité à maintes reprises sur ce blog par Monsieur Pierre Brisson. Il suffit de rappeler qu’il s’agit d’une part d’un rayonnement isotrope (GCR : ~ 90% protons, mais aussi autres particules de masses atomiques plus élevées dont les énergies peuvent dépasser de très loin le milliard d’électronvolt, plus des rayons g, c’est-à-dire des photons de haute énergie) provenant d’étoiles et galaxies plus ou moins lointaines, et essentiellement de protons (SPE : d’énergie de l’ordre du million d’électronvolts) d’autre part, émis lors des éruptions solaires.

Reste que la règle absolue en matière de radioprotection est de se conformer en toutes circonstances au principe connu sous l’acronyme anglophone ALARA, pour “As Low As Reasonably Achievable” (“Aussi bas que raisonnablement réalisable” en français ; l’adverbe “raisonnablement” étant particulièrement à relever ici). Cela exclut en premier lieu d’envisager des équipages qui feraient régulièrement la navette entre la Terre et Mars ; pas de “pilotes de ligne” spatiaux ! Même les futurs “colons martiens” (après la phase d’exploration proprement dite) n’effectueront probablement pas plus d’un voyage vers Mars, très éventuellement deux, la plupart ne réalisant même qu’un aller simple.

Même en limitant strictement le nombre de voyages interplanétaires individuels, des dispositifs de protection s’imposent néanmoins. A noter que le problème des radiations cosmiques et solaires ne concerne pas que les hommes, certains équipements sensibles (navigation, support de vie, par exemple) pourraient également être gravement affectés par une exposition excessive à de tels rayonnements. Jusqu’ici, et pour un certain temps encore vraisemblablement, les seuls systèmes de protection contre les radiations considérés ont été de nature passive, c’est-à-dire simplement réalisés par les matériaux de structure des engins spatiaux et, pour ce qui est des futurs vaisseaux habités, une disposition des approvisionnements (en eau en particulier) en périphérie de ceux-ci, ainsi que l’existence d’un abri au blindage renforcé au centre dans lequel se réfugier le temps de laisser passer une éventuelle éruption solaire (les valeurs d’exposition présentées plus haut pour une mission martienne ont été évaluées dans ces conditions).

La protection offerte par les matériaux de structure des futurs vaisseaux interplanétaires peut évidemment être améliorée par un choix judicieux de ceux-ci ou en augmentant leur épaisseur. Cette dernière approche est néanmoins limitée par le souci de ne pas accroître de manière prohibitive la masse  desdits vaisseaux. Une sélection adéquate des matériaux de structure est d’autant plus importante que les particules de très haute énergie des GCR peuvent engendrer de nouvelles particules par collisions avec les atomes d’éléments matériels (parois du vaisseau, astronautes, etc.) placés sur leur chemin ; radiations secondaires qui peuvent être autant, sinon plus encore, dangereuses que les radiations primaires qui leur ont donné naissance.

Formation de radiations secondaires par collisions avec des matériaux de structure

Selon diverses études2, une configuration associant une couche extérieure d’aluminium de 10 g/cm2 à un matériau à haute concentration en hydrogène pourrait être une solution relativement optimale pour se protéger des rayonnements primaires comme secondaires. On peut aussi jouer sur une structuration particulière des matériaux de blindage. Dans cet ordre d’idée, la NASA porte un intérêt tout particulier aux BNNTs – nanotubes de nitrure de bore hydrogénés – qui comme leur nom l’indique sont des nanotubes de carbone, bore et azote, dans lesquels de l’hydrogène est dispersé dans les espaces vides laissés entre les tubes3. Le bore étant un excellent absorbeur de neutrons secondaires, les BNNTs constituent un matériau de blindage spatial idéal.

Le recours à un blindage physique n’est pas la seule option envisageable pour protéger, des particules chargées uniquement, les astronautes et les équipements sensibles pendant un vol interplanétaire. Une piste également explorée est celle de la création d’un champ de force autour du vaisseau. De la même manière que le champ magnétique terrestre nous protège des particules énergétiques venues de l’espace, un champ électrique ou magnétique créé localement peut – s’il est suffisamment intense et configuré de manière adéquate – former une barrière protectrice autour d’un vaisseau spatial ou éventuellement d’un habitat sur une planète ne disposant pas d’un tel bouclier naturel (moins nécessaire cependant dans ce dernier cas, en raison de l’effet d’ombrage offert par la planète elle-même et, le cas échéant, d’une atténuation à travers son atmosphère).

Le bouclier électromagnétique de la Terre et celui, similaire, d’un futur vaisseau/habitat spatial

L’idée en soi n’est pas nouvelle (elle aurait été évoquée dès les années 60), mais on croyait alors qu’une très vaste “bulle magnétique” – de plus de 100 kilomètres de rayon – serait nécessaire pour protéger un vaisseau spatial. Créer un champ à une telle distance aurait nécessité des électroaimants développant une densité de flux magnétique de dizaines, voire de centaines, de teslas**, absolument intransportables dans l’espace.

** Pour fixer l’échelle, les installations terrestres de type tokamak, de bonne taille, utilisées pour les études sur la fusion par confinement magnétique, développent des intensités magnétiques de l’ordre de quelques teslas. La plus importante d’entre elles, ITER, en construction dans le sud de la France, mettra en oeuvre des électroaimants supraconducteurs d’un poids de 10’000 tonnes (!) conçus pour générer une énergie magnétique totale d’une cinquantaine de gigajoules et un champ magnétique maximum de 11,8 teslas.

Or, des simulations informatiques récentes, confirmées par des études expérimentales4, ont montré qu’une “mini-magnétosphère” de quelques centaines de mètres pourrait suffire à protéger efficacement un vaisseau spatial, rendant ainsi cette approche technologique suffisamment compacte et bon marché pour envisager ce type d’application. Ces études s’appuient sur des décennies  de travaux sur la fusion nucléaire qui ont montré que les plasmas sont sujets à toutes sortes de comportements turbulents que l’on ne rencontre pas dans les fluides normaux ; turbulences qui peuvent se produire plus ou moins à échelle humaine, ce que l’on n’imaginait pas auparavant. Les chercheurs de l’équipe du Prof. Ruth Bamford du Rutherford Lab assurent qu’il est possible sur la base de ces nouvelles connaissances appliquées aux flux de particules solaires ou cosmiques de concevoir des “bulles électromagnétiques protectrices” de taille réduite5.

Une telle solution reste néanmoins pénalisante, à la fois par l’énergie et par la masse de matériel et d’équipements supplémentaires qu’elle implique. Pour créer à une centaine de mètres du vaisseau une frontière entre le champ magnétique de protection et celui du champ magnétique de fond d’environ 10-7 tesla (de 5 10-8 à 5 10-6 tesla selon les conditions) d’un vent solaire typique, une intensité de champ à la source de l’ordre de 0,1 tesla devrait normalement suffire (Bamford évalue cependant le champ nécessaire plutôt à 1 tesla). En tenant compte d’effets de persistance du champ dans l’environnement plasma, la puissance électrique requise pour créer un tel champ pourrait se situer environ entre 100 W et 10 kW, mais plus probablement entre 500 W et 5 kW6 (à titre de comparaison, les panneaux solaires de la Station Spatiale Internationale sont capables de générer jusqu’à 120 kW de puissance électrique, en orbite terrestre évidemment).

Les dimensions des éléments fonctionnels nécessaires, selon un article de Universe Today, ne dépasseraient pas celles d’une grande console. La contrainte énergétique mentionnée ci-dessus peut sembler relativement élevée, mais le champ magnétique n’aurait pas à être actif en permanence à son intensité maximale et pourrait être ajusté en fonction de données récoltées sur l’activité solaire.

Ce qu’il faut retenir est qu’envisager un bouclier électromagnétique pour protéger (en partie) les passagers de futurs vaisseaux en transit interplanétaire ne relève plus de la science-fiction mais de technologies qui sont déjà aujourd’hui accessibles, même si elles doivent encore être développées plus avant (voir par exemple les travaux effectués dans cette optique au CERN7).

Références :

1 Robert Zubrin et Richard Wagner, “The Case for Mars“, 1996 ; en français, “Cap sur Mars“,

Editions Goursau, 2004, ISBN 2904105093.

2 Voir p. ex. : Evaluating Shielding Approaches to Reduce Space Radiation Cancer Risks“:

NASA TM-2012-217361, https://three.jsc.nasa.gov/articles/CucinottaKimChappell0512.pdf

3 NASA : “Real Martians : How to Protect Astronauts froms Space Radiation on Mars“:

https://www.nasa.gov/feature/goddard/real-martians-how-to-protect-astronauts-from-space-

   radiation-on-mars

4 Voir : “Magnetic shield could protect spacecraft“, physicsworld, Nov 2008:

https://physicsworld.com/a/magnetic-shield-could-protect-spacecraft/

5 Plasma Phys. Control. Fusion 50 124025

https://space.stackexchange.com/questions/3772/how-much-power-would-a-spacecrafts-magnetic-shield-require

https://www.sciencealert.com/scientists-are-developing-a-magnetic-shield-to-protect-astronauts-from-cosmic-radiation

La science des trajectoires est une science de la navigation

Le voyage interplanétaire est soumis à des contraintes fortes qui obligent à la prise en compte de l’évolution des positions respectives des planètes, des capacités énergétiques de nos lanceurs, des vitesses à la sortie des sphères d’attraction de la Terre puis au retour, de Mars, enfin des vitesses à l’approche de l’une puis de l’autre planète. Je laisse la parole pour en parler à un des meilleurs experts européens, Richard Heidmann* :

Voyager dans le système solaire impose de surmonter, indépendamment de toutes les difficultés liées au maintien en condition et à la sécurité des astronautes, des contraintes fondamentales résultant des grandes distances et des lois de la mécanique céleste. Ces contraintes s’expriment en particulier en termes d’isolement, de durées et de programmation des vols.

Pour bien saisir la nature et la force de ces contraintes, il faut tenter de se représenter deux facteurs essentiels gouvernant les mouvements (des planètes et des vaisseaux) dans le système solaire : l’échelle des distances et la force d’attraction du Soleil. L’étendue des espaces parcourus peut se mesurer aux durées des trajets. A la base, on peut se rappeler que la Terre, bien que circulant à 30 km/s autour du Soleil, met plus de 31 millions de secondes pour en faire le tour (Mars pour sa part circule au voisinage de 24 km/s en un peu moins de deux ans). On comprend que, du moins avec les techniques de propulsion connues, il soit exclu de s’éloigner d’un ordre de grandeur de l’année pour les trajets interplanétaires.

Il est sans doute plus difficile, mais aussi plus essentiel, de « mesurer » mentalement la force d’attraction du Soleil. Ce qui est peut-être le plus parlant, c’est de constater que lorsqu’on s’élance sur une trajectoire de transfert interplanétaire, non seulement on est amené à accroître sa vitesse héliocentrique de façon significative (de l’ordre de 10% pour un trajet Terre-Mars), au prix d’une consommation de propergol très significative, mais, de plus, qu’il est très coûteux en énergie de changer tant soit peu la direction initiale du mouvement, celle de la vitesse de la Terre. En quelque sorte, l’attraction du Soleil maintient les planètes et nos vaisseaux sur des rails !

Ces deux facteurs expliquent pourquoi les trajets sont longs, coûteux en énergie à communiquer aux vaisseaux et ne peuvent être planifiés qu’à certaines époques (les « fenêtres » de lancement). Penchons-nous plus spécialement sur le cas de Mars.

Durée des transferts *

Le mode le plus économique en propergol est le « transfert de Hohmann », qui consiste en une demi-ellipse tangente à l’orbite terrestre et à celle de Mars. La durée est alors de 8 à 9 mois, suivant que Mars se trouve proche de son périhélie ou de son aphélie au moment de l’arrivée (transfert aller) ou du départ (transfert retour). Naturellement, cette manœuvre n’est pas rigoureusement applicable à chaque fenêtre, car il faut que la Terre se trouve à un endroit précis pour que l’arrivée sur (ou le départ de) Mars se produise au moment où la planète passe à un de ces deux points remarquables. Les conditions idéales se reproduisent après un cycle de quinze ans.

Mais pour un aller et retour, la course des deux planètes complique le scénario. En fait, après avoir effectué l’aller, deux possibilités se présentent. Soit on souhaite avant tout réduire la durée totale de la mission ; dans ce cas il faut limiter le séjour à un ou deux mois et s’embarquer pour un voyage de près d’un an faisant plonger le vaisseau à l’intérieur de l’orbite de Vénus et conduisant à une vitesse d’arrivée très élevée. Ce scénario, dit d’opposition, avait la faveur des spécialistes au début de l’ère spatiale, car Mars, alors quasiment inconnue, faisait peur, et on voulait limiter la durée du séjour planétaire, quitte à accroître – très significativement – la durée totale des transferts dans l’espace.

Soit on désire effectuer aussi le retour de façon économique ; dans ce cas on est contraint de prévoir un séjour sur la planète de 18 mois, pour permettre à la Terre de se positionner favorablement. Ce schéma, dit de conjonction, fait désormais l’unanimité ; il ne présente en fait que des avantages : économie de propergol, rentabilisation du séjour d’exploration (une dizaine de fois plus long) et, surtout, réduction conséquente de l’exposition aux rayonnements ionisants, dont le flux est maximum durant les transferts dans l’espace (sur Mars, la moitié est bloquée par le sol, l’atmosphère atténue légèrement et on peut utiliser le régolite pour se protéger). Autrement dit, on a réalisé que, loin d’être le lieu de tous les dangers, Mars était un séjour préférable à l’espace, d’autant plus que les astronautes pourront y disposer d’infrastructures permanentes, d’une protection adéquate contre les radiations et de réserves. On aboutit au schéma classique : aller & retour en 8-9 mois, séjour de 18 mois.

Il existe une variante très sérieusement considérée de ce scénario. Elle consiste à préférer pour l’aller une trajectoire dite « de libre retour » qui, ayant une période de deux ans, permet au vaisseau de revenir vers la Terre sans manœuvre propulsive, offrant ainsi un mode de secours en cas de panne interdisant le déroulement normal de la mission. Dans ce cas la durée du voyage aller est significativement réduite, à environ 6 mois, ce qui est un avantage supplémentaire ; par contre la charge utile est réduite, à iso-masse initiale en orbite de parking terrestre. Plus récemment (2016), SpaceX a prôné, dans son projet « Big Falcon Rocket », un voyage beaucoup plus rapide, considérant un transfert aller réduit à 3 ou 4 mois (suivant la fenêtre). Bien entendu ceci impose une consommation de propergol (« carburant ») plus importante, car la vitesse d’élancement à partir de l’orbite terrestre doit être plus grande. Mais, SpaceX entendant construire un lanceur (lourd) totalement réutilisable et donc, dans son idée, d’un très faible coût opérationnel, la prise en considération de plusieurs vols de ravitaillement du vaisseau en attente de départ en orbite de parking est acceptable. Inutile de dire que les esprits des concepteurs « vétérans » du vol spatial n’étaient pas préparés à un tel choc conceptuel, tant le critère de la masse minimale à lancer sur cette orbite était considéré comme une priorité essentielle pour le coût – et donc l’acceptabilité – du projet. Mais le coût réduit des lancements de BFR réutilisables permettrait de transporter des passagers qui apprécieront la réduction de la durée du voyage, du point de vue agrément mais encore plus pour la réduction de leur exposition aux radiations ionisantes de l’espace.

Le problème du séquencement des vols

Les fenêtres de lancement vers Mars s’ouvrent tous les 26 mois environ, durée que mettent les planètes à se retrouver dans la même configuration autour du soleil (par exemple lorsque les trois astres sont pratiquement alignés, les deux planètes étant du même côté du soleil (opposition) ou à l’opposé (conjonction). Au départ, la Terre est « en retard » sur Mars, mais à l’arrivée (par exemple 6 mois plus tard) elle est « en avance », vu que sa vitesse angulaire vue du soleil est environ deux fois plus grande. La largeur (durée) de ces fenêtres dépend principalement des marges de performance du vaisseau et de son lanceur. Généralement, on la trouve de l’ordre d’un mois et demi. C’est suffisant pour permettre, quand le besoin s’en fera sentir, le lancement de plusieurs vaisseaux à partir du même pas de tir au cours de la même fenêtre ; mais par contre s’en éloigner devient vite coûteux en consommation d’ergols. On ne peut donc lancer que pendant une courte période (~1,5 mois) tous les 26 mois.

Mais ce n’est pas tout. Si on reste dans le schéma « conjonction », il faut stationner, comme on l’a noté, de l’ordre de 18 mois sur Mars avant d’entreprendre un transfert retour, dans des conditions et sur une trajectoire symétrique du transfert aller. La conséquence de la durée totale de 30 mois à laquelle on aboutit est que le vaisseau est de retour après la fermeture de la fenêtre de lancement suivant la sienne (4 mois de retard…). Autrement dit, le cycle opérationnel du vaisseau est porté à plus de 4 ans. Pour assurer un trafic donné, il faudra donc deux fois plus de vaisseaux que si on ne ratait pas la fenêtre suivante. Pour un investissement de cette taille, c’est un sérieux handicap ! En théorie, il existe un moyen de rentrer à temps, c’est d’utiliser une trajectoire de retour du type « opposition ». Mais, on l’a dit, ce mode présente de lourds inconvénients : quantité d’ergols supplémentaire, durée du transfert (11 mois), nécessité de s’approcher du soleil plus près que Vénus et, de surcroît, vitesse d’approche du domaine terrestre fortement accrue, compliquant le freinage atmosphérique…

Conséquences du choix de trajectoire pour la fin du voyage

Dans la comparaison des différents schémas de trajectoire, on ne peut se limiter aux considérations de durée de mission et de quantité de propergol à dépenser. Les conditions de capture par les deux domaines planétaires et de descente finale varient fortement en fonction du schéma et des paramètres choisis (principalement les durées de trajets plus ou moins raccourcies).

Le choix influe sur la vitesse qu’il faut soustraire au vaisseau (DV) et sur la vitesse d’interaction avec l’atmosphère. Le DV détermine soit la quantité de propergol à sacrifier dans le cas d’un freinage propulsif, soit le dimensionnement de la protection thermique dans le cas d’une descente directe ou d’une mise en orbite de parking par freinage aérodynamique (aérocapture). Quant à la vitesse à l’entrée dans l’atmosphère, elle est déterminante pour l’intensité du flux thermique à supporter.

Pour Mars, le souhait de réduire la durée du transfert aller est pénalisant, car au lieu d’aborder tangentiellement la trajectoire de Mars (ce qui minimise la vitesse relative), on coupe celle-ci avec un angle important (cf. l’image ci-dessus), ce qui accroît cette vitesse. Aller plus vite est donc un « luxe » à payer en quantité de propergol à fournir au vaisseau et en dimensionnement de sa protection thermique (sauf si celle-ci sert aussi pour le freinage terrestre, qui est dimensionnant).

La même problématique se présente, amplifiée, pour le retour vers la Terre, qui se fait dans tous les cas à une vitesse supérieure à la vitesse de libération (11 km/s), contre 6 à 9 km/s de vitesse d’entrée dans l’atmosphère martienne. La situation serait particulièrement défavorable si on choisissait un retour du type « opposition » car, comme on le voit sur l’image, l’angle des vitesses est important. Même en se cantonnant au schéma « conjonction », s’éloigner d’une trajectoire type Hohmann, pour réduire la durée du retour, restera une option dimensionnante. Cela pourrait conduire soit à avoir une protection partiellement abradable (admis par SpaceX), soit à fractionner la descente, en faisant une étape sur une orbite très elliptique permettant de dissiper la charge thermique déjà encaissée, avant de procéder à la descente finale. C’est dans ce contexte que l’idée d’une station-relais dans le domaine lunaire trouve place, station où le vaisseau martien pourrait être réapprovisionné…

*Richard Heidmann, diplômé de l’Ecole Polytechnique de Paris puis de l’Ecole Nationale Supérieure de l’Aéronautique et de l’Espace. Il a poursuivi l’essentiel de ses activités professionnelles au sein du groupe SNECMA, dans la propulsion spatiale essentiellement (genèse de la fusée Ariane notamment). Il a exercé diverses fonctions de direction au sein du groupe et notamment celle de directeur Orientation Recherche et Technologie. Sur le plan associatif, il a été cofondateur puis président de l’association Planète Mars (www.planete-mars.com), la branche française de la Mars Society. L’article publié ici a été publié une première fois dans le bulletin trimestriel n°77 de l’association (au mois d’octobre 2018).

Commentaire (Pierre Brisson) :

Pendant des siècles les marins choisissaient la date de leur départ en fonction des alizés ou de la mousson ou encore de la présence de glaces sur leur trajet et déjà, pour s’orienter, ils observaient la position du Soleil et des étoiles. Aujourd’hui pour fixer une date de départ pour Mars, on se soucie des dates de la prochaine fenêtre de tirs en fonction de la position respective des planètes car ce sont ces dates qui déterminent la possibilité du voyage et des charges utiles que l’on peut emporter. Et demain, quand on pratiquera les vols habités, on prendra en plus en compte la date de la dernière tempête de poussière globale, pour éviter une arrivée trop difficile, et le prochain pic d’activité solaire, pour limiter au maximum la dose de radiations que l’on devra supporter. L’esprit est le même : considérer l’environnement naturel pour en jouer au mieux en fonction des capacités de son vaisseau et des risques pour sa propre santé.

Image à la Une: BFR “longnose” (“long nez”) au départ de la Terre, après largage de son lanceur (qui va retourner se poser sur son air de lancement. Vue d’artiste. Crédit SpaceX.

Index L’appel de Mars 18 01 18

 

InSIGHT va ausculter Mars pour nous permettre de mieux la comprendre

Le 5 mai 2018 la NASA a entrepris une nouvelle mission vers Mars. Elle a été nommée « InSIGHT », pour « INterior exploration using Seismic Investigation, Geodesy and Heat Transport ». Comme ce nom l’indique son objet est l’étude de l’intérieur de la planète, ce qui complétera, dans une « troisième dimension », les connaissances déjà acquises sur la surface et l’atmosphère.

* NB: Cet article a été publié une première fois le 1er mai 2018, juste avant le décollage de la fusée Atlas V qui emportait la mission InSight vers son objectif, qu’il atteint aujourd’hui. Cette re-publication a pour objet de rappeler l’intérêt de la mission. 

A 21h00 heure, ce jour, 26 novembre 2018, atterrissage confirmé! Première photo (27 nov.)

La décision a été prise le 20 août 2012 ; le lancement devait être effectué entre le 4 et le 30 mars 2016  mais un problème d’étanchéité de la cloche protégeant l’instrument principal (SEIS) a fait manquer cette fenêtre de tir ; la sonde se posera sur Mars le 26 novembre 2018 (voyage de six mois) et commencera à produire des données scientifiques dès le mois suivant. La mission doit durer 728 jours (708 sols), jusqu’au 06 novembre 2020 soit un peu plus d’une année martienne de 669 sols (688 jours).

InSIGHT est la douzième mission du « Discovery Program » de la NASA qui a été créé en 1992 par Daniel S. Goldin (alors Administrateur de la NASA) pour mettre en application son principe de « faster, better, cheaper ». Les missions de ce programme doivent répondre à une des interrogations posées sur des sujets d’exploration de l’espace profond, par la « Revue décennale » (« Decadal Survey ») du « National Research Council » de la « National Academy of Sciences » des Etats-Unis. La mission Pathfinder (1996) en faisait partie mais aussi les missions Phoenix (poussière martienne), Dawn (pour Vesta et Cérès) et Kepler (pour les exoplanètes). Le budget d’InSIGHT, initialement de 425 millions de dollars, a en fin de compte été porté à 813,8 millions majoré de 180 millions pour les participations européennes, essentiellement de France et d’Allemagne. Ce chiffre est à comparer aux 520 millions de Phoenix ou aux 2,5 milliards de Curiosity. Sous la direction de la NASA, l’équipe scientifique est internationale (comme toujours dans ces missions). Elle comprend des chercheurs des Etats-Unis, de France, d’Allemagne, d’Autriche, de Belgique, du Canada, du Japon, de Suisse (pour l’instrument SEIS, voir ci-dessous), d’Espagne et du Royaume Uni.

Sur le plan astronautique elle ne pose pas de problème car ce sera une répétition de la Mission Phoenix (2007-2008). Le lanceur sera un Atlas V de l’Armée de l’air américaine (76 lancements effectués depuis 2002 dont un seul échec et encore, partiel !) ; même atterrisseur, même masse au sol de 350 kg (contre 899 kg pour Curiosity). Le site choisi dans Elysium Planitia (grandes plaines du Nord) se situe  à environ 4° au Nord de l’équateur, entre le massif volcanique d’Elysium et le cratère Gale (Curiosity). Il offre les conditions idéales pour un atterrissage : un terrain plat, lisse et sans rocher (la qualité de l’interface des instruments avec le sol est capitale).

Indépendamment de la mauvaise surprise d’un gros caillou ou de la pente trop forte d’un mini cratère, la mission est par contre délicate du fait de ses objectifs et des instruments embarqués pour les atteindre. Il s’agit de : (1) déterminer la taille, la composition, l’état physique (solide/liquide) du noyau de la planète; (2) déterminer l’épaisseur et la structure de la croûte ; (3) déterminer la composition et la structure du manteau ; (4) déterminer l’état thermique de l’intérieur de la planète ; (5) mesurer la magnitude, la fréquence et la localisation géographique de l’activité sismique interne ; (6) mesurer la fréquence des impacts météoritiques à sa surface.

De quels instruments s’agit-il ? Outre les « yeux » de deux caméras, il y aura un sismomètre (« SEIS »), une sonde qui doit pénétrer dans le sol (« HP3») et un instrument utilisant l’effet Doppler (« RISE »).

L’instrument principal est le SEIS (pour « Seismic Experiment for Interior Structure »). Ce sismomètre (30 kg de masse au total) a été conçu et réalisé par le CNES (Centre National de la Recherche Scientifique, l’agence spatiale française) avec des éléments d’Allemagne, de Suisse, du Royaume-Uni et des Etats-Unis. C’est le CNES  qui a assuré la maîtrise d’oeuvre de l’expérience et Philippe Laudet, de cette institution, qui en est le chef de projet. Le responsable scientifique (PI pour Principal Investigator) en est Philippe Lognonné (Université Paris-Diderot et Institut de Physique du Globe de Paris, « IPGP »). Il a porté le projet pendant plus de vingt ans avec, jusqu’en 2012, beaucoup d’espoirs d’embarquement déçus (comme souvent hélas compte tenu de la rareté des lancements et de leurs coûts !). Le capteur principal est un appareil à très large bande (« VBB ») c’est-à-dire qu’il pourra capter une gamme très étendue de mouvements (la période des ondes sismiques peut varier de 0,1 à 1000 secondes). Il doit donc, en particulier, pouvoir détecter des mouvements extrêmement faibles. Dans ces cas, forcément intéressants sur Mars, planète a priori peu « vivante », sa sensibilité pourrait être troublée par l’environnement extérieur. On a donc prévu une protection, un « bouclier », nommé « Wind Thermal Shield » (réalisé par le JPL), permettant d’isoler l’instrument des variations thermiques (avec une protection en MLI – « Multi-Layer Insulation » – alvéolaire, utilisant du CO2 martien, l’englobant à l’intérieur du bouclier et jusqu’au contact du sol) ou des vents forts (de par sa masse qui doit le maintenir parfaitement en place). Ce bouclier doit isoler également le sol dans l’environnement immédiat du capteur et ce n’est pas facile. Une enceinte sous vide complète la protection. C’est cette dernière qui ne permettait pas de maintenir le vide et donc la capacité d’isolation, qui n’était pas démontrée en 2016, qui a causé le report du lancement. Les ingénieurs sont à présent satisfaits, avec aucune fuite pendant 9 mois de test à la pression terrestre. On aura donc un instrument très performant, beaucoup plus sensible notamment que ceux qui avaient été embarqués par les Viking en 1976 (plus de 1000 fois pour des ondes de volume de 1 sec. et plus de 100.000 fois pour des ondes de surface de 20 sec.). Le sismomètre de Viking 2 s’était avéré influencé par le vent et il n’avait pu prendre qu’une seule mesure (celui de Viking 1 n’avait pas fonctionné). Une difficulté particulière vient de ce qu’il n’y aura qu’un seul sismomètre à la surface de Mars ce qui empêchera d’utiliser la triangulation pour prendre les mesures des mouvements internes de la planète (ce qui est fait habituellement). Les concepteurs de SEIS comptent pallier cette difficulté par l’utilisation des ondes de surface (verticales) en même temps que de volume (verticales et horizontales). A noter que la participation suisse est importante : (1) c’est l’Aerospace Electronics and Instruments Laboratory (AEIL) de l’institut de Géophysique de l’EPFZ qui a développé l’électronique d’acquisition des données et de commande du sismomètre ; (2) ce seront les spécialistes du Service sismologique suisse (SED) de cette même EPFZ qui analyseront les données pour élaborer un catalogue de sismicité martienne. L’IPGP (France) et le JPL (Etats-Unis) sont eux responsables de la détermination des catalogues de structure interne de Mars.

Deux autres instruments compléteront le dispositif : HP3 (« Heat Flow and Physical Property Package »), une sonde que l’on devra faire pénétrer de trois à cinq mètres en profondeur du sol pour évaluer la chaleur interne indépendamment des fortes variations de surface. Outre les informations sur l’état et les flux de chaleur, elle donnera des indications sur la composition du sol et sa densité. Elle est conçue et réalisée par la DLR (agence allemande de l’Espace). RISE (« Rotation and Interior Structure Experiment ») un instrument de mesure des oscillations de la planète au cours de sa rotation (sous l’influence du soleil et des deux satellites naturels de Mars) à partir de l’observation de l’effet Doppler-Fizeau sur les communications entre InSIGHT et la Terre. Cela doit permettre de connaître la distribution et la composition (solide/liquide, éléments chimiques) des masses internes de la planète.

Sur le fond, on sait que le « problème » fondamental de Mars est sa faible masse. Elle ne représente que 1/10 de celle de la Terre et cela a pour conséquence une chaleur interne moindre puisque cette chaleur résulte d’une part de l’énergie cinétique emmagasinée lors de l’accrétion puis du bombardement météoritique, et d’autre part de la décomposition des matériaux radioactifs qu’elle contient (comme la Terre, Uranium 238 / 235, Thorium 232, Potassium 40). Cette faible chaleur interne n’a peut-être jamais été suffisante pour générer une fluidité du manteau suffisante pour déclencher puis entretenir une tectonique de plaques par convection. Par ailleurs elle n’a pas permis le maintien d’un volcanisme très actif jusqu’à aujourd’hui, même si des volcans ont eu des caldera actives dans les 100 derniers millions d’années. Les dernières manifestations de ce volcanisme ont décru depuis l’époque où il constituait le phénomène planétologique dominant, l’Hespérien / Theiikien, il y a 3,9 à 3,5 milliards d’années. Connaître les différentes couches structurant la planète nous renseignera plus finement sur son histoire et notamment sur la durée probable pendant laquelle ces différents phénomènes ont pu exister ou perdurer. Ce qu’on estime actuellement c’est que, par rapport à un rayon de 3380 km (Terre 6370 km), la croûte aurait environ 65 km d’épaisseur (Terre de 5 km à 100 km) mais avec des différences importantes entre le Sud (Syria Planum 90 km) et le Nord, 3 km sous le bassin d’impact Isidis Planitia ou 10 km sous Utopia Planitia , le manteau 1800 km et le noyau 1700 km (il pourrait être entièrement liquide alors que celui de la Terre comprend une partie solide peut-être indispensable pour générer par frottement un effet dynamo donc une magnétosphère). Il s’agit bien sûr de confirmer ou affiner ces estimations, de définir plus finement les couches intermédiaires et de mieux estimer leur viscosité, de manière à pouvoir faire des comparaisons utiles avec la Terre et aussi comprendre mieux la structure des planètes rocheuses en général. Mars du fait de sa taille n’a pas poursuivie son évolution aussi loin que la Terre et peut nous renseigner sur les étapes intermédiaires de cette évolution.

Avec cette mission, on retombe donc indirectement sur l’étude de l’histoire du système solaire et sur celle des conditions prévalant à l’époque où la vie a pu apparaître (et disparaître ) sur Mars. Insight est le chaînon jusqu’à présent manquant des laboratoires embarqués, qui va nous fournir de nouvelles données auxquels les autres pourront être confrontées pour lever des doutes, faire apparaître des (im)possibilités ou de nouvelles logiques. C’est ainsi que progresse la Science.

Image à la Une: représentation d’artiste de l’atterrisseur InSIGHT, crédit NASA. Vous voyez la cloche de SEIS à gauche et la sonde HP3 qui est enfoncée dans le sol, à droite. Les deux antennes RISE se trouvent sur la plateforme à gauche et à droite (inclinées vers les panneaux solaires).

NB: cet article a été soumis avant publication à Monsieur Philippe Lognonné. Il y a apporté quelques corrections et précisions concernant son instrument.

Le cratère Jezero, objectif de la prochaine mission de la NASA, est un bon choix

La NASA l’a décidé le 19 Novembre, l’objectif de la prochaine mission robotique, « Mars-2020 », sera le Cratère Jezero. Cet objectif représente de multiples avantages pour une mission principalement exobiologique mais les instruments embarqués ne seront peut-être pas tout à fait « à la hauteur ».

Cratère Jezero en fausses couleurs montrant la composition du sol : argiles smectites en vert; carbonates en bleu. Credits: NASA/JPL/JHUAPL/MSSS/Brown University.

NB: Le 26 Novembre au soir (20h50) atterrissage prévu de la sonde InSight de la NASA. Lisez mon article publié lors du lancement, début mai 2018.

Il suffit de regarder une photo du Cratère Jezero pour voir l’évidence : un magnifique delta projeté dans une arène de cratère à l’embouchure d’un puissant court d’eau asséché. Il y a donc eu là de l’eau liquide charriant des sédiments et ce phénomène a été très important car le relief est très marqué (à noter son caractère inversé compte tenu de l’érosion des roches plus tendres autour du delta). Par ailleurs la région riveraine occidentale d’Isidis Planitia est une des plus intéressantes de Mars parce que c’est un endroit où la croûte de Mars est la plus mince (environ 3 km), qu’il y a eu amorce de failles tectoniques (Nili Fossae) et que c’est une des sources possibles des émissions de méthane que l’on a repérées selon un rythme saisonnier, dans l’atmosphère martienne (à confirmer par l’orbiteur TGO et son instrument CaSSIS de l’Uni. Berne). Enfin les analyses spectrométriques du sol menées depuis les satellites orbitant autour de la planète, ont montré que la zone était particulièrement riche en argiles (smectites) et en carbonates (de Magnésium). Ces deux roches témoignent d’une longue hydratation du sol et d’une absorption importante de gaz carbonique atmosphérique par l’eau (comme sur Terre avec le carbonate de calcium). Or l’on peut dater ces formations, compte notamment tenu de la cratérisation, de quelques 3,6 milliards d’années (entre 3,9 et 3,5), ce qui correspond sur Terre à la période où l’on constate les premières manifestations de la vie (premiers organismes fossiles). C’est évidemment l’occasion de chercher si les mêmes causes produisant les mêmes effets, la vie a pu également commencer sur Mars ou alternativement de constater que quelques particularités terriennes ont manqué sur Mars (températures trop basses? absence de Lune et donc de fortes marées? atmosphère insuffisamment épaisse et riche? autre facteur? le simple hasard résultant de l’Histoire ?). En tout cas les argiles ayant la propriété de favoriser les échanges organiques puis de bien conserver les fossiles, le contexte est évidemment idéal pour les recherches exobiologiques.

Le bassin d’Isidis avec au Nord Ouest la région des failles de Nili Fossae. Le cratère Jezero est situé à 18° de latitude Nord. Carte MOLA (crédit NASA).

La mission Mars-2020 quittera la Terre le 17 juillet 2020, lors de la prochaine fenêtre de tirs, et arrivera sur Mars le 18 février 2021, après 7 mois de voyage et avoir parcouru une ellipse de quelques 500 millions de km (ce qui est dans la norme des voyages martiens selon lesquels on parcourt une trajectoire permettant de transporter le maximum de charge utile pour le minimum d’énergie). On se trouve à peu près dans la configuration de la mission MSL (Curiosity) dans la mesure où la masse à déposer sur le sol de Mars devrait être à peu près la même (le corps du rover de Mars-2020 est le même que celui de Curiosity). Les différences, et elle sont importantes, sont (1) que le cratère Jezero est beaucoup plus petit (45 km de diamètre) que Gale (150 km) et (2) que le terrain de l’arène de Jezero semble nettement plus accidenté (notamment rochers, dunes et relief marqué de l’ancien delta). La NASA nous dit avoir amélioré son système d’EDL (Entry, Descent, Landing) et elle devrait pouvoir faire atterrir son rover dans une ellipse d’incertitude moitié plus petite (une dizaine de km dans son petit axe) que celle définie pour Curiosity dans Gale, et utiliser un système de navigation d’approche (« Terrain Relative Navigation ») incorporé à la grue volante (rétropropulsée) lui permettant d’éviter les obstacles qui apparaîtraient au dernier moment.

Une fois sur place, la mission consistera principalement à rechercher des traces éventuelles de vie passée, au-delà des preuves d’habitabilité démontrée par Curiosity. Par ailleurs Mars-2020 rassemblera des prélèvements qui pourront être récupérés par une future mission de retour d’échantillons (« Mars Sample Return »). En effet malgré les performances remarquables des laboratoires embarqués, il est encore impossible de transporter les équipements suffisamment sophistiqués nécessaires à une analyse très pointue et surtout de recréer sur Mars les conditions de travail que l’on peut obtenir dans les grands laboratoires terrestres. Le robot fera donc des choix de roches qui a priori mériteraient une investigation plus approfondie sur Terre (NB : la date de la mission retour d’échantillons n’est pas encore programmée…ce qui est quand même assez frustrant!).

Le rover Mars-2020 et ses instruments. Vous remarquerez l’absence de panneaux solaires. Ce rover, comme Curiosity, fonctionnera à l’énergie nucléaire (Crédit NASA).

Les instruments embarqués sont simplement (et malheureusement) dans la suite de ceux de Curiosity, même s’ils seront plus performants. Ils seront au nombre de sept parmi lesquels, trois seront principalement dédiés à l’identification de marqueurs de vie : PIXL un spectromètre de fluorescence de rayons X ; SHERLOC un spectromètre à rayonnement ultraviolet et SuperCam un dispositif pour analyse spectroscopique induite par ablation laser. PIXL (Planetary Instrument for X-Ray Lithochemistry) identifiera les différents atomes excités par les rayons X émis par l’instrument. Il pourra le faire en séquences sur une toute petite surface et accompagné d’un imageur ce qui permettra de corréler les textures et les apparences avec les compositions chimiques. SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals) sera utilisé pour déterminer la composition élémentaire fine des matériaux. Il sera également accompagné d’un imageur (« caméra contextuelle » du type de MAHLI, actuellement à bord de Curiosity). Le troisième instrument, « SuperCam », du même type que ChemCam (sur Curiosity), fera les analyses à distance de roches vaporisées par laser. Avec ces instruments, on pourra non seulement détecter les éléments chimiques et minéraux avec une sensibilité élevée, mais également produire de véritables cartes chimiques, voir si (et comment) les matières organiques sont rassemblées ou diffuses, et corréler les informations chimiques avec les veines ou les grains de la roche. Le rover sera par ailleurs équipé d’un radar « RIMFAX » (pour « Radar Imager for Mars Subsurface Experiment ») qui pourra visualiser la structure géologique et la nature des roches du sous-sol immédiat (jusqu’à dix mètres).

Tout ceci constitue donc des améliorations importantes par rapport aux capacités de Curiosity. Mais il est quand même décevant qu’aucun système de forage au-delà de la couche de terrain irradiée de surface (les forages de Mars-2020 seront d’une profondeur de l’ordre de 5 cm), ni aucune réaction biologique (du genre de celles embarquées par les Vikings en 1976) n’aient été prévus. Heureusement que ce n’est pas le cas du rover de l’ESA (mission ExoMars) qui doit arriver sur Mars en même temps que Mars 2020. En effet les conditions de surface paraissent, a priori, trop difficiles depuis des milliards d’années (accumulation des radiations) pour qu’on puisse y trouver des vestiges faciles à identifier comme ayant résulté d’un processus de vie même si, encore une fois, on pourra faire de meilleures approximations sur le plan de l’analyse chimique et peut-être visuelle (biomorphes ?).

Le coût de la mission devrait être légèrement inférieur à celui de Curiosity (quelques 2,5 milliards de dollars). Les partisans de l’exploration robotique ne manqueront pas de penser et certainement aussi de dire, à l’occasion, que ces missions d’exploration sont beaucoup moins coûteuses que pourraient l’être les missions habitées (quelques dizaine de milliards). A quoi les partisans de l’exploration par vols habités pourront répondre qu’elles seraient beaucoup plus efficaces (l’homme reste plus intelligent, imaginatif et réactif que les robots). Je reste personnellement déçu qu’un si beau site ne soit pas exploré avec un rover disposant d’un système d’analyse chimique du sous-sol.

Image de titre: Extrait de la Carte MOLA (Mars Orbiter Laser Altimeter) montrant les élévations dans le cratère Jezero. On voit bien le Delta alluvionnaire et le lit du fleuve qui l’a produit. Crédit NASA, cartographie exécutée d’après les données recueillies par l’orbiteur Mars Global Surveyor entre 1997 et 2006.

Index de ce Blog:

Index L’appel de Mars 18 01 18

L’observatoire Pierre Auger s’efforce d’identifier les particules les plus énergétiques de l’Univers

Après avoir évoqué les neutrinos la semaine dernière je parlerai aujourd’hui des RCUHE, autres messagers spatiaux que l’on pourrait qualifier d’exotiques, et de leur observatoire dédié, l’Observatoire Pierre Auger (« PAO » en Anglais).

Un RCUHE, Rayon Cosmique d’Ultra Haute Energie (ou en Anglais, UHECR pour « Ultra High Energy Cosmic Ray ») est une particule accélérée jusqu’à une énergie de 1018eV (soit 1 Exa-électronvolts ou «1 EeV ») ou davantage, alors que l’énergie de la plupart des radiations galactiques, « GCR » (pour Galactic Cosmic Rays), se situe entre 10 MeV (1 MeV = 106eV) et 10 GeV (1 GeV =109eV) et que dans le grand accélérateur de hadrons du CERN on n’a jamais atteint « que » 1013eV. Comme pour les neutrinos, les ondes gravitationnelles, les rayons X durs, les rayons gamma, les scientifiques contemporains, chercheurs et ingénieurs, ont su imaginer un dispositif original et étonnant pour les observer c’est-à-dire les capter et les analyser. C’est encore un sujet d’admiration et d’émerveillement qui devrait satisfaire les esprits curieux. C’est surtout un moyen complémentaire de mieux connaître et comprendre notre univers dans le cadre de ce qu’on appelle l’« astronomie multimessager » qui prend de plus en plus d’importance grâce aux progrès technologiques.

Les RCUHE sont parfois des protons et dans ce cas leur énergie butte sur une limite qui se situe vers 1019eV. Cette limite, dite « coupure GZK », a été théorisée en 1966 par Kenneth Greizen, Gueorgui Zatsepin et Vadim Kuzmin. Au-delà, les protons interagissent avec les photons du Fond Diffus Cosmologique « FDC », ce qui accroît leur longueur d’onde et produit des pions (mésons pi), réduisant par la même l’énergie atteinte. Les noyaux des éléments plus lourds sont également sensibles à cette coupure; ils peuvent subir une photodésintégration. Suivant les sections efficaces d’interaction, la probabilité de survie peut-être moins grande pour certains d’entre eux. En tout état de cause, compte tenu du contenu du « vide » spatial en photons primordiaux, les RCUHE (protons ou noyaux d’autres éléments) ne devraient pas pouvoir parvenir d’une distance plus lointaine que celle de l’horizon GZK, soit environ 300 millions d’années-lumière (100 Mégaparsecs), ce qui limite beaucoup les possibilités d’en recevoir. Parmi les particules qui “passent” le filtre de la coupure GZK certaines ont des énergies énormes, jusqu’à plus de 1020eV. Elles appartiennent à une sous-catégorie des RCUHE, les EECR (Extreme Energy Cosmic Rays) qui sont encore plus rares. L’énergie de ces RCUHE est telle qu’elle ne peut résulter que d’événements catastrophiques extrêmement puissants ou de cœurs de galaxies extrêmement actifs (« AGN » – Active Galactic Nucleus) et, en même temps, qu’elles ne peuvent provenir que de sources relativement proches (même si extragalactiques).

Comme dit ci-dessus, ces particules ultra énergétiques sont rares et elles le sont non seulement en raison de leur interférence possible avec les photons mais aussi parce que les événements qui les génèrent sont exceptionnels, au point que leur occurrence statistique avait été évaluée avant leur recherche spécifique à seulement 1 par km2 et par siècle. La conséquence est que pour les observer il a fallu imaginer des capteurs d’une très grande surface. C’est bien ce qu’on a réalisé avec l’Observatoire Pierre Auger qui « couvre » une surface de 3000 km2. Il a été imaginé en 1992 par Jim Cronin (Université de Chicago, Prix Nobel de Physique en 1964) et Alan Watson (Université de Leeds). Le projet démarre véritablement en 1995 à Paris et la construction en Argentine en 2000. Il s’étend sur un plateau situé à 1400 mètres d’altitude, près de la petite ville de Malargüe, à 400 km au Sud de la ville de Mendoza (il faut de la place et un ciel clair !). Il a été inauguré en 2008 après que les premières observations aient été effectuées (elles ont commencé en 2004 avec une installation évidement réduite à quelques capteurs). Il aura coûté 50 millions de dollars (ce qui est peu de chose comparé au coût d’autres observatoires) à une « collaboration » internationale comprenant les plus grandes institutions scientifiques d’un grand nombre de pays : l’Argentine, l’Australie, le Brésil, la Colombie, la Tchéquie, la France, l’Allemagne, l’Italie, le Mexique, les Pays-Bas, la Pologne, le Portugal, la Roumanie, la Slovénie, l’Espagne et les Etats-Unis (mais pas la Suisse !). En 2015 un nouvel accord a été signé pour dix ans incluant toute une série d’améliorations (« upgrading ») qui constituent le projet « AugerPrime ».

L’observatoire est un détecteur dit « hybride » car il utilise deux modes de détections différents : (1) des détecteurs à fluorescence pour mesurer la lumière émise par les molécules de l’atmosphère excitées par le passage des particules et (2) des détecteurs Tchérenkov qui réagissent à ces mêmes particules atteignant le sol. A noter qu’à ces deux stades ce ne sont pas les RCUHE proprement dites que l’on perçoit mais les électrons, les photons et les muons qui en résultent après leur collision avec les molécules de l’atmosphère ou ceux-là avec l’eau (cf image de titre). Les détecteurs Tcherenkov sont 1660 cuves fermées de 12000 litres d’eau, très pure, dans une obscurité complète, situés à 1,5 km l’une de l’autre. Trois photomultiplicateurs très sensibles placés dans chaque cuve sont prêts à capter l’effet Tcherenkov (causé par le passage dans l’eau de particules se déplaçant plus vite que la lumière dans l’eau) et à le retransmettre sous forme de signaux électriques à un collecteur central (le système d’acquisition va être amélioré dans le cadre du projet AugerPrime). Lorsqu’un RCUHE rentre dans l’atmosphère, il crée une averse de particules secondaires qui « arrosent » un ou plusieurs des détecteurs (jusqu’à cinq ou six). On peut évaluer l’énergie de la particule primaire par la quantité de lumière générée par l’averse, et sa provenance par la différence de temps entre les impacts au niveau des différents détecteurs touchés (différence qui se mesure en nanosecondes). Les détecteurs de fluorescence sont 24 télescopes optiques de 3,6 mètres de diamètres fonctionnant en œil-de-mouche (multi-facettes), regroupés sur 4 sites à la périphérie de l’ensemble des cuves de détecteurs Tchérenkov, de façon à couvrir la totalité de l’atmosphère au dessus de la surface de l’observatoire sur une profondeur de détection de 15 km, sur une bande allant de 0° à 30° d’inclinaison (ils fonctionnent les nuits sans lune).

A ces détecteurs hybrides s’ajoutent plusieurs autres équipements: (1) 3 télescopes à fluorescence allant de 30° à 60° d’inclinaison (pour pouvoir observer le développement complet des averses de particules et notamment celles de plus basses énergies qui se produisent plus haut dans l’atmosphère); (2) AERA (Auger Engineering Radio Array) un système pour mesurer les flashs (quelques dizaines de nanosecondes) d’ondes courtes (bande de 30 à 80 MHz) émis par les averses de particules ; (3) « AMIGA » (Auger Muons and Infill for the Ground Array), deux réseaux enterrés de détecteurs de la composante muonique des gerbes (les muons produits par ces RCUHE peuvent pénétrer dans le sol plus ou moins profondément). Ces réseaux sont en cours de réalisation.

Ce dispositif sera complété dans le cadre d’AugerPrime par une évolution du détecteur de surface avec notamment l’installation de scintillateurs sur chaque détecteur Tcherenkov, pour obtenir une mesure complémentaire des particules contenues dans la gerbe. Pour traiter à la fois les signaux des détecteurs Tcherenkov et ceux des détecteurs à scintillation une nouvelle électronique d’acquisition et de contrôle aux performances accrues est développée (comme indiqué ci-dessus).

En septembre 2017, la Collaboration-internationale-Auger a publié les conclusions des 114.000 événements captés et analysés. Sur ce nombre, plus de 3000 par an ont concerné des événements de plus de 8 Exa-électronvolts (8 x 1018eV), l’origine étant des noyaux atomiques de divers éléments ayant été accélérés à des vitesses très proches de celle de la lumière malgré leur masse. On a constaté que les directions d’arrivée d’un certain pourcentage de RCUHE (E au dessus de 39 EeV) coïncidait avec la position de galaxies à sursauts de formation d’étoiles (« starburst-galaxies ») mais on a dû reconnaître que la plus grande partie de ces RCUHE, quelques 90%, n’a pu être rapprochée d’aucune source. Le problème étant que les noyaux d’atomes lourds sont électriquement très chargés et donc susceptibles  d’être déviés par de multiples objets dotés d’un champ magnétique (et le sont probablement effectivement). On espère que le projet AugerPrime en cours et son rapprochement d’autres observatoires permettra d’ici 2025, de faire des progrès dans cette recherche d’identification.

Il faut noter que les GCR dont font partie les RCUHE dont font partie les EECR, sont aussi une préoccupation pour les voyages spatiaux. On estime que les GCR sont constitués à 98% de noyaux d’atomes et à 2% d’électrons (négligeables sur le plan du danger sanitaire). Les 98% sont eux-mêmes constitués de 88% de protons (dont on peut se protéger assez bien avec des réserves d’eau) et 10% de noyaux d’hélium (un peu plus dangereux). Reste 2% de noyaux lourds HZE (éléments au-dessus de l’hélium) contre lesquels on ne peut pratiquement rien faire sauf ne pas en supporter une dose trop importante (deux ou trois voyages aller et retour sur Mars dans une vie adulte). C’est dans cette dernière fraction que se situe les RCUHE et les EECR. Il faut simplement espérer ne pas en recevoir (ils sont très rares!) ou plutôt ne pas trop recevoir de particules secondaires résultant de leur collision avec les atomes des métaux constituant la coque du vaisseau spatial.

Avec l’Observatoire Pierre Auger on est typiquement dans un processus de progression avec ajustement continu des moyens d’observation et intégration dans un dispositif multimessager. Les autres observatoires terrestres procèdent ainsi autant que possible. La démarche est évidemment beaucoup plus difficile dans l’espace où on a presque toujours obligation de remplacer par un autre, un observatoire d’une technologie dépassée ou mal conçu pour son objet, ou simplement à cours d’ergols ou de liquide de refroidissement. Pour l’Observatoire Pierre Auger les ajustements continueront-ils jusqu’à ce que l’observatoire réponde vraiment au rêve de Jim Cronin ?  C’est important pour connaître notre environnement et mieux évaluer la violence de l’Univers qui nous entoure et qui est aussi la source des éléments chimiques dont nous sommes faits. C’est important aussi pour mieux connaître le milieu dans lequel vont se dérouler les vols interplanétaires habités et, pour commencer, ceux qui doivent nous conduire sur Mars.

NB: Ce texte a été revu et corrigé par Madame Corinne Bérat, responsable du groupe Auger du LPSC (Laboratoire de Physique Subatomique & Cosmologie), Représentante pour la France dans la collaboration Auger. 

Illustration : un RCUHE frappant les molécules de l’atmosphère au dessus de l’Observatoire Pierre Auger. Crédit université de Nova Gorica.

image ci-dessous (1): diagramme des émissions spatiales en fonction de leurs énergies (document IceCube). Vous remarquerez que les RCUHE se trouvent tout à fait à droite de l’échelle énergétique.

image ci-dessous (2): capteur de rayonnements Tcherenkov. Il y en a 1660 sur le site de l’Observatoire Pierre Auger (crédit Observatoire Pierre Auger):

image ci-dessous (3): capteurs à fluorescence (crédit Observatoire Pierre Auger):

image ci-dessous (4): schéma de l’arrivée et de la capture d’un RCUHE.  Auteur: Kubu — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=41117117

https://www.auger.org/

https://www.auger.org/index.php/observatory/augerprime

https://en.wikipedia.org/wiki/Pierre_Auger_Observatory

https://en.wikipedia.org/wiki/Ultra-high-energy_cosmic_ray

et toujours l’index de mon blog:  Index L’appel de Mars

Les neutrinos, un vecteur pour pénétrer les accumulations de matière les plus denses de l’Univers

Au-delà des rayonnements électromagnétiques, à côté des ondes gravitationnelles, les neutrinos nous laissent envisager une exploration de l’Univers au plus près de son origine et au travers de ses masses les plus denses. On commence seulement à les exploiter mais il est vrai que leur découverte est relativement récente. Une de leur caractéristique essentielle, qui constitue à la fois une difficulté et un avantage dans le cas qui nous intéresse ici, est qu’ils interfèrent extrêmement peu avec la matière.

NB: J’ai choisi cette semaine de m’éloigner de Mars pour orienter l’attention de mes lecteurs vers un horizon plus lointain. L’exploration de Mars n’est en effet qu’une étape dans le déploiement de notre espèce dans l’espace. Sur Mars comme sur Terre, l’appel de l’espace continuera à nous solliciter. Vouloir maintenant aller sur Mars, c’est non seulement vouloir réaliser une prouesse technologique et vivre une aventure exaltante, c’est aussi exprimer un état d’esprit, celui de se tourner vers l’espace et d’oser vouloir y accéder par la porte entre-ouverte. Si nous le faisons, nous ne nous arrêterons pas et si nous le faisons, nous continuerons à explorer l’espace par tous les moyens, y compris bien sûr par tous ceux que nous offre l’astronomie. 

Mais retournons aux neutrinos.

Comme souvent, c’est une anomalie, constatée lors de l’observation de la désintégration radioactive dite « désintégration β » à l’occasion de laquelle un électron (désintégration β« béta moins ») ou un positron (désintégration β+ « béta plus ») est émis, avec entre autres violations apparentes, celle du principe de conservation de l’énergie, qui a conduit en 1930 le physicien Wolfgang Ernst Pauli (enseignant à l’ETHZ et Prix Nobel) à théoriser l’existence d’une particule électriquement neutre et de masse extrêmement faible (équilibrant la réaction, conservation de l’énergie, de la quantité de mouvement et du spin), qui un peu plus tard sera baptisée neutrino et l’anti-particule correspondante, antineutrino. Le neutron libre par exemple se désintègre spontanément en un proton en émettant un électron et un antineutrino. Le neutrino est un lepton (« léger » en grec) comme, en particulier, l’électron ou le muon (voir ci-dessous); le lepton étant un fermion (particule de spin demi-entier) comme le quark, et non un boson (comme le photon),  qui a la particularité de n’être pas sensible à l’interaction-forte, c’est-à-dire la force qui assure la cohésion des noyaux atomiques (il appartient donc à la matière dite « non-baryonique »). Il fut découvert expérimentalement en 1956 dans l’environnement d’un réacteur nucléaire et depuis on progresse, difficilement, dans sa connaissance. On a constaté qu’il y avait plusieurs familles (on dit des « saveurs », au nombre de trois) de neutrinos. Ce n’est qu’en 1998 qu’une expérience mettant en évidence son « oscillation » (changement de saveurs) a conduit à déduire qu’il a une masse non nulle mais extrêmement faible (elle est nécessaire pour le phénomène d’oscillation, mais n’a pu être mesurée faute d’une sensibilité suffisante des appareils de mesure). Il se déplace donc à une vitesse proche de celle de la lumière, et son interaction avec la matière est extrêmement limitée, principalement par interaction-faible et, marginalement, par gravité.

Les sources de neutrinos sont nombreuses. Ils proviennent du fond des âges (création de l’univers, les plus nombreux), d’évènements catastrophiques (supernovæ), ou de réactions nucléaires diverses (dans le Soleil, les centrales nucléaires ou les grands accélérateurs terrestres de particules). Son énergie dépend de la force et de la distance de l’événement générateur mais elle peut atteindre des niveaux extrêmement élevés (jusqu’à quelques péta-électronvolts, « PeV », 1 PeV = 1015 eV). Ses propriétés pour nous transmettre des informations sur l’univers sont, du fait de leurs sources et du fait de leur nature, très intéressantes. En effet le neutrino est stable (c’est une particule élémentaire) ; il provient de réactions nucléaires primaires et non de leurs conséquences électromagnétiques ; il est neutre électriquement et n’est pas dévié par les champs magnétiques, il donne donc des indications très précises sur la direction de son origine ; sa « section-efficace » d’interaction avec la matière est très faible et il peut donc provenir de zones beaucoup plus profondes que les photons ou du voisinage de masse de matière ultra-dense (trou noir, Univers antérieur à la Surface-de-dernière-diffusion).

On tente depuis la fin du XXème siècle de développer des capteurs de ces particules élusives et on commence à y parvenir. Par chance, l’eau offre une propriété qui peut être exploitée en vertu de l’effet Tcherenkov. Cet effet produit un cône de lumière bleutée, très faible (qui nécessite pour être observée dans ce contexte qu’on l’amplifie par des photomultiplicateurs), l’équivalent pour la lumière, du bang supersonique (onde de choc). Il est causé par les muons (particules massives et chargées faisant doublet avec les neutrinos de saveur muonique) résultant des rares collisions des neutrinos avec la matière (protons) car la vitesse de ces muons résultant des collisions, est supérieure à la vitesse de la lumière dans l’eau, milieu diélectrique (NB : mais bien sûr pas de la vitesse de la lumière dans le vide). La trace de l’effet Tcherenkov causé par ces muons permet de connaître la direction, la « saveur » et l’énergie des neutrinos qui les ont causés.

On a donc construit des capteurs consistant en vastes conteneurs d’eau pure (liquide ou solide, légère ou lourde, c’est-à-dire contenant un pourcentage élevé de deutérium) comme Super-Kamiokande (Japon) qui utilise l’eau « normale » ou Sudbury (Ontario, Canada) qui utilise l’eau lourde. Ce sont pour certains de véritables observatoires, surtout IceCube en Antarctique, accessoirement ANTARES dans la Méditerranée (au large de Porquerolles) mais des installations plus anciennes ont également enregistré le passage de neutrinos cosmiques (Super-Kamiokande et IMB pour ceux de la supernova 1987a)

IceCube qui se trouve à proximité de la base américaine Amundsen au Pôle Sud géographique, est un ensemble fantastique de 1 km3 constitué de 5160 boules transparentes de 35 cm de diamètre placées par groupes de 60 sur 86 lignes de détection, dans des puits verticaux creusés dans la glace, entre 1,45 km à 2,45 km de profondeur (travaux réalisés de 2005 à 2010). Ces boules sont des « Digital Optical Modules » (« DOMs ») sphériques, orientés vers le centre de la Terre car elles recherchent les neutrinos qui l’ont traversée en venant du Nord (la Terre sert de filtre pour éliminer toute radiation parasite et de réacteur pour offrir un nombre suffisant de protons par interaction avec des neutrinos). Elles sont équipées de photomultiplicateurs et détectent les flashs de photons causés par les muons se déplaçant à grande vitesse, générés par les quelques neutrinos à haute énergie qui ont pu interférer avec la matière à l’intérieur de la Terre et qui tracent des cônes Tcherenkov jusqu’à environ 250 mètres de longueur. Les flashs sont convertis en signaux électriques et envoyés en surface vers la base de collecte et d’analyse des données. La profondeur est nécessaire pour atteindre, outre l’obscurité absolue que l’on aurait évidemment plus près de la surface, une glace suffisamment dense (il ne faut pas que les bulles d’air perturbent le tracé des ondes lumineuses) et obtenir un écran contre les radiations parasites (GCR). Le projet n’a coûté « que » 270 millions de dollars, financés à 90% par la National Science Foundation américaine. La « collaboration » scientifique internationale (40 institutions) qui exploite IceCube est dirigée par l’université du Wisconsin-Madison.  L’expérience méditerranéenne ANTARES (Astronomy with a Neutrino Telescope and Abyss Environmental Research), fonctionne selon le même principe (profondeur identique) au large de l’ile de Porquerolles, mais elle a de moindres capacités car elle est plus petite (12 lignes de 400 mètres ancrées au fond de la mer et portant chacune 75 capteurs). Les travaux ont été terminés en 2008. Les détecteurs regardent évidemment vers l’intérieur de la planète (donc l’hémisphère Sud). Son objectif est principalement les neutrinos de 10 GeV à 100 TeV. C’est une collaboration de nombreuses institutions et laboratoires, principalement français et italiens.

Le 22 septembre 2017 (étude publiée dans Science en juillet 2018), IceCube a observé un neutrino d’une énergie très élevée (290 Tera électronvolts – « TeV » = 1012 eV, à comparer aux 13 TeV atteints par le Grand collisionneur de hadrons du CERN) dont on a pu tracer l’origine jusqu’au blazar TXS 0506+056 situé à 5,7 milliards d’années-lumière, à proximité de la Constellation d’Orion, déjà connu pour son activité par les télescopes exploitant les ondes électromagnétiques. C’était la première observation d’une émission extragalactique de neutrinos couplée à une émission de radiations galactiques de haute énergie, y compris rayons gamma. Cela a permis de compléter notre connaissance de cette source importante de rayons cosmiques dont le jet relativiste pointe directement vers notre région de la Voie-Lactée, d’apprécier sa puissance et d’envisager que les rayonnements gamma et les émissions de neutrinos aient une cause commune.

Les observatoires à neutrinos vont ainsi fournir une nouvelles branche à l’astronomie, comme les télescopes opérant dans le spectre électromagnétique et comme les capteurs d’ondes gravitationnelles Virgo, Ligo et bientôt LISA. En combinant leurs données, on considérera la gamme d’observations d’une même source dans le cadre de ce qu’on appelle une astronomie « multimessager », une astronomie à plusieurs dimensions en quelque sorte, pour mieux caractériser les événements par une précision temporelle, directionnelle et énergétique beaucoup plus grande et une compréhension de ce fait toujours meilleure de notre Univers.

NB: texte relu et corrigé (pour les notions de physique des particules) par Pierre-André Haldi (Dr. es Sciences de l’EPFL).

Liens :

https://icecube.wisc.edu/

http://antares.in2p3.fr/index-fr.html

Image à la Une : vue artistique des DOM d’IceCube. Crédit Jamie Yang de la Collaboration IceCube.

Image ci-dessous (1): Photographie de la première observation d’un neutrino prise le 13 novembre 1970. Un neutrino invisible percute un proton, donnant naissance aux traces des particules mentionnées sur la photo.

Image ci-dessous (2) : présentation graphique de l’observatoire IceCube; Crédit Nasa-verve* — IceCube Science Team – Francis Halzen, Department of Physics, University of Wisconsin (*Visual Environment for Remote Virtual Exploration).

lecture: https://phys.org/news/2013-11-world-largest-particle-detector-icecube.html#jCp

Index L’appel de Mars

Après EMC18, l’objectif reste Mars, plus que jamais

La 18ème Conférence européenne sur la planète Mars (EMC18) qui s’est tenue au Musée International d’Horlogerie (MIH) de La Chaux-de-Fonds du 26 au 28 octobre, s’est terminée après un programme dense et brillant tant au point de vue des orateurs que des sujets traités. Elle se déroulait dans la magnifique salle de conférence du musée horloger le plus riche et le plus beau du monde, comme les participants ont pu le réaliser lors de la visite guidée. Toute l’histoire de la mesure du temps est là, expliquée, illustrée par des objets rarissimes et souvent magnifiques dans une muséographie impeccable. Dans la grande salle, d’une fonctionnalité irréprochable, on se trouve au milieu des fresques de Hans Erni, exécutées en 1958 pour l’exposition universelle de Bruxelles. A elles seules, elles méritaient le voyage des participants venus des quatre coins du monde.

Sur le thème de la connaissance de la planète, les présentations de Michel Cabane (molécules organiques), Antoine Pommerol (instrument d’observation CaSSIS), Tomaso Bontognali (formes possibles de vie martienne), Philippe Lognonné (sismographie) ont été éblouissantes. Avec le premier, on a pu comprendre jusqu’où la chromatographie en phase gazeuse a pu conduire l’analyse de la composition du sol martien et percevoir que l’environnement planétaire martien a très probablement généré au fil du long temps où l’eau a été liquide, des molécules beaucoup plus complexes et plus longues que l’espace environnant avec les astéroïdes qu’on y trouve. On bute maintenant sur le fait qu’on doive chauffer et donc détruire ces molécules pour les étudier puisque les réactifs à froid (liquides) n’ont pas été encore utilisés (ils sont contenus dans quelques six coupelles seulement, que l’on garde précieusement pour le terrain le plus propice à la préservation de traces de vie, les fameuses argiles du Mont Sharp, maintenant en vue). Avec Antoine Pommerol, on a pu admirer les premières photos prises par CaSSIS à partir de l’orbiter TGO, des nuances de couleurs et une précision jamais égalées, des angles de vue jamais utilisés, permettant de voir le même endroit sous différents éclairages mettant en valeur les changements au cour de la journée donc des compositions de sol et des effets atmosphériques différents. On revient déjà, pour certains « gullies » sur le rôle qu’a pu jouer l’eau dans leur formation (il y aurait plusieurs types de gullies). Avec Tomaso Bontognali, on devrait être prêt à reconnaître visuellement la vie ou plutôt les traces qu’elle a laissées, si elle s’est jamais exprimée sur Mars. La « caméra » CLUPI à bord du rover de la mission ExoMars doit y être déposée début 2021 et les travaux du Dr. Bontognali nous donneront la possibilité de comprendre ce que nous verrons, sur le plan exobiologique. La précision ne pourra dépasser 35 µm alors que les fossiles de cellules primitives devraient être beaucoup plus petits (sur Terre les bactéries ont une taille de l’ordre du micromètre). Cependant on doit pouvoir compter sur un comportement sans doute universel de la vie, son grégarisme et son aptitude à la symbiose, donc à la vie en communauté, ce qui aurait dû générer des tapis microbiens. Avec Philippe Lognonné on a pu admirer l’ingéniosité du sismomètre embarqué à bord d’InSight (qui doit arriver sur Mars le 26 Novembre). Cet appareil extraordinaire disposera d’une sensibilité telle que tout mouvement interne de la planète tant soit peu significatif, pourra être détecté, et ce à partir d’un seul instrument déposé (en utilisant les ondes de surface). Nous pourrons ainsi savoir jusqu’à quelle point la planète s’est refroidie et quelle est l’épaisseur de sa croûte. De là on pourra faire toute sorte de déductions sur son histoire et son potentiel d’activité résiduelle.

Sur le thème du voyage, les présentations de Pierre-André Haldi (critique constructive de la BFR d’Elon Musk), de Jean-Marc Salotti (possibilité de missions habitées avec une Ariane Super Heavy), Angelo Genovese (modes de propulsion avancés), de Jürgen Herholz (historique des projets de l’ESA en termes de vols habités), de Maxime Lenormand et Anne-Marlène Rüede (EDL des masses lourdes) et aussi de Claude Nicollier, nous ont montré que les missions habitées étaient bien possibles en termes de propulsion, de configuration des lanceurs et d’architecture de missions, avec plusieurs variantes envisageables. Avec Pierre-André Haldi, on a bien vu les imperfections du projet BFR, Elon Musk ayant à ce stade un peu trop cédé à l’esprit Star-Treck (fenêtres, panneaux solaires, non traitement de l’apesanteur) mais le Dr. Haldi reconnaît la valeur de quelques excellentes idées, notamment la réutilisation de divers éléments du lanceur, le ravitaillement en ergols en orbite basse terrestre avant l’impulsion vers Mars et l’utilisation du méthane comme carburant (en attendant mieux). Il propose par ailleurs un système de génération de gravité artificielle, une modularité qui apporterait de multiples avantages (notamment la possibilité de changement de mode de propulsion) et la descente en surface de Mars limitée à des véhicules légers annexes (ce qui représenterait d’importantes économies d’énergie). Avec Jean-Marc Salotti on voit qu’on pourrait utiliser un lanceur existant, de performance moyenne, Ariane Super Heavy, pour mener à bien des missions habitées sur Mars. Avec Jürgen Herholz on voit encore mieux que si l’ESA n’a pas réussi à égaler la NASA sur le plan des vols habités c’est tout simplement qu’elle ne l’a pas voulu (ce qui génère une certaine frustration). Les étudiants, Maxime Lenormand* et Anne-Marlène Rüede qui se sont exprimés, ont choisi de parler de la phase difficile de l’EDL (« Entry, Descent, Landing ») et ils ont présentés des solutions très sérieuses qui montrent qu’avec les technologies d’aujourd’hui, on peut descendre en surface de Mars les masses nécessaires à un séjour sur cette planète, suffisantes pour y vivre dans des conditions acceptables le temps d’un cycle synodique. Claude Nicollier a montré que, s’il était très important que le voyage ne se fasse pas en condition d’apesanteur, il était néanmoins encore difficile d’envisager la création de gravité artificielle au sein de deux masses en rotation liées entre elles par un filin. Le déploiement des filins et le maintien d’une tension adéquate (il faut surtout éviter le filin « mou » – slack, en Anglais – a souligné Claude Nicollier) apparait extrêmement délicat. C’est un des sujets dont il faudrait poursuivre sérieusement l’étude (ce qui n’est malheureusement pas prévu). Angelo Genovese a ouvert la porte des technologies nouvelles de propulsion qui, n’en doutons pas, pourront un jour pas si lointain, réduire considérablement le temps des voyages ce qui rendrait un peu moins grave ce problème d’apesanteur (et également de dose de radiations reçues) et cela à une époque où un « comité d’accueil » pourrait prendre en charge les voyageurs affaiblis à leur arrivée sur Mars.

*accompagné d’Anaïs Sabadie et de Léopold Comby.

Sur le thème du séjour en surface, nous avons eu d’excellentes présentations de Théodore Besson, d’Anne Marlène Rüede, d’Olivia Haider, de Richard Heidmann. J’ai moi-même pris la parole sur le thème de la dualité nécessaire de la mesure du temps prenant en compte l’environnement martien et les relations des Martiens avec les Terriens, et Mitko Tanevski a mis en évidence la complexité des communications tout en mettant en évidence la contrainte que je trouve la plus dérangeante. Avec Théodore Besson et son projet Scorpius-1, nous sortons des simulations « faiblardes » faîtes par les Russes (« Mars 500 ») qui ne traitaient vraiment que du problème psychologique d’un voyage de longue durée en situation de confinement, pour entrer dans la problématique des tests du support vie. Je ne crois pas à la gravité des soi-disant problèmes psychologiques car je suis convaincu que les personnes partant pour Mars seront suffisamment motivées pour supporter le voyage, et imaginer que les conditions sur Mars seront pratiquement identiques à celles vécues pendant le voyage n’a pratiquement pas de sens. Par contre l’alimentation des astronautes, le recyclage de l’air et de l’eau, le contrôle microbien, sont de vrais problèmes. Ils sont « adressés » par MELiSSA mais il faudra bien un jour les tester avec des « équipages » humains. Olivia Haider a montré le niveau sophistiqué qu’ont atteint les simulations d’EVA sur Terre. Avec AMEDEE 18, on est très loin des caricatures de ballades en faux scaphandres présentées il y a quelques années. Comme quoi il faut persévérer et on arrive à des résultats qui seront utiles pour la vraie exploration. Avec Anne-Marlène Rüede, on voit bien les ressources qu’apportent la planète Mars pour envisager de s’y établir. Il y a de l’eau sur Mars et pas qu’un peu (ne parlons pas des misérables ressources lunaires !). Grace à l’eau et à l’atmosphère on peut envisager un établissement pérenne sur Mars et Anne-Marlène Rüede en a bien vu, et démontré, le potentiel. Avec Richard Heidmann, on part beaucoup plus loin dans le futur. On voit les possibilités d’une colonie (1000 habitants), au-delà d’un premier établissement mais on voit aussi les difficultés et on en déduit donc que la progression (l’augmentation du nombre des habitants) ne pourra être que lente (il faut tout construire, à partir d’une énergie difficile à capter). La dépendance à la Terre sera durable, mais elle sera positive (créativité résultant des défis posés) et les Martiens auront de ce fait des ressources pour offrir en échange aux importations de la Terre, des services qui seront précieux aux deux parties, gage de pérennité pour les colonies martiennes. Le plan économique sans la prise en compte duquel rien ne se fera, a été traité par Antonio del Mastro. Il ne s’agit pas en effet d’attendre que les impôts résolvent tous les problèmes. L’économie tournée vers le spatiale doit se prendre en charge dès maintenant. Il ne faut pas oublier que travailler pour Mars c’est déjà travailler sur Terre, concevoir, acheter, vendre sur Terre. Le constater est une excellente façon de ne pas désespérer.

Ces différents thèmes étaient considérés « sous le regard du temps ». Pour mieux comprendre l’importance de ce facteur, nous avons eu deux exposés sur les fondamentaux de sa mesure. Gaetano Mileti et Pascal Rochat nous ont expliqué où nous en étions de la sensibilité et de la précision. Ce n’est ni anodin, ni anecdotique puisque toute navigation (toute prévision de déplacement à une certaine vitesse) se fait à partir de la mesure du temps et cela est d’autant plus important que sur Mars on n’aura que très peu de moyens de communication physique et que la plupart des interventions à distance se feront par l’intermédiaire de robots par des commandes en direct impulsées depuis la base habitée où seront concentrés les moyens de vie. De ce point de vue, il était passionnant de voir que des progrès considérables sont fait dans la définition de la seconde (unité de base de toute mesure du temps). Alain Sandoz a présenté une complication appliquée à la mesure du temps en apesanteur, ce qui peut évidemment servir dans le cadre d’une navigation vers Mars avec des phases plus ou moins longues dans cet état. Pour terminer, Mitko Tanevski a abordé le problème très complexe des communications interplanétaires. On parvient à les maîtriser comme le prouve le succès des missions robotiques récentes mais il faut rendre hommage aux spécialistes qui maîtrisent le sujet, véritable illustration du concept de complexité. Pour conclure Mitko Tanevski a fait une remarque que je trouve très troublante car elle pose problème pour les futures colonies : lorsque une population quelconque vivra sur Mars elle ne pourra pas avoir accès immédiat aux bases de données terrestres. La vitesse de la lumière est en effet incontournable et la distance de Mars fera toujours qu’une question posée à la Terre (personnes physiques ou base de données) n’aura de réponses qu’après une durée de 5 à 45 minutes. Que faire ? Copier les bases de données existantes, puis procéder continûment à leurs mises à jour ? Est-ce possible aujourd’hui et encore plus demain quand elles auront atteint une taille gigantesque ? L’effort ne sera-t-il pas néanmoins utile pour simple conservation de ces bases de données au cas où un problème leur portant atteinte se produirait sur Terre ? La discussion est ouverte.

De telles considérations n’ont pas empêché Robert Zubrin de donner des perspectives enthousiasmantes à l’exploration spatiale. Il nous a fait remarquer que nous sommes déjà dans l’espace. Il faut en prendre conscience et aller aussi loin de notre Terre que pourra le permettre notre technologie. Il s’agit de vouloir. Nous avions abordé plus tôt dans le cadre de notre débat, la stratégie des vols habités. On a bien vu à cette occasion la divergence de vue, entre certains scientifiques (représentés par Jean-Luc Josset) qui ne souhaitent pas dépenser pour les missions habitées des sommes qui dépassent de beaucoup les missions robotiques, et les tenant de l’établissement de l’homme sur Mars (représentés par Robert Zubrin) qui mettent leur projet devant cette recherche. Nous étions avec Claude Nicollier, au milieu, en demandant les deux. In fine en effet il faut bien voir que les sommes à prendre en compte pour les missions habitées sont très faibles par rapport à toutes les autres dépenses effectuées par les Etats modernes. Le budget actuel de la NASA ne représente que 0,5% des dépenses publiques des Etats-Unis et il ne serait même pas nécessaire de les doubler pour mener à bien un programme d’exploration de Mars par vols habités comprenant cinq ou six missions sur une douzaine d’années. Mais il faudrait le vouloir au niveau des Etats, ce qui n’est pas le cas ! Alors pour débloquer la situation, plutôt que d’attendre une décision des Etats ou l’éventuelle concurrence chinoise susceptible de réveiller les Etats-Unis, peut-être faut-il plutôt compter sur l’initiative et l’action individuelle. Elon Musk ou l’un de ses semblables peut relever le défi, sans rien demander à personne. C’est mon espoir et il a tout notre soutien et nos encouragements.

Image à la une : fresques de Hans Erni dans la grande salle de conférence du MIH. Crédit MIH et Aline Henchoz (photographe, La Chaux-de-Fonds).

NB: il y a eu d’autres présentations remarquables et je ne voudrais pas en minorer l’importance. Jean-Luc Josset a admirablement présenté son instrument CLUPI qui doit naviguer à bord d’ExoMars pour accompagner visuellement les forages à deux mètres que fera le rover de l’ESA. Roland Loos a montré que l’on pouvait espérer faire voler des avions dans le ciel de Mars en s’inspirant de Solarstratos, l’avion qui par la seule puissance de l’énergie solaire doit pouvoir accéder à la stratosphère terrestre (il lui faudra un décollage vertical comme le propose Roland Loos puisqu’il n’y a pas d’aéroport et qu’il faudrait de très longues pistes pour qu’il puisse s’envoler compte tenu de la très faible portance de l’atmosphère).

Sponsors: Space Exploration Institute (Neuchâtel); MIH; Spectratime; BCN; Trax-L

Index du blog :

https://blogs.letemps.ch/pierre-brisson/wp-content/uploads/sites/31/2018/10/Index-Lappel-de-Mars.pdf

L’appel de Mars. Index

Après 175 articles publiés sur ce blog, j’ai réalisé qu’un index était indispensable pour permettre à mes lecteurs d’y rechercher un sujet d’intérêt déjà traité ou pour y rechercher si un sujet déjà traité pouvait les intéresser. Vous trouverez donc cet index en pièce jointe.

Il est tout simplement constitué de la liste des titres des articles par ordre chronologique mais chaque titre est muni d’un lien et en cliquant sur ce titre vous accéderez à l’article choisi, le titre devant, je l’espère, vous donner une indication suffisante de la teneur de l’article.

Vous remarquerez qu’au cours du temps certains sujets ont été traités plusieurs fois et qu’il y a quelques répétitions, une suite d’articles n’est en effet pas un vrai livre, c’est-à-dire un ouvrage structuré, même si cela y ressemble quand même beaucoup (comme un tapis microbien ressemble à un édiacarien!).

Quand j’aurai (ou je prendrai) le temps, j’irai plus loin en regroupant les articles par thèmes : l’observation de l’univers, la planétologie, Mars, la vie. Petit à petit j’arriverai peut-être à ce qu’on pourra nommer un livre, ce sera « L’appel de Mars ». C’aurait pu être « L’appel de l’espace » mais cela aurait été trop général et pas assez constructif. En effet notre porte vers l’espace, c’est Mars. Le seul lieu de l’espace où nous pouvons envisager de nous installer physiquement avec les technologies d’aujourd’hui (moyennant quelques mises au point!), c’est Mars. Si nous refusons d’y aller physiquement, de passer par cette entrée qui nous est proposée par Dame Nature, la Porte restera éternellement entrouverte et l’espace en fin de compte, inaccessible. Vu autrement et plus sévèrement, on pourrait dire que la porte est actuellement entrouverte mais qu’elle se refermera si nous choisissons passivement (par indifférence) ou activement (par principe) de ne pas y aller. Grâce à notre technologie nous disposons d’une fenêtre temporelle pour quitter la Terre, aller vers et franchir cette porte spatiale.

Les fenêtres s’ouvrent et se ferment et ce n’est pas qu’une question de technologie, c’est aussi une question de désir et de volonté.

ci-joint : Index du blog Exploration Spatiale (copyright © Pierre Brisson, sur tous les articles):

Index L’appel de Mars

La Mars Society, une organisation transversale à une multitude de disciplines scientifiques et ingénieuriales

Ceux qui lisent mon blog depuis le début (175 articles publiés depuis le 4 septembre 2015) peuvent aisément réaliser que notre organisation, la Mars Society, couvre un spectre extrêmement étendu d’intérêts, principalement scientifiques et ingénieuriaux. Cela est logique car notre but est de promouvoir et d’accélérer l’exploration d’un monde nouveau et l’implantation d’une nouvelle bouture de l’humanité sur ce monde alors qu’il évolue à une distance allant de 56 à 400 millions de km, que ses conditions d’habitabilité sont extrêmement exigeantes et que les infrastructures nécessaires à toute vie y sont inexistantes. Il faut donc tout prévoir et rechercher les meilleures solutions à la pointe des différentes disciplines concernées, avec toujours en tête l’efficacité, la fiabilité, la redondance, la réparabilité, la réutilisabilité, le recyclage.

Pour commencer nous pensons au voyage par vol habité et cela implique la recherche du meilleur lanceur, c’est-à-dire celui qui emportera autant de passagers que possible dans des conditions sanitaires (hygiène, nourriture, radiations) et de sécurité (fiabilité du lancement, fiabilité des trajectoires, résistance aux épreuves de l’EDL -Entry, Descent, Landing) aussi bonnes que possible et dans un délai aussi court que possible (pour limiter les doses de radiations) mais en préservant un trajet de libre-retour en cas d’échec de l’approche ou de l’atterrissage, tout ceci à un coût aussi faible que possible. Pour le moment le BFR d’Elon Musk « tient la corde ». C’est celui qui est le plus adapté au projet car voulu et conçu pour lui, et c’est pour cela que nous en soutenons la réalisation.

Ensuite nous pensons à la survie des hommes que ce lanceur emportera et cela implique de prévoir les conditions physiques et psychologiques auxquelles ils seront soumis pendant le voyage et le séjour, 30 mois minimum d’éloignement (avant de parler d’établissement permanent), durée correspondant aux exigences de la mécanique planétaire qui dicte les dates de nos fenêtres de tirs aussi bien à partir de Mars que de la Terre. C’est nos connaissances et nos ressources médicales qu’il faut adapter à ces situations d’isolement et de confinement ; les locaux habitables seront exigus et les ressources en air et en eau devront être recyclées au maximum ; la circulation microbienne (interaction des microbiotes au sein de microbiomes contigus et souvent interpénétrés) pose des problèmes de contrôle et de « pilotage » d’autant plus délicats que l’espace viabilisé sera réduit et qu’il y aura d’autant moins d’effet tampon. Des médecins s’occuperont de leur co-voyageurs mais ils auront peu d’instruments, peu de médicaments et ils seront peu nombreux. Il faudra faire des choix entre les ressources à emporter, très vite engager une production locale de médicaments et d’instruments (ceux qu’il sera possible de produire avec des moyens limités mais avec les espoirs ouverts par l’impression 3D), utiliser les conseils à distance de la communauté médicale internationale et accepter quand même plus de risques que ceux encourus par une population restée sur Terre.

Une préoccupation voisine est celle de la nutrition et de l’alimentation. Compte tenu des contraintes des fenêtres de tir, c’est-à-dire de la durée minimum des missions, l’approvisionnement alimentaire représente des masses / volumes importants à transporter et la conservation sur cette durée est possible mais difficile. Il faut donc prévoir de pouvoir utiliser aussi vite que possible l’eau martienne et produire en surface de Mars une « nourriture » satisfaisante tant au point de vue qualitatif que quantitatif (diététique). Cela pose des problèmes de volumes viabilisés pour la culture des plantes (serres), d’accès à l’eau et de recyclage de l’eau, d’énergie (l’ensoleillement peut être un peu faible et il peut y avoir des tempêtes de poussière planétaires qui l’occulte pendant plusieurs semaines). C’est aussi un problème d’équilibre phytosanitaire, d’agriculture/horticulture, d’aquaculture (d’élevage, un jour), de préservation des récoltes, de recyclage des déchets (et du contrôle bactérien de ce recyclage) et un problème de ressources à y consacrer (travail humain et robotique, temps passé).

Nous devons penser aux sources d’énergie, à leur captation, à leur stockage et à leur transport/distribution (sous forme de chaleur ou d’électricité). Nous utiliserons l’énergie solaire autant que possible et la géothermie si nous trouvons des différentiels de température exploitables mais aussi ou plutôt surtout, l’énergie nucléaire et l’énergie chimique (méthane/oxygène) puisqu’elles sont indépendantes des conditions environnementales.

Nous devons penser à l’architecture et à l’ingénierie des constructions. Compte tenu de la ténuité de l’atmosphère, de son irrespirabilité, des températures très basses la nuit, de la possibilité de tempêtes de poussière et aussi des radiations, les habitats, les lieux de travail et de production, les lieux de convivialité et de loisir devront être construits avec des caractéristiques particulières, un soin maximum et la prise en compte des nécessités d’entretien, d’intervention et de réparabilité (modularité). Il est évidemment exclu pour des raisons de volume et de masse, d’importer des matériaux de construction, sauf éléments peu pondéreux/volumineux et très difficile à produire (par exemple panneaux solaires du fait de l’exigence de pureté du silicium !). Nous devons donc penser à la chimie et à la physique des matériaux, à la mécanique pour les structures ou les revêtements ; nous pensons à la plomberie, aux réseaux électriques et informatiques, à la climatisation. Nous pensons encore ici à l’impression 3D.

Nous devons penser à la mobilité en surface d’une planète dépourvue de routes, de rivières ou de mers, et dans la mesure du possible, dans l’atmosphère (possibilité évidemment très réduite pour les véhicules utilisant la portance atmosphérique mais possibilité « normale » des déplacements par propulsion) et nous pensons aux télécommunications en atmosphère raréfiée (importance donc des systèmes satellitaires) ainsi qu’aux véhicules robotisés effectuant les sorties des bases viabilisées à la place des hommes qui resteront au maximum dans un environnement protégé pour les commander en direct.

Nous devons penser à la protection du corps humain, aux vêtements d’intérieur, aux combinaisons de sortie, aux casques, aux chaussures, à leur conception adaptée aux conditions extérieures, à leur étanchéité, à leur climatisation, à leur résistance à l’usure et aux déchirures, à leurs qualités protectrices contre les radiations, à la visibilité à partir du casque, de nuit comme de jour, à leur confort (jointures, souplesse et mobilité, inaccessibilité de l’intérieur pour les bras et les mains pendant les sorties, impossibilité d’uriner et de déféquer à l’extérieur du vêtement, extraction en sas à la fin des sorties), à leur nettoyage (poussière, électricité statique), donc à leurs matériaux et à leur assemblages, à leur aspect esthétique et à leur recyclage.

Nous devons penser au traitement des déchets, au gaspillage que nous devons éviter absolument, au recyclage maximum, toute production, toute transformation devant être pensée comme un processus ayant coûté de l’énergie, du temps, des efforts qui doivent être économisés et réutilisés, et toute molécule organique comme élément utile à notre survie et à l’amélioration de nos conditions de vie, dans le cadre de la protection planétaire que nous devons à cet astre, notre hôte, pour lui-même et dans notre intérêt propre.

Nous pensons en effet à l’écologie et au-delà à l’exobiologie puisque la recherche d’une « autre » forme de vie est l’une des motivations scientifiques principales pour aller sur Mars. Nous nous doutons que cette planète a permis une évolution poussée des molécules organiques et cela suscite inévitablement au delà d’un intérêt scientifique évident, des soucis de contamination dans les deux sens (Terre vers Mars et réciproquement). Nous pensons aussi à la géologie et à la planétologie puisque l’application de nos capacités d’observation, de réflexion et de déduction dans ces domaines est l’autre objet scientifique principal de notre installation envisagée sur cette planète. Nous pensons à l’astronomie, à l’astrophysique, à la cosmologie puisque cette nouvelle base de notre activité et de notre réflexion pourra être utilisée comme la Terre, pour observer l’univers, mais avec les avantages d’une pesanteur moindre et d’une atmosphère plus transparente, et que nous pourrons peut-être le faire en interférométrie ou au moins en complément avec d’autres installations dans l’espace et sur Terre.

Nous devons penser à la communication sur et à partir de ce nouveaux monde vers la Terre car pendant très longtemps il en sera dépendant et il faudra donc maintenir le lien et l’intérêt de façon proactive. Et pour continuer dans le temps, pour que la « bouture » continue à pousser et donne des fruits, pour pérenniser notre implantation, il faudra aussi cultiver/adapter les sciences de l’accompagnement des jeunes, puériculture, éducation, enseignement. Les enfants des nouveaux Martiens ne devront pas être élevés comme des sauvages sinon l’entreprise n’aurait pas de sens.

Nous pensons encore à l’économie car sans production pas d’échanges et sans échanges pas de ressources pour se procurer les biens non productibles sur place. Les Martiens devront toujours se soucier de proposer « quelque chose » (biens et services quasi exclusivement immatériels) en échange de ce qu’ils demanderont et recevront de la Terre, autrement ils devraient abandonner leur installation et retourner sur leur planète d’origine.

Nous pensons enfin à la réflexion qui mène toute entreprise humaine, à la philosophie, au roman, à la poésie, à toute représentation artistique, nous pensons au rêve.

Vous pouvez déduire de ce long examen de tout ce que nous devons prendre en compte (ai-je oublié quelque chose ?), l’éventail extraordinairement ouvert des différents sujets qui nous intéressent et qui animent nos discussions pour élaborer des solutions aux différents défis posés par ce projet martien. Ils sont le plus souvent en interactions les uns avec les autres et leurs combinaisons stimulent l’imagination et l’innovation. S’investir au sein de la Mars Society c’est, pour simplifier, s’investir dans une entreprise passionnante pour une meilleure maîtrise de notre vie demain, sur Mars, dans l’espace et indirectement sur Terre.

Pour être efficace, il faut transformer la pensée en action. Ce n’est évidemment pas notre organisation qui va construire et financer les infrastructures nécessaires à la réalisation de notre rêve. Notre arme est donc l’information, autant que possible l’innovation, la discussion, la persuasion et le rapprochement des réflexions des uns et des autres en vue d’une action. Beaucoup de personnes au sein des grandes agences partagent nos idées. L’un des anciens administrateurs de la NASA, Mike Griffin, a été membre fondateur de la Mars Society aux Etats-Unis, Elon Musk est un proche et a soutenu également notre organisation. Des idées de la Mars Society telles que la production sur Mars des ergols de retour (ISPP) ou plus généralement l’utilisation des ressources locales (ISRU) et l’architecture de mission Mars Direct ont été repris par la NASA. Nous poussons l’expérimentation de la création de conditions de gravité artificielle pendant le voyage (lors de notre prochain Congrès, Claude Nicollier va parler du comportement des filins dans l’espace, son expérience sur le sujet est fondamentale pour la validation de notre concept). Partout où l’on parle raisonnablement* de l’exploration de Mars par vols habités, nous sommes là.

*NB : nous ne soutenons pas l’initiative « Mars One » qui envisage des premiers vols Terre/Mars sans retour.

Image à la Une: Cratère Gusev photographié du haut des Columbia Hills par le rover Spirit (crédit NASA). Incontestablement une terre vierge!

N’oubliez pas notre congrès EMC18 (18th European Mars Convention) au Musée International d’Horlogerie (MIH) de la Chaux-de-Fonds, du vendredi 26 octobre (14h00) au dimanche 28 Octobre (12h00). Tout ce que vous avez toujours voulu savoir sur Mars au long de 24 exposés de spécialistes sur (1) la Planète, (2) le Temps, (3) le Voyage interplanétaire et (4) l’installation de l’homme (en Anglais). Nous aurons aussi un débat avec Claude Nicollier et Robert Zubrin sur le thème “Robots and Men on Mars under the Look of Time”. Vous pouvez encore vous inscrire.

Plus que quelques jours pour vous inscrire à EMC18, la 18ème Conférence sur Mars en Europe

La 18ème European Mars Conference se déroulera du 26 au 28 octobre à la Chaux-de-Fonds*. Vous avez encore quelques jours pour vous y inscrire. A défaut il vous faudra attendre plusieurs années pour avoir l’occasion, en Suisse, de vous « nourrir » aussi intensément de connaissances martiennes (l’EMC suisse précédente a eu lieu en 2011 à l’Université de Neuchâtel et la date de la prochaine n’est pas fixée).

*au Musée International d’Horlogerie (MIH). Nos sponsors sont le MIH, Space-X (Neuchâtel), Spectratime, la BCN, Banque Cantonale Neuchâteloise, Trax-L (Sites Internet, Photographie, Graphisme) .

Ceux qui me suivent régulièrement savent bien que la planète Mars n’est pas un astre comme les autres. Vue « de chez nous » elle brille à peu près comme eux (même si lorsque nous nous trouvons en opposition on peut distinguer son disque à l’œil nu, ce qui n’est guère possible que pour le Soleil, la Lune et Vénus) mais ce qui fait son intérêt c’est une série d’« avantages » qui, tous ensemble, la rendent incomparablement plus attractive aujourd’hui que n’importe laquelle de ces lumières qui nous intriguent et nous appellent depuis la nuit des temps. On peut en faire la liste : sa localisation à la limite de la zone d’habitabilité de notre système solaire, la nature rocheuse de sa surface, l’intensité de la force de gravité générée à cette surface par sa masse, la présence d’une atmosphère, la présence d’eau, une histoire géologique à l’origine très semblable à celle de la Terre, des cycles circadien et saisonnier proche du nôtre, la possibilité d’une longue évolution vers la vie de ses molécules organiques et enfin sa proximité relative. Détaillons les :

Sa localisation à la limite de la zone d’habitabilité signifie qu’en fonction de la température et de la pression atmosphérique, l’eau peut y être liquide et l’on sait que dans le passé lointain puis au cours d’épisodes volcaniques encore relativement récents, de changements périodiques d’obliquité ou de variations dans l’excentricité de l’orbite, elle l’a bien été. Les traces évidentes d’écoulements fluviaux, surtout en zone intertropicale, en sont la preuve indiscutable.

Les mêmes causes produisant les mêmes effets, il y a donc eu de l’eau sur Mars comme sur la Terre et, malgré la perte d’une forte proportion d’éléments volatiles dans l’espace, il en reste encore beaucoup, sous forme de glace, un tout petit peu dans l’atmosphère et surtout en grandes quantités en surface du sol (aux pôles) et dans le sous-sol immédiat (un peu partout ailleurs).

La planète tourne sur elle-même en 24h39. Comparez à la Lune qui tourne sur elle-même en 28 jours, vous réaliserez tout de suite les conséquences ! Sur Mars les écarts de températures sont quelque peu lissés par l’alternance rapide des jours et des nuits. Il est possible d’envisager la croissance des plantes sous serre en lumière naturelle (même s’il faudra probablement un peu l’aider). Imaginez la culture des fraises en lumière naturelle avec des nuits de 14 jours (et la différence en consommation d’énergie) !

L’atmosphère n’est pas épaisse (6 millibar en moyenne) et à 95% constituée de COmais elle a « le mérite d’exister », c’est-à-dire qu’elle procure un certain écran contre les radiations solaires et galactiques et qu’elle peut être exploitée relativement facilement pour son carbone et son oxygène (presque tout brûle dans le comburant oxygène, notamment le méthane, carburant que l’on peut obtenir à partir du carbone de l’air et de l’hydrogène de l’eau !). Elle peut également être utilisée pour freiner les véhicules venus de la Terre (d’où des économies d’énergie et de masse, importantes) et, dans les régions basses, pour la portance de drones ultralégers, transportant quelques petits équipements ou de ballons d’exploration. Rien de comparable ailleurs dans notre univers proche, sauf autour de Vénus mais évoluer dans la zone habitable de la haute atmosphère de cette planète serait extrêmement périlleux compte tenu du risque d’atterrissage catastrophique sur une surface ou règnent des conditions environnementales infernales.

Toute vie sur Terre est le fruit de matière, d’eau et d’énergie du Soleil. On a constaté dans les météorites des molécules organiques simples mais variées. Nul doute qu’un environnement planétaire relativement comparable au nôtre (minéraux, eau liquide, énergie) a conduit beaucoup plus loin l’évolution de ces molécules et Mars est la planète accessible dont l’évolution planétologique a été la plus semblable à la nôtre. Jusqu’où la complexification organique a-t-elle été poussée reste la grande question posée à notre génération et elle mérite d’être étudiée !

La proximité relative des deux planètes est très importante puisque nos lanceurs modernes nous permettent d’accéder à Mars dans un délai raisonnable. Ce délai est cependant à la limite de nos possibilités et on ne peut pas envisager de vols habités sensiblement plus longs. Six mois c’est déjà beaucoup pour rester enfermé dans quelque lieu confiné que ce soit mais, surtout, les doses de radiations de GCR (Galactic Cosmic Rays) deviendraient problématiques au-delà. Non pas que l’on ne pourrait faire le voyage Terre-planète « x » (distante au mieux de trois ans comme Jupiter, par exemple) aller et retour, mais parce que notre « capital d’irradiation » serait quand même sérieusement entamé et que les possibilités de plusieurs de ces voyage seraient trop limitées (on peut envisager deux ou trois voyages vers Mars au cours d’une vie sans risques majeurs pourvu qu’on évite ou se protège d’une éventuelle tempête solaire).

A côté de Mars, la Lune, astre mort-né, fait très pâle figure. Il n’y a pas d’atmosphère, très peu d’eau, (si peu qu’il vaut mieux la garder pour étudier l’histoire de notre environnement spatial proche qui s’est inscrite dans sa glace) ; la gravité est si faible (moitié moins que celle de Mars) que les problèmes de santé pouvant en résulter pour l’homme qui y séjournerait longtemps, seraient presqu’aussi graves que ceux qui sont la conséquence de long séjours en apesanteur dans l’espace. Vénus comme mentionné plus haut, présente trop de danger, Mercure difficilement accessible est trop près du Soleil, les lunes de Jupiter ou de Saturne sont très inhospitalières (radiations de Jupiter) et/ou trop lointaines, les exoplanètes « proches » sont, pour encore longtemps, inaccessibles à nos fusées (Proxima Centauri est à 4,3 années-lumière !).

Donc nous pouvons aller physiquement sur Mars et, dans un avenir prévisible, nous ne pourrons nous établir que sur Mars ; nous pourrons y approfondir nos recherches sur l’origine, la préhistoire de la vie, peut-être ses premiers balbutiements. Nous avons commencé à le faire avec des robots, remarquables produits de l’intelligence humaine, et nous continuerons. Mais il faut faire mieux : nous pouvons aussi y envoyer des astronautes puis des colons ; nous pouvons tenter d’y donner une « seconde chance » à notre espèce, à la vie terrestre et à notre civilisation. S’intéresser à Mars, c’est s’intéresser à ces recherches fondamentales, c’est s’intéresser à des projets dont la réalisation est possible même si elle est difficile ; c’est s’intéresser à demain, se projeter dans un avenir proche, et c’est aussi repousser infiniment plus loin qu’aujourd’hui notre horizon et celui de l’humanité.

Puisque le défi « relevable » de notre époque est donc d’y aller. Ne tergiversons pas d’avantage, allons-y !

En attendant, pour connaître mieux cette planète, les possibilités de voyage et d’établissement temporaire ou permanent, faire le point sur les recherches biologiques, venez nous rejoindre le 26 octobre au Musée International d’horlogerie de la Chaux-de-Fonds! Inscrivez vous.

Image à la Une : affiche d’annonce de la 18ème Conférence sur la Planète Mars en Europe (crédit Mars Society Switzerland, graphisme Trax-L)