Nos ancêtres eucaryotes, des chimères tout à fait improbables

Trouver la vie ailleurs que sur Terre sous forme de procaryotes (bactéries ou archées) semble improbable ; la trouver sous forme d’être hybrides comme les eucaryotes dont nous sommes faits est encore plus difficile à imaginer.

Dans mon article précédent j’ai parlé des nombreuses conditions qu’a dû réunir un réacteur biochimique comme la Terre pour donner naissance à la vie en la « personne » de LUCA (« Last Universal Common Ancestor »), notre ancêtre commun à tous, il y a environ 4 milliards d’années. Après ce premier « miracle », il en a fallu un deuxième, l’hybridation d’un groupe d’archées et de bactéries par endosymbiose des secondes dans les premières, il y a sans doute un peu moins de 2 milliards d’années, donnant notre LECA (« Last Eukaryotic Common Ancestor ») et nous mettant sur la piste de la vie complexe dont nous sommes aujourd’hui l’expression la plus parfaite (sans faire d’anthropocentrisme, n’ayons pas peur de le dire !).

Le caractère vraiment extraordinaire de ces événements est que l’avènement de LECA tout comme celui de LUCA n’est arrivé qu’une seule fois dans notre très longue Histoire. Les deux ont bien sûr résulté d’une évolution darwinienne mais il faut bien les voir comme un croisement sans retour de deux trajectoires, celle de l’évolution de l’environnement planétaire sous l’effet de la vie elle-même (pour LECA, l’introduction en masse d’oxygène dans l’atmosphère terrestre par les cyanobactéries) et celle de l’évolution de la vie représentée alors exclusivement par des procaryotes, êtres unicellulaires cousins (archées et bactéries). Sur le plan biologique cette évolution était possible puisqu’elle est survenue, mais totalement improbable (on n’a d’ailleurs trouvé aucun fossile de cellule proto-eucaryote, ce qui renforce la probabilité de son caractère accidentel).

En effet, un procaryote, être vivant sans noyau (et sans organelle inclue), est comme tout autre être vivant, grégaire et symbiotique. Il peut s’associer à d’autres procaryotes pour former par exemple des tapis microbiens ou d’autres ensembles (microbialites) dont il ne reste que les rejets métaboliques (stromatolithes par exemple). Il peut aussi profiter des rejets métaboliques des autres êtres vivants et les faire profiter des siens propres. Il pratique donc la symbiose mais ne pratique ni l’endosymbiose ni la phagocytose, c’est-à-dire qu’il n’introduit aucun « partenaire » vivant à l’intérieur de son propre organisme et qu’il n’avale pas ses proies pour les consommer comme les eucaryotes peuvent le faire ; sa paroi cellulaire l’en empêche et « il ne fonctionne pas comme ça ». Il est structuré pour adapter sa nourriture à ses besoins par les enzymes qu’il émet à l’extérieur de lui-même et l’événement inouï qui est arrivé entre 1,5 à 2 milliards d’années, c’est qu’un groupe d’archées est parvenu à pratiquer une endosymbiose avec des bactéries. C’est-à-dire que des archées sont parvenues à faire entrer des bactéries, sans doute déjà fonctionnellement associées, à l’intérieur de leur membrane cellulaire sans que l’une ou les autres ne se détruisent. Elles les ont ensuite utilisées, après les avoir réduit biologiquement à la seule fonction qui leur était utile, comme des mitochondries ou des chloroplastes après avoir préservé leurs propres personnalités dans leur noyau. Cette coopération leur a donné une puissance phénoménale qui leur a permis de se développer en taille (un eucaryote est plus de 10.000 fois plus volumineux qu’un procaryote), ce qui tombait à pic car l’énergie de qualité supérieure dont elles avaient besoin pour prospérer pouvait à ce moment-là, leur être fournie par un gaz nouvellement abondant dans l’atmosphère et dans l’eau de l’Océan, l’oxygène, généré sur des centaines de millions d’années par des cyanobactéries (« algues bleues »). Le phénomène ne s’est pas reproduit par la suite. Il n’y a pas eu de second LECA comme il n’y avait pas eu de second LUCA.

Ensuite, toutes sortes d’accidents, ont permis des associations d’eucaryotes en organismes extrêmement divers avec spécialisation cellulaire, des êtres vivants complexes puis des animaux et des hommes. Cette histoire a été ponctuée de destructions massives dont seules quelques espèces à chaque fois survécurent. La vie a continué, surmontant ces obstacles, en empruntant les canaux de ces quelques espèces survivantes. Rien n’était écrit. Si l’astéroïde de Chicxulub n’était pas tombé sur Terre il y a 66 millions d’années (pour reprendre seulement l’événement catastrophique responsable de la dernière grande extinction « K-T », à la fin du Crétacé), la petite espèce de musaraigne ancêtre de tous les mammifères placentaire (qui porte le doux nom d’Ukhaatherium nessovi) et, in fine, de l’homme, n’aurait eu aucune chance de prospérer.

Ne rêvons pas! La vie complexe, consciente d’elle-même, est certainement extrêmement rare dans l’univers et, compte tenu des distances et du temps qui nous séparent des étoiles, il est extrêmement improbable que nous la rencontrions un jour ailleurs. Jacques Monod écrivait dans Le Hasard et la Nécessité: « Le hasard pur, le seul hasard, liberté absolue mais aveugle, à la racine même du prodige de l’évolution, cette notion centrale de la biologie moderne n’est plus aujourd’hui une hypothèse parmi d’autres possibles ou au moins concevables. Elle est la seule concevable, comme seule compatible avec les faits d’observation et d’expérience ». Cela laisse relativement peu d’espoir concernant notre possibilité de converser un jour avec nos amis extraterrestres qui n’existent très probablement que dans les bandes dessinées. Pour l’équivalent des bactéries, on verra (peut-être sur Mars !?).

Image à la Une : vue d’artiste (Carl Buell)  d’Ukhaatherium nessovi, ancêtre des 5100 espèces de mammifères placentaires (dont l’homme). Ce petit animal de 200 grammes dont les restes fossilisés ont été découverts en 1994 dans le désert de Gobi, est cousin de l’ancêtre des mammifères marsupiaux et de celui des mammifères monotrèmes.

Lecture: Nick Lane (professeur au Dept de Génétique, Evolution et Environnement de l’University College London): « The Vital question », sous-titré « Why is life the way it is » (Editions Profile Books).

La vie est le produit rare et subtil de la complexification de l’Univers

Au Début il n’y avait dans l’Univers que de l’hydrogène et de l’hélium. A force de fusions au sein des étoiles, d’alliances d’atomes au sein des nuages proto-stellaires et avec le temps, des milliards d’années, l’Univers est parvenu à générer des molécules organiques diversifiées comme on en trouve dans les chondrites carbonées du type de la météorite de Murchison (tombée en Australie en 1969). Cette dernière contient plus de 150 molécules organiques (organisées autour du carbone) dont 50 relativement complexes (> 6 atomes de carbones organisés en structures « aromatiques ») et quelques-unes importantes pour la vie: de l’acide formique (HCOOH); de l’acide cyanhydrique (HCN); du formaldéhyde (HCHO); des sucres polyols (« glycol », CnH2n+2On); des acides aminés (glycine).

Mais ces éléments précurseurs de la vie ne sont pas la vie. Il a fallu ensuite qu’au sein d’un réacteur biochimique bien particulier, une planète, la Terre (seul exemple connu !), la complexification de la matière organique se poursuive au cours d’un processus long et aléatoire.

Ce processus a eu besoin d’énergie dans un environnement gravitaire propice aux échanges de matières solides, de fluides et de gaz. Ce fut d’abord la chaleur interne de la planète (d’une part accumulée pendant l’accrétion et d’autre part libérée par la radioactivité naturelle de certains éléments instables tels que l’Uranium 238, le Thorium 232, le Potassium 40). C’est ensuite la chaleur du Soleil qui fait que nous sommes dans sa « zone habitable » et que l’eau est liquide en surface, cette propriété n’étant possible que parce que notre planète est entourée d’une atmosphère de pression suffisante mais non excessive (fonction de sa masse, de sa température et de sa dynamo interne). Dans ce cadre les nuages étaient possibles et par déduction la foudre. Enfin certaines radiations mais pas toutes (rayonnement ultraviolets a et b) ont également joué un rôle dissociateur et ioniseur (donc propice à de nouvelles associations).

L’eau liquide a été mentionnée. En effet sa présence semble essentielle dans le processus de vie, de par les solutions, les contacts et les échanges qu’elle permet. Or disposer à la fois d’eau et de chaleur n’est pas évident (sauf en sous-sol*) car la proximité du Soleil de la zone dans laquelle se trouve la Terre et Mars, implique une aridité initiale du fait du rejet des éléments les plus volatiles au-delà de la Limite de Glace par le jeune Soleil. Nous ne devons notre eau qu’au mouvement tout à fait particulier  de Jupiter et de Saturne après leur formation (descente vers le Soleil puis rebroussement vers l’extérieur du système); mouvement qui a permis la projection de Neptune et d’Uranus dans la Ceinture de Kuiper riche en éléments glacés. La « pluie » vers l’intérieur du système qui en est résultée est probablement à l’origine de cette eau.

NB : *il est encore trop tôt pour savoir si le contact avec le rayonnement du Soleil est, ou non (cas de la lune Europa de Jupiter), une condition indispensable au bon déroulement du processus.

Mais cela n’a certainement pas été suffisant. Il a fallu à un certain stade, sans doute très tôt, au fond d’un océan profond (donc protecteur de la pluie intense d’astéroïdes) une interface avec le manteau planétaire chaud et riche en minéraux. Ce manteau n’a peut-être été accessible dans le cas de la Terre, que parce que la croûte était suffisamment ductile mais sécable et le manteau suffisamment fluide en raison de sa forte teneur en eau. C’est dans ces conditions qu’on obtient une conjonction tout à fait particulière d’eau liquide, de pression très forte et d’accès au sous-sol magmatique (du fait de la tectonique des plaques). Il s’y est ajouté un différentiel de pH très fort (de l’ordre de 3 unités sur 14), l’Océan initial, non oxygéné, étant très acide et les émanations du sous-sol très basique. C’est très probablement dans les cheminées hydrothermales se développant au point de rupture des plaques que la naissance des premières cellules vivantes a eu lieu. Attention cependant, il a fallu de l’eau chaude, de l’ordre de 60° à 80°, mais pas trop, donc celle qui sort non des cheminées situées sur la ligne de rupture des plaques, de vie courte (« fumeurs noirs ») mais plutôt celle qui sort des lignes de cheminées latérales, beaucoup plus durables et moins perturbées (« fumeurs gris »).

Dans cet environnement il a fallu passer de nombreuses étapes de complexification : la polymérisation des molécules, l’invention des protéines, des enzymes, des acides aminés, des acides nucléiques, l’assemblage des organismes, leur mise en sécurité par rapport au milieu extérieur à l’intérieur de membranes formant cellules, le développement de systèmes pour générer de l’énergie en exploitant les couples redox et pour la stocker (ATP), pour utiliser la matière extérieur pour se perpétuer, enfin le développement de systèmes pour s’auto-reproduire (ARN/ADN), rejeter ses excrétions métaboliques, s’affranchir des parois poreuses des cheminées pour flotter dans l’Océan, disposer de nourriture dans un milieu moins riche que celui des cheminées, etc… Franchir l’une quelconque de ces étapes, par un processus darwinien, n’a rien eu d’évident, ni d’automatique.

D’autres contraintes environnementales ont peut-être été nécessaires, imposant à un stade quelconque du processus prébiotique un autre milieu. Par exemple certains chercheurs ont évoqué la nécessité d’une alternance de périodes de sécheresse et d’humidité pour la polymérisation des molécules organiques (établissement de liaisons hydrogène). Une telle alternance aurait pu être fournie par la zone de balancement des marées générées par la Lune. Or la présence d’un tel gros satellite (relativement à sa planète) est un phénomène exceptionnel dans l’univers connu. D’autres (Stephen Benner) ont constaté le rôle essentiel de catalyseurs qui ne supportent pas l’eau, tels que le borate ou le molybdate, l’action des borates sur les hydrates de carbone étant essentiels pour empêcher la décomposition des molécules organiques et l’action des molybdates sur les glucides favorisant la création de ribose. Comment concilier la présence d’eau et l’absence d’eau ? L’alternance des marées a-t-elle suffit ou a-t-il fallu à une époque différente une période longue d’assèchement suivant une inondation, avant une reprise des nouveaux éléments par l’Océan ?

Sur Terre, le passage de l’inerte au vivant ne s’est produit qu’une seule fois. Nous descendons tous d’un seul groupe de cellules vivantes, LUCA, (« Last Universal Common Ancestor ») qui existait dans des conditions tout à fait particulières il y a environ 3,8 milliards d’années. Dans notre environnement, seule la planète Mars coche un nombre important de cases pour avoir réussi le même prodige, mais pas toutes. Savoir si elle en coche assez et précisément lesquelles, est toute la question. Grâce à Mars nous aurons donc une première réponse. Nous saurons si le réacteur biochimique Mars est parvenu au même résultat que la Terre ou s’il s’en est seulement approché et jusqu’où. Nous saurons si la vie est un phénomène tout à fait extraordinaire ou bien juste exceptionnel. Le voyage et l’étude en valent la peine !

Image à la Une: un engin de plongé pressurisé en vue d’une cheminée hydrothermale de la région de Lost City. Ces cheminées sont à ne pas confondre avec les fumeurs noirs situés sur la ligne de fracture des plaques tectoniques des dorsales océaniques. L’eau qui en sort est moins chaude (moins de 100°C) et leur vie est beaucoup plus longues (dizaines de milliers d’années). 

Image ci-dessous: une cheminée de Lost City vue de près (pour les deux photos, image courtesy D. Kelley and M. Elend/University of Washington, IFE, URI-IAO, UW, Lost City science party, NOAA, and National Geographic).

Deux lectures essentielles:

Professeur André Maeder (astrophysicien, Université de Genève) : « L’unique Terre habitée ? » (Éditions Favre) sous-titré « Les conditions pour la vie sur les planètes ».

Nick Lane (Professeur au département de Génétique, Evolution et Environnement de l’University College London): « The Vital question », sous-titré « Why is life the way it is » (Editions Profile Books).

Ce que nous disent les microtubes de Nuvvuagittuq

La vie sur Terre a commencé un jour puisque nous sommes ici. Le problème que l’on se pose est toujours « quand » et « comment » pour tenter d’en déduire s’il s’agit d’un processus reproductible « ailleurs » dans l’univers. Et lorsque l’on croit trouver des signes encore plus anciens que ceux déjà identifiés, l’information fait le tour de la planète à la vitesse de la lumière.

Il est bien établi par l’analyse isotopique des éléments radioactifs contenus dans certains zircons, que la Terre s’est formée il y a 4,567 milliards d’années. Avec cette méthode l’environnement immédiat des microorganismes fossilisés « putatifs » (essentiellement tubes de  16 à 30 µm de diamètre et de 80 à 400 µm de longueur) trouvés récemment dans la « Ceinture de roches vertes de Nuvvuagittuq », sur la cote québécoise de la Baie d’Hudson, au sein de l’ensemble géologique très anciens du Bouclier-canadien, a été daté entre 3,77 et 4,28 milliards d’années. C’est un saut considérable par rapport à l’âge des micro-fossiles les plus anciens déjà confirmés, datés de 3,5 milliards d’années et même par rapport à l’âge des indices chimiques isotopiques les plus anciens, datés de 3,7 milliards (Isua, Groenland) ou 3,83 milliards (Akilia, Groenland), sur la nature biologique desquels on s’interroge encore car ils ne sont associés à aucun biomorphe et qu’ils pourraient avoir une origine non biologique.

A Nuvvuagittuk, on se trouve en présence d’une roche sédimentaire ferrugineuse de type jaspe, probablement formée dans un environnement d’évents hydrothermaux d’un plancher océanique (depuis longtemps émergé). Les microfossiles sont inclus dans des couches de quartz et de magnétite à l’intérieur de ce jaspe. Ils se présentent comme des tubes, des boutons (« knobs »), des rosettes ou des filaments d’hématite (éventuellement inclus dans les tubes), les tubes étant curieusement semblables aux micro-organismes respirant le fer qui prolifèrent autour des cheminées hydrothermales contemporaines. Les rapports entre ces différents phénomènes ne sont pas clairs. Leur carbone est, sur le plan isotopique, compatible avec un carbone d’êtres vivants (surabondance de l’isotope 12C par rapport à l’isotope 13C). Les chercheurs ont exclu une formation a-biogénique et interprètent les tubes comme des fourreaux de bactéries (l’équivalent d’une coquille), les boutons étant similaires à des fossiles de bactéries, les rosettes et les filaments étant plutôt des rejets métaboliques.

Les microfossiles de cette ancienneté sont extrêmement rares et difficiles à trouver car les roches qui les contiennent ont presque totalement disparu de la surface de la Terre du fait de l’érosion, du volcanisme ou de la tectonique des plaques (absorption dans le manteau de la planète). Les seuls sites primordiaux (« hadéens ») connus sont de petites régions de l’Ouest Australiens, du Groenland et du Bouclier-Canadien. Par ailleurs, le passage du temps a conduit à une évolution chimique profonde des éléments constitutifs, ce qui ne facilite pas l’identification.

Comme il est exclu que ces êtres vivants aient été des eucaryotes (cellules à noyaux ayant la possibilité de s’associer en organismes multicellulaires, apparus vers -2 milliards), les tubes que l’on voit sont peut-être des appendices servant à la protection et à la capture de la nourriture des bactéries. Cela est très surprenant et pose problème car la structure de ces être vivants apparaît déjà très complexe alors que l’on croyait jusqu’à présent qu’il avait fallu une longue période prébiotique pour arriver à la vie la plus simple. En fait, la logique aurait voulu que l’on découvre des bactéries de type coccoïde (sphériques), beaucoup plus petites (de l’ordre d’un seul micron) ressemblant à celles datées de 3,5 milliards d’années précédemment identifiées (voir image ci-dessous).

Gardons donc encore quelques réserves sur cette découverte.

D’autre part, ne nous hâtons pas de conclure que la vie est un processus qui se développe automatiquement sur une planète rocheuse dans la « zone habitable » de son étoile. C’est un pas qu’il est impossible de franchir aujourd’hui car des spécificités propres à la Terre, notamment son enveloppe océanique, peuvent avoir joué (et l’on sait que « normalement », compte tenu de son emplacement dans le système solaire sous la limite des glaces, la planète devrait être sèche).

Dans ce contexte l’exploration de Mars est encore plus intéressante, étant entendu qu’elle peut fournir des éléments de comparaison que ne peuvent permettre aucune des autres planètes aujourd’hui accessibles, compte tenu de son histoire géologique primitive très semblable à la nôtre (avec notamment la présence d’eau liquide). On pouvait en effet douter que dans le cas de Mars, le temps ait été suffisant  pour conduire un processus prébiotique  jusqu’à la vie, puisque les conditions environnementales de la planète se sont très sérieusement détériorées vers -3,5 milliards d’années, précisément l’époque considérée précédemment comme celle de l’apparition de la vie sur Terre. Si l’on peut maintenant faire remonter la vie à 3,77 milliards d’années (ou plus), la période de temps disponible (par analogie) pour l’émergence du processus sur Mars est nettement plus longue.

Du point de vue de la recherche des fossiles les plus anciens, un avantage de Mars, est la faiblesse de l’érosion depuis ces 3,5 milliards d’années et l’absence de tectonique des plaques. Il en résulte que la surface couverte par les roches antérieures est considérable (des dizaines de millions de km2, surtout dans l’hémisphère Sud mais aussi dans les plus anciens cratères partout en surface). Les radiations ont certes pu faire évoluer chimiquement les éventuels fossiles en surface mais il devrait en rester des biomorphes comme ceux trouvés à Nuvvuagittuk. Par ailleurs, on peut toujours espérer trouver une accumulation de minéraux qui n’ont pu être assemblés que par une activité biochimique. Enfin, si on ne trouve rien en surface, on va bientôt pouvoir explorer le sous-sol immédiat jusqu’à moins deux mètres avec le robot Pasteur de la mission ExoMars de l’ESA qui doit être lancé en 2020. Atteindre cette profondeur signifiera avoir accès à une couche de terrain peu irradié et éventuellement humide où la vie a pu se maintenir.

Maintenant, si on ne trouve toujours rien, cet échec lui-même aura une signification intéressante pour caractériser les conditions essentielles à l’émergence de la vie.

Référence : « evidence for early life in Earth’s oldest hydrothermal vent precipitates » par Matthew S. Dodd et al. in Nature,  Vol. 543, 2 mars 207, doi:10.1038/nature21377. 

Image à la Une: document ci-dessus, figure 2 (reconstruction en profondeur de l’image des tubes de Nuvvuagittuq). NB: le diamètre des tubes est de 16 à 30 micromètres.

Image ci-dessous : Microstructures datées -3,4 Gy, associées à des cristaux de pyrite trouvées dans les grès de Strelley Pool (Australie Occidentale). Source : “Microfossils of sulfur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia”, article publié dans “Nature Geoscience” le 21/08/2011 par David Wacey et al. DOI: 10.1038/NGEO1238.

 

Un nouveau concept de système de transport modulaire pour aller sur Mars

Pierre-André Haldi, vice-président de la Mars Society Switzerland, spécialiste des systèmes énergétiques et des questions de sécurité/fiabilité et, avant sa retraite en 2011, professeur à l’EPFL, propose un nouveau moyen d’aller sur Mars en vols habités. Son projet s’inspire des travaux de Robert Zubrin et d’Elon Musk mais leur apporte des améliorations évidentes. Dans ce billet, je lui passe la parole :

Configuration du Système de Transport Interplanétaire (« STI ») proposé

La configuration de STI (équivalent de l’ITS d’Elon Musk) proposée (cf Fig.1) comporte, outre un lanceur multiusage réutilisable (LMR) de la classe de puissance des SLS de la NASA (1/3 de celle prévue par Elon Musk), deux éléments principaux : un vaisseau interplanétaire (VIP) assemblé en orbite terrestre, restant ensuite dans l’espace (pas d’atterrissages sur Mars ou sur la Terre), et 3 véhicules d’ascension / descente (VAD) effectuant les transferts sol-orbite et réciproquement, tous également réutilisables.

Le VIP se compose lui-même de 3 modules d’habitation spatiaux (MHS), réunis en étoile dans l’espace et mis en rotation pour créer une gravité artificielle, un module de production d’énergie (MPE), un module de propulsion pour le transfert Terre-Mars et retour (MPT), et un module de connexion central (MCC) qui relie entre eux ces différents éléments. Ceux-ci sont décrits plus en détail à la suite de la figure 1 (ci-dessous).

LMR : Ce “booster” est utilisé pour le lancement des différents modules du STI en vue de leur assemblage en orbite terrestre ; rappel : une fois assemblé dans l’espace, le VIP y reste et sert à de nombreux transferts Terre-Mars et retour, les VAD, plus le LMR au départ de la Terre, assurant les navettes sol-orbite et vice-versa. Le LMR devrait typiquement permettre de mettre de l’ordre de 150 tonnes en orbite basse. Pour des raisons de sécurité/fiabilité le nombre de moteurs du premier étage ne devrait pas dépasser 6 (SLS NASA : 4 moteurs + 2 propulseurs d’appoint).

VAD : Ces “navettes” permettent de transférer une trentaine de passagers avec leurs “bagages” entre sol et VIP en orbite (de la Terre ou de Mars). Le plein d’ergols des VADs est effectué au sol, sur Terre et sur Mars respectivement.

MPT : Ce système de propulsion (dans les premières versions, chimique – méthane / oxygène) doit permettre au STI de s’élancer vers Mars depuis l’orbite terrestre, de se mettre en orbite autour de la planète rouge, et réciproquement au retour, de quitter l’orbite martienne pour retourner vers la Terre et s’y mettre en orbite.

Idéalement, le principe serait de prévoir un “échange standard” des réservoirs aussi bien en orbite terrestre qu’en orbite martienne (dans ce dernier cas, en utilisant un VAD adapté envoyé précédemment sur la planète rouge; on suppose ici qu’un minimum d’infrastructures existe déjà sur Mars), afin d’éviter tout transvasement de fluides cryogéniques en apesanteur (problèmes d’homogénéité des fluides).

MHS : Chacun des 3 modules est prévu pour 30 occupants, répartis sur 3 ponts d’habitation comportant chacun 5 cabines pour 2 personnes. L’espace offert par cabine est de 9,5 m2 environ ; à titre de comparaison, la surface d’une cabine pour 2 passagers sur un paquebot de croisière de bon standing est de 12 m2, avec un lit double et non des couchettes rabattables. Le volume utile total est par ailleurs comparable à celui offert par l’ITS de Space X. Les volumes à disposition “au-dessus” et “au-dessous” des quartiers d’habitation sont destinés aux équipements techniques et de support-vie, matériel de maintenance et réparation, sas (connexions au VAD et MCC respectivement), etc. A noter que les réserves d’eau et de nourriture seront plutôt placées contre les parois pour atténuer le flux de radiations solaires et cosmiques. La Fig. 2 présente schématiquement à quoi pourrait ressembler un pont d’habitation. L’idée serait de renforcer par ailleurs les parois du pont central, qui servirait ainsi d’abri aux 30 occupants le temps de laisser passer une tempête solaire, voire même de dortoir général, par rotation de 10 personnes à la fois, pour réduire l’irradiation globale reçue par chaque passager en “vol de croisière”.

MPE : La source d’énergie à utiliser pendant le voyage qui paraît la plus appropriée dans un tel contexte est sans conteste la fission nucléaire. Des solutions existent, par exemple le “Heatpipe Power System” (HPS), un réacteur rapide compact produisant 100kWe sur une durée pouvant atteindre 10 ans et destiné aussi bien à l’alimentation de vaisseaux spatiaux que de bases planétaires, voire de véhicules de surface. Ce type de réacteur a été développé aux Etats-Unis par le Los Alamos National Laboratory depuis 1994 comme un système robuste et à faible risque technologique, en mettant l’accent sur une fiabilité et une sécurité de haut niveau. A terme, l’énergie nucléaire pourrait aussi être envisagée pour la propulsion entre les orbites planétaires (MPT).

MCC : Outre la connexion entre les différents éléments du STI, voir fig. 3, le MCC sert aussi de “salle de transit” entre les 3 MHS en “configuration orbitale”, c’est-à-dire avec les MHS rapprochés et directement connectés par sas au MCC.

Conclusion :

Après cette présentation de Pierre-André Haldi, je (Pierre Brisson) reprends la parole pour attirer votre attention sur le fait que sa proposition répond à la plupart des points faibles des projets d’Elon Musk et/ou de Robert Zubrin. Elle évite le danger pour les passagers d’un décollage de la Terre à bord d’un seul vaisseau très lourd qui, de ce fait (grand nombre de moteurs nécessaire : 49 versus 6), est exposé à des défaillances dont les conséquences seraient gravissimes ; on profite entre l’orbite de la Terre et l’orbite de Mars, de l’énergie nucléaire plus compacte, plus efficace et plus durable que l’énergie chimique ; on utilise un système de gravité artificiel par mats rigides (au lieu de câbles souples, qui posent problème) et télescopiques (pour pouvoir rapprocher les habitats en cas de contact nécessaire); on évite la descente en surface planétaire de charges trop lourdes, qui consommeraient d’énormes quantités d’énergie. La seule difficulté pourrait être l’assemblage en orbite terrestre du VIP mais on peut sans doute prévoir un simple docking des pièces du « puzzle ».

Vos commentaires et questions sont bien entendu les bienvenus.

Sur Mars, une seule base ou plusieurs ?

Même si on doit prévoir quelques postes avancés, il faudra centraliser au maximum l’habitat martien pour tenir compte de la dureté des conditions environnementales. Cela n’aura que peu d’incidences sur l’activité en surface de la planète compte tenu des possibilités de commande à distance des robots que les colons auront à leur disposition. L’implantation de la Base devra être choisie en fonction de la proximité de gisements de glace d’eau, d’une latitude aussi peu élevée que possible pour éviter un climat trop extrême et d’une altitude aussi basse que possible, pour disposer de la protection d’une atmosphère plus épaisse. Aujourd’hui cela conduit à regarder vers les mesas riches en eau de l’Ouest d’Utopia Planitia.

L’unité de lieu présentera l’avantage de concentrer toutes les ressources importées de la Terre ou fabriquées sur place, permettant ainsi un maximum d’économie d’échelles et les redondances souhaitables pour la sécurité. Jusqu’à présent ces considérations ne jouent pas puisqu’un robot n’est pas suffisamment polyvalent pour utiliser des équipements déjà débarqués autres que ceux strictement prévus pour sa mission. Par ailleurs la possibilité de commander nos robots en temps réel partout à la surface de la planète à partir de cette base alors qu’aujourd’hui nous ne pouvons le faire qu’avec un « time-lag » de 3 à 23 minutes (la distance lumière entre les deux planètes), rendra inutile de lourdes implantations à proximité immédiate de chacun.

Certes l’éloignement des divers champs d’investigation et d’action posera encore des problèmes.

Pour les télécommunications (portant les commandes envoyées aux robots et l’observation de leurs actions), il faudra sans doute utiliser le relais de satellites orbitant autour de Mars car la densité très faible de l’atmosphère empêchera les transmissions par ondes au-delà d’une courte distance. Un réseau de satellites ayant cette fonction principale sera de toute façon nécessaire pour l’établissement de l’équivalent d’un système GPS d’autant que l’absence de champs magnétique planétaire ne permettra pas d’utiliser de boussole.

Pour les transports planétaires il faudra développer un système de dépose des robots d’observation ou d’extraction sur leur site d’intervention puis d’enlèvement des échantillons collectés ou des minerais extraits. Il faudra limiter au strict nécessaire le transport au sol de ces derniers car la progression en surface sera longtemps difficile du fait qu’il n’y a aucune route et que la main d’œuvre que leur création supposerait, sera longtemps inenvisageable en dehors de la desserte de points situés à proximité immédiate de la base. On peut imaginer des pistes, praticables autant que possible, où la progression sera probablement très lente. Trois solutions s’imposent, un maximum d’affinage sur place, des relais viabilisés à faible distance les uns des autres et un transport aérien.

L’affinage sur place sera essentiel puisqu’on s’efforcera de ne transporter que la partie la plus utile des minerais extraits. Cela suppose des installations de concassage, de tri et de conditionnement sur tous les sites d’extractions et sans doute un premier chauffage (jusqu’à fusion) ou un premier traitement chimique mais le travail des métaux se fera essentiellement à la base (purification, alliage, façonnage). Il y aura donc des machines sur chaque site d’extraction et épisodiquement quelques personnes en mission d’inspection ou de réparation, donc des sources énergétiques exploitées et des abris pour les hommes, avec véhicules aériens de secours pour transport(s) en urgence à la base.

L’utilisation d’avions est exclue puisqu’il faudrait de très longues pistes. Ils devraient en effet atteindre une très grande vitesse avant d’obtenir la portance aérodynamique nécessaire (5,5 fois la vitesse en conditions terrestres). La seule solution est clairement le décollage vertical. De ce point de vue, on ne peut pas trop compter sur les dirigeables car la portance aérostatique est également très faible (les dirigeables seront à la limite utilisés pour le transport d’équipements d’observation ou de pièces légères). Il y a cependant une solution, le « gashopper », système ingénieux imaginé par Robert Zubrin en 2000 pour la NASA*. Le principe consiste à pomper le gaz carbonique de l’atmosphère, le concentrer sous forme liquide jusqu’à une pression de 10 bars ; le chauffer alors jusqu’à atteindre une pression de 70 bars ; faire passer le gaz sur un lit très chaud (barrettes de béryllium – matière qui a un très haut point de fusion) vers une tuyère qui l’expulserait en créant une poussée. L’énergie utilisée pour pomper et chauffer serait soit le solaire (cellules photovoltaïques), soit le nucléaire (petit RTG comme pour Curiosity?). L’impulsion serait suffisamment forte pour permettre le décollage (vertical), l’engin étant ensuite propulsé à l’horizontale. La seule difficulté viendrait de la quantité de gaz liquéfié susceptible d’être embarquée comme ergol. Robert Zubrin estime qu’elle devrait permettre de faire des vols de 50 à 100 km. Cependant le plein de carburant pourrait se faire automatiquement après chaque atterrissage (en quelques heures) et donc le gashopper pourrait atteindre n’importe quel point de la planète après avoir effectué le nombre de sauts nécessaire.

Cela n’exclurait pas (1) qu’on envoie de temps en temps des masses importantes avec des MAV* à l’autre bout du monde martien et (2) qu’on envoie des équipements robotisés à partir de la Terre pour les déposer un peu partout en surface. Ces dépôts seraient télécommandés par des opérateurs humains résidant dans la Base, les liaisons « ordinaires » étant effectuées comme indiqué ci-dessus. Avec le temps on pourra peut-être développer des dirigeables martiens en matériaux ultralégers, compatibles avec la faible portance de l’atmosphère ou des drones à ailes battantes, genre entomoptère (mais ces derniers plutôt pour les explorations à courtes distances d’une source d’énergie, un rover par exemple).

Image à la Une: Ce dôme est l’enveloppe externe d’une future base martienne aménagée dans un gouffre volcanique. Il est fait de blocs de glace fixés sur une sphère géodésique. Crédit Pierre Brisson/Manchu/Association Planète Mars.

*MAV = Mars Ascent Vehicle. Ces véhicules normalement destinés à rejoindre l’orbite de parking martienne puis la Terre, pourraient être adaptés pour les vols planétaires. Ils fonctionneraient avec du méthane brûlant dans l’oxygène (obtenus sur place à partir du CO2 de l’atmosphère et de l’hydrogène produit sur place à partir de la glace d’eau, en utilisant la réaction de Sabatier).

Etude sur le « Mars gashopper » (NASA SBIR Contract # NAS3-00074, project summary 8th June 2000). Ci-dessous, schéma du gashopper, crédit Robert Zubrin/Pioneer astronautics.

NB: Pour les personnes intéressées, je donne une conférence demain mercredi 29 mars, de 14h30 à 16h15, à Fleurier (Val de Travers, canton de Neuchâtel), dans le cadre de l’U3A.

Titre: La Planète Mars. Pourquoi? Comment?

lien: https://www.unine.ch/u3a/home/conferences-yc-documents-remis-p/au-val-de-travers.html

Mais que feront donc les hommes sur Mars ?

L’hostilité du milieu et l’absence totale d’infrastructures justifieront l’emploi de multiples machines qui devront permettre de TOUT construire/créer/produire/stocker/recycler. L’éloignement ne permettra pas un approvisionnement constant depuis la Terre (les livraisons ne pourront avoir lieu que tous les 26 mois, en fonction de la position respective des deux astres) et de toute façon les masses transportables seront extrêmement limitées pour des raisons énergétiques et financières (actuellement 20 tonnes par lancement avec le SLS de la NASA en préparation et, avec l’ITS d’Elon Musk, une centaine de tonnes). On ne fera donc venir de la Terre que ce qu’il est strictement impossible de produire sur Mars. Heureusement, cependant, les colons disposeront sur place de quasiment toutes les matières premières requises pour créer/produire les infrastructures et les commodités dont ils auront besoin. Ils auront également accès, par les ondes, à toutes les connaissances accumulées et à toutes les réflexions possibles de l’humanité sur les situations nouvelles qu’ils affronteront.

Les colons devront prendre en compte ces contraintes et ces avantages, et leur établissement sur la planète ne pourra se faire que progressivement en fonction des progrès réalisés dans la construction des infrastructures et la production des premières commodités (atmosphère, eau, nourriture, énergie) puis leur recyclage. La composition de la population et sa croissance seront donc fonction des besoins analysés pour la réalisation de ces infrastructures, la production de ces premières commodités, les contacts avec la Terre ; elles évolueront en fonction des réalisations effectives. Dans l’ordre (avec des chevauchements !), il faudra survivre, vivre, explorer, construire, enfin produire (intellectuellement) pour exporter (c’est-à-dire payer les importations) et pour s’épanouir. Cela implique la présence sur Mars de spécialistes dans toutes sortes de métiers (base d’une université martienne). A noter que Mars souffrira pendant longtemps d’une insuffisance (« shortage ») de population (coût des transports depuis la Terre et difficultés de la vie sur Mars) et que les travaux physiques à l’extérieur des bulles de vie seront à effectuer dans un environnement très dur. Il y aura donc une robotisation maximum de toute activité et les humains seront pour beaucoup des « slashers », c’est-à-dire que la même personne aura souvent plusieurs activités, surtout au début quand certaines spécialités ne seront pas pratiquées tous les jours (chirurgie) compte tenu du petit nombre de personnes présentes.

Dès leur arrivée sur Mars les premiers colons, qui vivront dans des habitats importés de la Terre, devront produire et recycler les commodités (énergie, eau, air respirable, aliments), et parallèlement étudier les conditions d’extraction des ressources nécessaires à la construction des différents éléments de la base, situées à proximité et identifiées au préalable par les satellites qui orbitent en permanence autour de Mars. Il faudra ensuite transformer ces matières premières en produits semi-finis puis en divers équipements plus ou moins sophistiqués. Il s’agit de partir de zéro pour aller au sommet de ce que peut réaliser le génie manufacturier de l’homme. Ce n’est pas rien et cela exigera les compétences les plus fines, les plus complètes et les plus opérationnelles. Les premiers Martiens seront donc des ingénieurs en énergie (fonctionnement du RTG ou des panneaux solaires) ou en chimie, des agronomes spécialistes des cultures sous serre et hors-sol, des géologues, des spécialistes du forage et de l’extraction minière, des biologistes pour s’assurer de l’innocuité des matériaux martiens (la présence d’éventuels facteurs pathogènes), des pilotes de drones/dirigeables explorant pour eux à distance et prélevant des échantillons, des pilotes de rovers pressurisés pour aller sur le lieu des gisements identifiés, des bricoleurs pour assembler et réparer tout ce qui est démonté, cassé ou grippé, des spécialistes des télécommunications et de la robotique, des informaticiens, des électriciens, des plombiers, des opérateurs d’imprimantes 3D, des spécialistes de l’air conditionné, des nutritionnistes pour utiliser au mieux les ressources alimentaires rares, des microbiologistes pour contrôler les populations microbiennes, des médecins (un médecin généraliste, un chirurgien, un orthopédiste, un oncologue, un ophtalmologue, un dentiste protésiste, un pharmacien anesthésiste), quelques infirmières, des spécialistes du recyclage qui superviseront la collecte des déchets, le nettoyage et le fonctionnement des équipements de recyclage, de telle sorte que rien de produit par l’homme ne puisse se perdre et que tout puisse être réutilisé, des spécialistes de la propulsion pour veiller au bon fonctionnement des véhicules de retour sur Terre.

Dans une seconde phase, qui viendra très vite se superposer à la première (dès l’arrivée de la seconde mission), on commencera à construire des abris pressurisées et viabilisés, avec des ressources martiennes. Il faudra des mineurs pour extraire les matériaux des gisements précédemment identifiés, des opérateurs de véhicules de chantier, des chimistes pour évaluer les propriétés des matériaux, des spécialistes de physique des matériaux pour évaluer leur résistance aux conditions extérieures et leurs variations selon ces conditions, des spécialistes du travail des métaux, ou de la production de plastique, ou de verre, des ingénieurs de travaux publics, des architectes pour construire en toute sécurité des habitats soumis à des différentiels de pression extrêmes et prévoir une utilisation aussi intelligente que possible d’un espace habitable rare ; des maçons, des cuisiniers, des couturières et des tailleurs, des logisticiens et gestionnaires de stocks, des chercheurs intéressés par le milieu martien, planétologues, climatologues, exobiologistes, une équipe de cinéastes et journalistes pour rendre compte de l’avancement de la construction de la base et des recherches et faire rêver les Terriens.

Enfin, plus tard, des banquiers, assureurs et toute personne qui pourra s’offrir le voyage et qui pensera pouvoir en tirer profit pour lui-même et pour les autres. De toute façon, la société martienne sera une société du travail et de la responsabilité, les oisifs (touristes, rêveurs divers ?) seront les bienvenus, s’ils ont les moyens financiers, vérifiés (cautionnés ?), d’y séjourner…et puis un jour il y aura des enfants, qu’il faudra prendre en charge et éduquer. Ils seront dans un environnement propice.

Image à la Une : des géologues après collecte d’échantillons de roches, admirent une mini tornade (dust-devil) qui passe entre leur rover et la base : illustration Philippe Bouchet (Manchu) / Association Planète Mars

Outre l’eau et l’atmosphère, Mars dispose des mêmes matières premières que la Terre

Mars a été formée dans la même région du système solaire que la Terre, à partir des mêmes gaz et des mêmes poussières contenant les mêmes éléments chimiques qui devinrent les mêmes roches. Les deux planètes se sont accrétées de la même manière, l’essentiel du fer et des métaux sidérophiles migrant jusqu’au centre de la sphère pour y former un noyau, les roches plus légères (silicates) surnageant dans le manteau et se refroidissant en croûte. Cette croûte fut ensuite, au cours du Grand Bombardement Tardif (LHB), inondée par les averses cométaires venues d’au-delà de la limite des glaces, ces astres apportant également avec eux les métaux plus ou moins lourds qui vinrent se ficher dans la croûte, et des gaz (notamment CO2) pour enrichir en éléments légers l’atmosphère formée dès le début par dégazage interne. Sous cette atmosphère relativement épaisse (plusieurs dizaines de millibars), la température a été suffisamment chaude à cause de la proximité du soleil et de la chaleur interne de la planète (accrétion et désintégration des métaux radioactifs), pour que l’eau soit liquide et hydrate les roches pendant des dizaines de millions d’années tandis que la différence de température entre le manteau et l’extérieur de la croûte provoque un volcanisme intense rejetant périodiquement des quantités énormes de matières transformées par la pression et de gaz, notamment du soufre. Les ruissellements et ce volcanisme ont dû provoquer comme sur Terre les mêmes concentrations de minerais.

On trouvera donc sur Mars toutes les matières premières nécessaires à une industrie locale sauf (1) le charbon et le pétrole, puisqu’il semble bien que la vie, même si elle a pu émerger, n’a pas connu le développement luxuriant qu’elle a connu sur Terre ; (2) le calcaire, car il semble que les océans martiens n’aient pas été suffisamment liquides et pérennes pour que leur eau absorbe le CO2 de l’atmosphère et que son carbone précipite en masse en carbonate de calcium. Est-ce grave ? Pas vraiment. On pourra contourner la difficulté.

Mais avant tout, l’homme sur Mars devra disposer d’énergie. Les sources locales existent et leur développement devra être une priorité. Il n’y aura pas de dépôts carbonés fossiles à brûler, ni d’hydroélectricité, ni d’éolienne (l’atmosphère est trop peu dense malgré le vent) mais il y aura de l’énergie solaire, de l’énergie nucléaire, des piles à combustibles au méthanol et de l’énergie géothermique. Cela devrait suffire. L’énergie solaire fonctionnera tous les jours sauf quand il y aura des tempêtes de poussière, car autrement le ciel est clair et l’irradiance, bien que moitié de celle de la Terre, n’est quand même pas négligeable (entre 492 et 715 W/m2). Pour l’énergie nucléaire, on trouvera les minerais de métaux radioactifs. Pour les piles à combustible, on obtiendra facilement le méthane à partir du gaz carbonique de l’atmosphère et de l’hydrogène de la glace d’eau. Pour l’énergie géothermique, on creusera des puits profonds et on exploitera le différentiel de chaleur existant entre la surface et le sous-sol. Cette énergie sera le levier qui permettra de créer un monde nouveau à l’image de la Terre, une seconde Terre.

On pourra fertiliser la terre stérile de Mars avec les ressources martiennes. On trouvera de l’azote dans l’atmosphère (2%) pour, avec du méthane (provenant du CO2 et de l’hydrogène de l’eau), faire de l’ammoniac et à partir de l’ammoniac, un grand nombre de fertilisants : des nitrates, de l’urée, des engrais azotés. En ajoutant du phosphore et du soufre martiens aux ions ammonium, on obtiendra du phosphate d’ammonium et des superphosphates. Une fois le processus de culture amorcé, la nitrification du sol sera aussi l’œuvre des plantes, en symbiose avec des bactéries capables de fixer l’azote. Et ne vous inquiétez pas pour les bactéries, c’est ce qui sera le moins difficile à importer de la Terre. Evidemment la terre ne pourra pas être cultivée à l’air libre. Comme toutes les autres formes de vie, les cultures devront être protégées sous des dômes construits par l’homme. Mais ne vous inquiétez pas davantage, ces dômes seront de plus en plus vastes, de plus en plus transparents et de plus en plus beaux.

En mouillant et en séchant le sol martien, riche en sels (sulfates de magnésium, chlorure de sodium) et en argiles, on fera du « duricrete », matériau de résistance analogue au béton mais plus susceptible de fracture, défaut qui pourra être corrigé en ajoutant des fibres dans le mélange.

On n’en restera pas à ces matériaux, importants pour la construction, les tarmacs des astroports ou les routes mais lourds et peu maniables. Avec l’hydrogène et le carbone du monoxyde de carbone (notez bien qu’ils sont absents de la Lune), on obtiendra de l’éthylène, base de la production de presque tous les plastiques, polyéthylène, polypropylène, polycarbonate, résines de polyester, et au-delà de toutes sortes de matériaux de construction, de tissus, lubrifiants, isolants, outils divers, emballages, récipients.

Avec l’argile (absent de la Lune) on fera de la céramique, avec la silice, du verre, avec les métaux, notamment le fer (abondant), le cuivre, l’aluminium, tous les produits métalliques que vous pouvez imaginer et tous les alliages dont on peut rêver.

Il ne reste plus qu’à vouloir et à faire !

Image à la Une: Une mine de cuivre au Chili…ou sur Mars?

Non! Il n’est pas inéluctable que les premiers colons martiens meurent après 68 jours.

En 2014, au 65ème International Astronautical Congress (IAC), un groupe d’étudiants du MIT conduit par Sydney Do, doctorant du département d’aéronautique et d’astronautique, a présenté son analyse de la faisabilité d’un établissement humain sur Mars en utilisant les technologies d’aujourd’hui. Pour effectuer cette analyse les étudiants se sont placés dans l’optique des promoteurs du projet « Mars One »* et ils ont considéré plusieurs des éléments importants du support vie (« ECLSS ») dont pourraient bénéficier les colons dans ce contexte particulier. Ces éléments sont principalement la disposition d’une atmosphère respirable et de pièces de rechange suffisantes dans le cadre d’une population régulièrement croissante. Chacun est développé selon des hypothèses conformes au plan de Mars One et l’un des développements, sur des hypothèses très restrictives et peu probables concernant l’atmosphère, conduit les étudiants à conclure que les colons mourraient 68 jours après avoir débarqué sur Mars. C’est une conclusion qui n’a absolument aucun risque de se vérifier dans la réalité car il suffira de ne pas appliquer ces hypothèses extrêmes (et donc absurdes).

*Mars One prévoit un établissement permanent sur Mars avec des vols dont la population croissante à chaque fenêtre de lancement, ne disposerait pas de possibilité de retour sur Terre, parce que ce serait beaucoup moins coûteux. J’ai discuté de ce projet et des principes de la “colonisation” à la RTS le 6 mars (voir ci-dessous).

Il faut reprendre le développement pour bien comprendre : (1) la composition de l’atmosphère peut-être connue mais elle ne peut être régulée selon cette composition (on ne peut enlever de l’oxygène sans enlever en même temps de l’azote). En cas de déséquilibre il faut donc en évacuer un pourcentage global jusqu’à ce que la quantité d’oxygène revienne dans des limites acceptables (26 à 28%) par rapport à une atmosphère à 0,7 bars, puis rajouter de l’azote pour revenir effectivement à 0,7 bars. (2) L’oxygène des habitats provient exclusivement des plantes comestibles cultivées, dès l’arrivée sur Mars, en cohabitation avec les êtres humains ; leur production (d’oxygène) est variable dans le temps selon le cycle de la plante ; la quantité produite est particulièrement élevée lorsque la plante arrive à maturité ; cette maturité intervient 30 jours après plantation pour les laitues et 62 jours pour le blé ; ceci conduit donc à des déséquilibres successifs. (3) l’azote est importé de Terre et les réserves s’épuisent au bout de 66 jours du fait des rééquilibrages successifs nécessaires pour faire face aux déséquilibres successifs. (4) Après cela, soit les corrections continuent mais elles ont pour effet de réduire la pression atmosphérique globale pour maintenir un ratio oxygène / azote acceptable ce qui très rapidement  conduit à l’hypoxie, soit le système d’équilibrage est arrêté mais le risque d’incendie devient extrême.

Ces hypothèses extrêmes sont évidemment très peu réalistes par rapport à ce que serait une vraie mission habitée sur Mars (indépendamment du projet de Mars One, irréaliste sous bien des aspects). Les auteurs de l’étude le reconnaissent d’ailleurs volontiers car ils font eux-mêmes des hypothèses alternatives. Ce qui est dommage c’est que la plupart des médias se soient arrêtés à ces préliminaires et aux intentions « farfelues » de Mars One. En effet la solution est bien évidemment l’extraction sur Mars de l’eau et des gaz nécessaires à la vie, à partir de la glace d’eau et de l’atmosphère martiennes. Il n’est plus nécessaire de démontrer la présence de la glace d’eau (H2 + O2) un peu partout à la surface de Mars y compris aux latitudes moyennes et outre le CO2, qui implique aussi l’O2, l’atmosphère martienne contient aussi de faibles quantités d’azote (2%). C’est d’ailleurs parce que Mars possède cette eau et ces gaz, qu’envisager de s’y établir est plus intéressant que de le faire sur n’importe lequel des autres astres aujourd’hui accessibles à l’homme. Par ailleurs pour éviter d’avoir à purger l’atmosphère de l’habitat en fonction des poussées de production d’oxygène par les plantes, il suffit de cultiver les plantes dans un local séparé de l’habitat, de stocker l’oxygène et d’alimenter régulièrement l’habitat en fonction des besoins. On sait aussi extraire l’oxygène de l’atmosphère de CO2 avec l’apport d’un tout petit peu d’hydrogène (une partie pour dix-huit selon la réaction de Sabatier, fin du XIXème siècle).

Une autre critique des étudiants est que le niveau de TRL (Technology Readyness Level) pour plusieurs des technologies nécessaires au fonctionnement du support vie n’est pas suffisamment élevé. Certes et cela est dû au fait qu’on a fait très peu de tests préparant à l’établissement de l’homme sur Mars. Cependant il faut bien voir que les technologies requises et considérées dans cette étude ne sont pas extraordinairement sophistiquées et il n’y a peu de doute que le moment venu le TRL convenable puisse être obtenu facilement. Nous proposons de chercher à l’atteindre dès maintenant.

Par ailleurs, les étudiants considèrent que dans le cadre d’une population croissante et étant donné qu’il n’y a pas d’industrie sur Mars, le besoin de pièces détachées pour les équipements permettant le fonctionnement et la survie de la colonie, épuiserait rapidement la capacité totale de lancement dont on disposerait à partir de la Terre. L’objection n’est pas fausse mais revient à supposer qu’on ignorerait ce problème en envoyant plus de gens sur Mars que ne permettrait la gestion des pièces de rechange. C’est quelque chose que Mars One semblent vouloir faire mais que nous voulons, nous, Mars Society, éviter, en anticipant et en refusant d’envoyer dès maintenant des gens sans possibilité de retour. Il semble par ailleurs évident que (1) les colons devront au plus tôt démarrer la production sur Mars de tous les produits semi-finis simples puis de plus en plus complexes à partir des matières premières martiennes, et que (2) les imprimantes 3D devraient nous permettre de fabriquer de plus en plus de produits sophistiqués en utilisant des matières premières locales.

Les gens de Mars One veulent aller sur Mars « n’importe comment », nous voulons y aller raisonnablement. Nous souhaitons le TRL suffisant et ne voulons entreprendre que ce qu’il est possible d’entreprendre. En d’autres termes, ce n’est pas parce que les gens de Mars One veulent aller sur Mars sans beaucoup réfléchir et que les étudiants du MIT critiquent leur projet sur des présupposés excessivement rigoureux, qu’il nous faut y renoncer. Il ne faut pas désespérer, les premiers hommes qui iront sur Mars pourront y survivre plus de 68 jours; ils n’iront pas dans le cadre de Mars One et ils disposeront d’un ticket de retour.

Référence: IAC-14-A5.2.7 “An independent assessment of the technical feasibility of the Mars One mission plan” par Sydney Do et al. (y compris Olivier de Weck, diplomé de l’ETHZ et professeur au MIT). Lien : http://www.sciencedirect.com/science/article/pii/S0094576515004294

Image à la Une : l’établissement de Mars One, vue d’artiste (crédit Mars One). NB les premiers colons sont supposés être arrivés en 2023 et on se prépare pour l’arrivée de ceux de 2025.

P.S: Mars Society Switzerland à la Radio

J’ai été invité à participer le 6 mars à l’émission “Versus-Penser” sur la RTS “Espace 2” au cours de laquelle j’ai discuté avec les journalistes Sarah Dirren et Francesco Biamonte des grands principes de la “colonisation”. Il y a été bien sûr question de Mars One (brièvement) mais surtout des motivations et des grands principes de cette “sortie de l’homme de son berceau”. Vous pouvez écouter l’émission en cliquant sur le lien ci-dessous.  En la réécoutant moi-même j’ai eu deux regrets:

(1) avoir fait la (grosse) erreur de présenter la mission TGO comme une mission NASA alors que c’est bien évidemment une mission ESA (plus précisément ESA/Roscosmos) mais le raisonnement qui a introduit ce malheureux “exemple” reste bon: les missions d’explorations sont véritablement multinationales, même si elles sont décidées et organisées par un leader.  D’ailleurs les Etats-Unis sont “pays participant” des suites d’instruments FREND et NOMAD (deux des quatre groupes d’instruments embarqués) de cette mission européo-russe. On peut extrapoler que les missions habitées futures vers Mars seront construites sur les mêmes principes avec un leader (agence ou peut-être consortium privé) et les meilleurs compétences, où qu’elles soient dans le monde.

(2) ne pas avoir mentionné le contrôle microbiologique de l’habitat, à côté de l’apesanteur et du risque radiatif, comme étant un des problèmes majeurs des missions spatiales habitées (j’aurais également dit que ce risque était quand même maîtrisable pour une mission de type martien, compte tenu d’une durée de vol relativement limitée).

J’espère que les auditeurs voudront bien m’excuser, d’autant que je pense que la discussion a mis en évidence des points de vue originaux et donc intéressants ! Lien vers l’émission: https://www.rts.ch/play/radio/versus-penser/audio/versus-penser-objectif-mars?id=8401320

SpaceX, leader du spatial privé accélère le retour des missions habitées au long cours

La Lune « ce n’est pas mon truc », ce n’est pas non plus celui d’Elon Musk (propriétaire de SpaceX) ni des autres « Martiens ». Cependant l’annonce faite par SpaceX le 27 février d’un vol circumlunaire privé pour la fin 2018, est pour nous une excellente nouvelle ! En effet ce vol va permettre la reprise de l’exploration par vols habités de l’espace profond proche (Lune) et lointain (Mars). Après 45 ans de vols à seulement 400 km autour de la Terre (dernière mission lunaire, Apollo XVII, en décembre 1972), ce n’est pas trop tôt !

Ce qui est remarquable c’est que SpaceX ait accepté de relever le défi et que des personnes privées aient osé le lancer alors qu’aucun lanceur n’est encore prêt (le « Falcon 9 », lanceur de SpaceX est opérationnel mais beaucoup moins puissant que le « Falcon Heavy » nécessaire) et qu’aucune capsule n’ait encore été testée pour les vols habités (Dragon, capsule de SpaceX n’a effectué jusqu’à présent que des vols cargos jusqu’à l’ISS). On retrouve ainsi l’esprit d’aventure de John Fitzgerald Kennedy : entreprendre à la limite de ses possibilités et en accepter les risques. Mais ces personnes privées et Elon Musk ont raison car tout est « presque prêt » et donc possible. Voyons un peu plus les détails.

Le lanceur d’abord : le Falcon Heavy qui peut placer en LEO (orbite basse terrestre, d’où il s’élancera vers la Lune) 54 tonnes au lieu des 22,8 tonnes du Falcon 9, est « dans les cartons ». Ses moteurs sont testés (il s’agit des mêmes Merlin que ceux du Falcon 9, en service), la seule différence étant qu’ils sont trois fois plus nombreux (27) et qu’ils seront regroupés en trois ensembles de 9 (ce qui pose quand même un sérieux problème de « tuyauterie »). Le premier vol est prévu cet été.

La capsule ensuite : Dragon peut rapporter sur Terre 3 tonnes dans 11 m3. C’est donc ce dont disposeront les voyageurs (qui doivent revenir sur Terre !). Pour quelques jours et deux personnes (plus éventuellement un pilote mais ce n’est pas certain) c’est acceptable. Dragon devait transporter des astronautes jusqu’à l’ISS au printemps 2018. On ne fait donc qu’accélérer le processus (le plus difficile pour un lanceur étant de s’arracher à la gravité terrestre puis de revenir sur Terre), le vol vers l’ISS devenant un vol d’essai pour le tour autour de la Lune.

Quel est l’intérêt de ce vol circumlunaire ?

La réponse est facile : en tant que tel, aucun. Le fait de survoler la Lune suppose seulement de soulever une masse plus lourde au départ de la Terre (capsule + module de service + second étage pour quitter l’orbite terrestre) et c’est ce que doit permettre l’impulsion du Falcon Heavy par rapport à celle du Falcon 9. En tant que test des équipements, l’intérêt est par contre énorme car il permettra d’atteindre de nombreux « TRL » (Technology Readyness Level), essentiels pour aller plus loin. Ce sera excellent pour tester le lanceur (1er et 2nd étage) ; excellent pour tester le retour de la capsule à la surface de la Terre (problème crucial de la rentrée atmosphérique), excellent pour tester les équipements de support vie (« ECLSS » pour Environmental Control & Life Support System) même s’il ne doivent être opérationnels que sur une période de courte durée (une semaine).

On n’est en effet pas encore sur Mars, ni même sur la Lune, car pour les missions lunaires ou martiennes le plus difficile (après le départ de / et le retour sur Terre), sera de se poser en douceur sur l’astre (freinage) et d’en repartir en s’extrayant du puits gravitationnel que constitue la planète Mars ou la Lune. De plus, à la différence de la mission lunaire la durée de la mission martienne posera aussi problème en raison de sa longueur (2 fois 6 mois de voyage et 18 mois de séjour) alors que l’on peut aller sur la Lune (ou en revenir) en trois ou quatre jour seulement et cela à tout moment dans l’année (N.B : le voyage lunaire ne suppose de parcourir que quelques 400.000 km au lieu de 600 million de km). La durée posera non tellement un problème de nourriture (on peut emporter la masse nécessaire) mais surtout celui d’un recyclage fiable de l’atmosphère et de l’eau (pas de réapprovisionnement possible, au moins pendant les deux fois six mois de voyage) et de contrôle bactériologique du microbiome de l’habitat. Enfin pendant les missions martiennes le risque d’irradiation sera plus grand, non parce que les astronautes ne pourront pas être exposés à une éventuelle tempête solaire pendant une mission lunaire mais parce que ces missions martiennes seront plus longues et que l’exposition aux rayons cosmiques, « GCR », sera plus longue.

En fait, l’intérêt de ce vol circumlunaire sera surtout de lancer la mode des voyages privés et donc, on peut l’espérer, d’enrichir SpaceX. Comme le but d’Elon Musk est de coloniser Mars et qu’il a besoin de beaucoup d’argent pour ce faire, ces vols privés vont « apporter de l’eau à son moulin » en plus de ses autres entreprises (desserte de l’ISS, lancement de divers satellites en orbites terrestres, ou encore ventes de voitures Tesla).

Quid de la NASA ? On peut penser que sa direction aussi bien que ses employés vont être “piqués au vif” et vont vouloir faire aussi bien. L’émulation dans ce domaine comme dans d’autres a toujours été positive (c’est la concurrence avec les Russes qui a permis le programme Apollo). Elle est presque dans la même situation que SpaceX avec son lanceur SLS (70 tonnes en LEO) et sa capsule Orion (presque prêts!) mais c’est une grosse administration ; son fonctionnement est beaucoup plus lourd (et coûteux !) que celui de SpaceX et ses décisions politiques beaucoup plus lentes. Un point d’interrogation, le Président Trump qui semble un pragmatique, veut réduire les dépenses publiques et déteste les administrations et les grosses structures. Ne va-t-il pas profiter de l’essor de SpaceX pour réduire les ambitions de la NASA dans le domaine des vols habités dans l’espace profond (et réduire son budget) ? C’est bien possible. Mais si les privés prennent le relais, ce n’est pas grave, le principal c’est d’aller plus loin, « to boldly go where no man has gone before » comme disait le texte introductif de Star Trek.

Image à la Une: capsule Dragon (habitat et module (“trunk”) de service à l’arrière (crédit SpaceX)

Image ci-dessous: lanceur Falcon Heavy: vous remarquerez ses trois corps, chacun doté d’une propulsion de 9 moteurs Merlin (crédit SpaceX).

L’espoir de vie porté par les planètes de l’étoile Trappist-1 est extrêmement ténu

Le 22 février, la NASA a choisi comme à son habitude de dramatiser sa communication pour faire l’annonce d’un fait qui n’en méritait pas tant. Les « nouvelles Terres » découvertes ne sont pour l’instant que des planètes rocheuses d’une taille comparable à la Terre et elles orbitent autour d’une étoile peu lumineuse qu’on devrait autant comparer à Jupiter qu’au Soleil.

Certes la découverte n’est pas inintéressante puisqu’il était jusqu’à présent impossible d’identifier des exoplanètes aussi petites. La raison en était la trop grande luminosité des étoiles de type Soleil observées et la trop faible occultation causée par le passage (« transit ») de ces astres relativement minuscules entre l’étoile et nous-mêmes. La nouvelle approche qui consiste à viser les étoiles à faible luminosité a donc porté ses fruits et l’on a maintenant confirmation que ces petits astres sont communs (ce dont on pouvait quand même se douter). Un autre aspect intéressant de cette découverte, mais il est particulier au système Trappist-1, c’est que la proximité des sept planètes entre elles induit des relations de résonnances qui, combinées au fait qu’elles soient nombreuses et que leur année soit très courte (quelques jours terrestres seulement), augmentent fortement les fréquences d’interactions et a permis beaucoup de déductions en particulier sur les masses et les densités.

Sur le fond, le fait que ces planètes soient rocheuses à une telle distance de leur étoile n’est pas surprenant car l’astre émet comme tout autre un vent stellaire qui au cours du temps arrache forcément, à cette distance, les matières les plus ténues que sont les gaz atmosphériques. Que leur densité soit telle que leur teneur en eau puisse être élevée, est plus intéressant car cela, d’après les résonances qui les lient, pourrait témoigner d’une formation au-delà de la limite des glaces puis d’un rapprochement à l’étoile (par accrétion de la matière du disque protoplanétaire plus proche de l’astre). Que cette eau puisse être liquide sur trois d’entre elles (Trappist-1 « e », « f » et « g ») se déduit logiquement de leur distance qui permettrait la température adéquate, dans la mesure cependant où il subsisterait une atmosphère suffisamment dense pour en éviter la sublimation (>611 pascals).

De là à dire que ces planètes sont habitées ou même habitables, il y a un grand pas qu’il serait très prématuré de franchir.

Les facteurs contraires à cet espoir ne sont en effet pas nuls. L’étoile est une « pauvre petite » naine rouge, si petite en termes de masse (84 fois la masse de Jupiter* mais seulement 8% de la masse du Soleil) qu’elle génère juste assez d’énergie (0,05% de celle du Soleil) pour qu’on ne la classe pas dans la catégorie des naines brunes (qui ont une masse allant de 13 à 75 Jupiter – « Mj » – et qui de ce fait n’ont pu allumer le processus de fusion de leur hydrogène en hélium). Les conséquences « ne sont pas terribles » pour faciliter la vie. En effet, cette faible énergie implique que lors de sa naissance l’étoile a dû connaitre de très fortes irrégularités de fonctionnement (comme un moteur de faible puissance nourri par un fuel peu homogène du fait d’une pression insuffisante). Ces irrégularités ont dû se calmer avec le temps mais la faible distance à laquelle se trouvent les planètes situées en zone « habitable » (quelques 5% de la distance de la Terre au Soleil, soit moins de 10 millions de km (Mercure se trouve à environ 50 millions de km du Soleil !), les a exposé au début et les expose toujours quoique moins fréquemment, à recevoir de plein fouet les projections de radiations et de matières dues au fonctionnement (c’est-à-dire à la vie) de l’étoile. Ces projections sont d’autant plus destructrices que les planètes, trop proches, sont bloquées dans leur rotation par l’effet de marée gravitationnelle généré par l’étoile ; elles lui présentent donc toujours la même face (exposée en permanence à la rudesse du « jour »), l’autre restant dans l’obscurité et le froid d’une nuit éternelle, un peu adouci, éventuellement, par une atmosphère.

Cette situation a deux conséquences, pour une éventuelle activité biotique locale et pour une éventuelle visite humaine.

Pour ce qui est de l’activité biotique locale, on ne peut conjecturer trop loin puisqu’on ne sait si les planètes de la “zone habitable” possèdent une atmosphère et de l’eau mais qu’on sait que l’environnement radiatif est très hostile. Par ailleurs, envisager qu’il suffirait de roches, d’énergie et d’eau liquide pour engendrer la vie est aller un peu (en fait beaucoup trop !) vite pour un phénomène si complexe dont on n’a qu’un seul exemple à ce jour. Pour ce qui est d’une éventuelle visite humaine, on ne peut pour l’instant la considérer sérieusement puisque le système Trappist-1 étant situé à 40 années-lumière, il faudrait parcourir quelques 400.000 milliards de km pour l’atteindre ! C’est dix fois plus que pour rejoindre Proxima Centauri (4 années-lumière). Si on parvenait à propulser une voile solaire à la vitesse de 20% de celle de la lumière (220 millions de km/h) comme veulent le faire les promoteurs du projet Breakthrough Starshot pour aller jusqu’à Proxima Centauri, il faudrait 200 ans de voyage ! Autant oublier. Par contre on pourra bientôt voir plus avec les télescopes de dernière génération, notamment le JWST (NASA) qui sera envoyé dans l’espace (point de Lagrange 2) en 2018, pour remplacer Hubble. Enfin « voir » n’est pas vraiment le mot car les planètes sont trop proches de leur étoile mais on pourra détecter si elles possèdent une atmosphère, de l’eau et connaître leur température.

NB :

Premières données recueillies par le télescope belge TRAPPIST (pour TRAnsiting Planets and PlanetesImals Small Telescope, acronyme un peu « forcé » !), réflecteur de 60 cm situé à l’observatoire de La Silla (Chili) qui a fait les premières observations ; complément effectué par plusieurs télescopes dont le télescope spatial Spitzer (NASA) qui exploite le rayonnement infrarouge particulièrement porteur d’informations des objets froids.

Découvreur : Michaël Gillon (astronome de l’Uni. De Liège).

*Du fait de la contraction de la matière causée par la force gravitationnelle, le diamètre de l’étoile Trappist-1 n’est cependant que très légèrement supérieur à celui de Jupiter (163.000 km contre 140.000 km).

Document de référence : « Seven temperate terrestrial planets around the nearby ultracool dwarf star Trappist-1 », M. Gillon et al. in Nature, Feb. 23rd 2017 (doi :10.1038/nature21360 ; Macmillan Publishers Limited, part of Springer Nature).

Le sujet a été traité par ailleurs par Fabien Goubet dans le journal Le Temps daté du 23 février 2017 (page 10) sous le titre “En quête de la vie sur sept mondes”.

PS (25 février) : Je ne veux pas dans cet article déprécier la recherche menée par de brillants astronomes dans le monde entier et qui aboutit à un très beau résultat, l’identification d’une chaîne de planètes de taille terrestre à 40 années lumières de « chez nous », dans la zone habitable d’une étoile (zone définie seulement par sa température). Mais je veux critiquer la communication de la NASA qui joue sur la facilité et le spectaculaire pour ne pas dire le démagogique. Les observations et les déductions réalisées par les astronomes sont suffisamment remarquables, pour ne pas se sentir obligé « d’en rajouter » en parlant d’une vie hypothétique qu’il est bien prématuré d’envisager.

Image à la Une:

Image d’artiste de la vue qu’aurait un observateur à la surface de l’une des planètes du système de TRAPPIST-1. Crédit Image: ESO/M. Kornmesser/spaceengine.org.

Image ci-dessous : Ce qu’on a « vu » des planètes ; observations photométriques de Spitzer. La quantité de lumière diminue quand une planète passe devant l’étoile. Vous noterez qu’elle passe plus ou moins vite selon qu’elle est proche ou lointaine. Beaucoup d’autres conclusions peuvent être tirées de ces observations. La planète “h” est mal connue car elle n’a parcouru qu’une seule orbite pendant la période de l’étude. Graphe inclu dans le document de recherche mentionné ci-dessus.