En combinant les lumières des télescopes VLTI*, GRAVITY nous promet des résultats spectaculaires

L’interférométrie contourne la difficulté de la taille des télescopes en combinant la lumière de plusieurs d’entre eux. Appliquée aux Very Large Telescopes (VLT) de l’ESO au Chili, grâce au nouvel instrument, GRAVITY, la méthode permet de restituer l’image que recueillerait un télescope d’un diamètre allant jusqu’à 130 mètres de diamètre avec une perspective ultérieure de 200 mètres (le plus grand télescope, en cours de construction, l’ELT – Extremely Large telescope – a un diamètre de 39 mètres et chacun des 4 VLT, un diamètre de 8 mètres utiles). L’interférométrie est donc promise à un bel avenir. Elle n’a été rendue possible dans le domaine des ondes visibles et du proche infrarouge que grâce aux progrès spectaculaires accomplis dans le domaine des lasers, en optique adaptative, en électronique et en informatique.

*Very Large Telescopes en mode Interférométrique.

Il faut bien voir que GRAVITY (General Relativity Analysis via Vlt InTerferometrY) est en soi une « première ». Il étend à quatre grands télescopes fonctionnant dans le domaine du proche infrarouge (longueur d’ondes entre 2 et 2,4 µm*) une technologie très délicate (surtout pratiquée dans le domaine des ondes radio, plus longues). La difficulté de pratiquer l’interférométrie en astronomie avec ces ondes tient précisément à leurs faibles longueurs et en conséquence (1) aux limitations de la détection « hétérodyne » à large bande (transposition des petites longueurs d’ondes reçues dans des longueurs d’ondes plus grandes) qui impose un bruit fondamental très élevé pour les ondes prises en dessous de 10 – 11 µm et, du fait des turbulences atmosphériques, (2) au faible temps de cohérence (temps pendant lequel l’émission est stable) du front d’ondes pour chaque télescope (phénomène contré par l’envoi du faisceau lumineux sélectionné dans un fibre monomode) et (3) au faible temps de cohérence du front d’ondes entre les télescopes.

*L’observation du trou noir central de la galaxie M87 qui a fait “la une” de la Presse le 10 avril dernier a été faite sur une longueur d’onde de 1,3 mm donc nettement plus longue (domaines des micro-ondes, avant les ondes radio). Le domaine du visible s’étend de 0,4 à 0,8 nm et le domaine des infrarouges va de cette limite de 0,8 nm à 1mm (en recouvrant donc les émissions d’ondes micrométriques comme celles utilisées par GRAVITY). L’intérêt des ondes infrarouges par rapport aux ondes visibles c’est de nous transmettre des données sur les astres dont le rayonnement est relativement froid, comme les planètes.

GRAVITY est un instrument interférométrique de seconde génération pour les VLT. La première génération qui impliquait les instruments VINCI puis MIDI, puis AMBER, ne fonctionnait « que » pour deux ou trois unités de ses deux groupes de quatre télescopes (quatre UT – Unit Telescopes – de 8 mètres et quatre AT – Auxilliary Telescope – de 1,8 mètres). GRAVITY a bien eu ensuite un précurseur à quatre télescopes, PIONIER, mais il ne disposait ni de double-champ (voir ci-dessous), ni d’un-suiveur-de-frange (voir ci-dessous), ni d’une métrologie comme GRAVITY. Quand on a conçu les VLT, l’intention était évidemment d’aller dans cette direction, c’est à dire de faire travailler tous les télescopes ensemble, en interférométrie, bien qu’ils puissent aussi fonctionner seuls. GRAVITY qui a été mis en service en 2016 (« première lumière » à quatre UT – la première lumière avec les AT ayant eu lieu en automne 2015) est un grand pas vers la réalisation de cette intention puisqu’il permet le fonctionnement de quatre télescopes ensemble (les quatre Ut ou les quatre AT1) et sur des objets de luminosité faible comme l’environnement du trou noir central de notre galaxie, Sagittarius A* (« Sgr A* »). Cette cible était son objet premier (d’où l’acronyme GRAVITY pour l’instrument) mais la puissance de résolution du VLTI peut évidemment être appliquée à d’autres sources de luminosité faible, comme les planètes (et il l’a déjà effectivement été).

1Pour le moment il n’y a pas de “recombinateur” (voir plus-bas) à plus de quatre faisceaux mais on pourrait utiliser les quatre AT aussi bien que les quatre UT (cependant la station AT au Nord du site n’est pas en service, ce qui empêche d’atteindre les 200 mètres de base pour l’ensemble du VLTI).

Le principe général est que chaque télescope collecte deux faisceaux d’ondes provenant de deux champs (le double-champ mentionné ci-dessus) qui couvre chacun 2’’ (deux secondes) d’arc dans le cas des UT. Le premier champ contient l’objet scientifique visé avec éventuellement une autre source, non résolue, à l’intérieur du même champ. Dans ce cas cette autre source sert de « référence-de-phase » permettant le contrôle de phase interférométrique de la source scientifique par un « suiveur-de-frange » qui corrige les différences de phase entre les pupilles de l’interféromètre. Le second champ contient un astre choisi pour sa brillance plus forte à l’extérieur du champ de l’objet scientifique mais à proximité (quelques secondes d’arc) ; cet autre « appui » permet le réglage de l’optique adaptative du télescope.

Ceci étant dit, le fonctionnement de GRAVITY est extrêmement complexe. En simplifiant : la lumière collectée par chaque télescope est transmise à un recombinateur (en anglais “BCI” pour Beam Combiner Instrument), laboratoire où elle va être « travaillée », par un jeux de miroirs dans des lignes à retard qui vont permettre de traiter tous les faisceaux d’ondes, provenant de tous les télescopes, exactement au même moment de leur ondulation (« phase »). Avant l’entrée dans les lignes à retard, on va sélectionner avec un « séparateur d’étoiles » le faisceau d’ondes provenant de la source extérieure au champ de la cible scientifique (qu’on nomme « étoile de référence ») choisie pour son signal, voisin, relativement fort, pour corriger en optique adaptative les turbulences subies du fait du passage dans l’atmosphère, par les ondes reçues de la cible scientifique. Ce faisceau est projeté par un séparateur d’étoiles dans l’analyseur de front d’onde infrarouge CIAO (Coudé Infrared Adaptative Optics) qui commande aux miroirs déformables du système MACAO (Multi-Application Curvature Adaptative Optics) les mouvements ultra-rapides nécessaires pour contrer l’effet des turbulences sur les faisceaux d’ondes reçus de la source scientifique et de la source servant de « référence de phase » (à l’intérieur du champ de la cible scientifique). Des rayons laser sensibles à ces mouvements ultra-rapides (métrologie laser) vont intervenir sur le sélecteur d’étoile et sur l’araignée du télescope pour corriger en temps réel les effets des turbulences internes du VLTI. Ainsi corrigées les ondes provenant de la cible scientifique et de la référence de phase passent par les lignes à retard et entrent dans le BCI.

A l’entrée du BCI, le cœur de GRAVITY, un « coupleur à fibres optiques » sépare en deux chacun des faisceaux provenant des deux sources et grâce à un sélecteur de champ, les injecte séparément dans des « fibres monomodes » pour bien les individualiser, l’une science, l’autre suiveur de franges. Un « contrôleur fibré » contrôle la polarisation de l’onde pour lui donner un contraste maximum et corrige la différence de marche entre l’onde provenant de l’objet scientifique et celle provenant de la référence de phase (résultant de leur séparation angulaire dans l’espace). Un recombinateur (puce optique intégrée) intervient ensuite pour créer les interférences des faisceaux projetés et le suiveur de franges alimenté par l’étoile de référence extérieure stabilise l’image sur un miroir. L’onde entre alors dans des spectromètres qui l’analysent.

Le tout baigne dans un cryostat à l’azote liquide dont la température, très précisément contrôlée, varie au niveau des diverses sous-ensembles du BCI afin que la température ne perturbe pas l’expression des ondes. Le cryostat fonctionne même avec des tubes à gaz pulsés pour refroidir les détecteurs à une température plus basse que celle de l’azote liquide, à environ 40 degrés Kelvin. Enfin l’optique est guidée par un système de caméra qui intervient au divers stade de la progression des ondes, dès l’entrée dans le BCI.

A quoi va servir GRAVITY ? A voir avec plus de précisions les objets à luminosité faible, ainsi le trou noir central de notre galaxie* ou encore, en direct, les exoplanètes proches détectées par le principe de la vitesse radiale (influence de la gravité générée par leur masse sur leur étoile au cours de leur trajectoire sur leur orbite), le spectre des atmosphères de ces planètes comme l’a démontré l’article de Sylvestre Lacour et al. publié dans Astronomy & Astrophysics au début de cette année. Le pouvoir de résolution du VLTI équipé de GRAVITY (qui résulte de la superposition des franges d’interférence des 4 UT) est 25 fois supérieur à celui d’un seul des UT qui le composent. En fait GRAVITY est un exhausteur des capacités des télescopes terrestres exploitant sur Terre les ondes du proche infrarouge. On peut rêver de la transposition dans l’espace où les turbulences atmosphériques sont évidemment nulles, de ces merveilleuses machines. Il faudra un jour reprendre le projet de flotte de télescopes DARWIN ou encore construire en surface de la face cachée de la Lune ou sur Mars des installations interférométriques qui elles non plus ne seront pas soumises à ces turbulences. Mais sans attendre (ou plutôt après qu’on aura pu combiner les ondes reçues des huit télescopes) on pourrait travailler sur un successeur au VLTI sur Terre avec une base d’observation équivalente à un télescope optique d’une dizaine de km de diamètre. Ceci nous permettrait de résoudre la surface de ces exoplanètes ; ce n’est pas un rêve mais une possibilité à considérer sérieusement par l’ESO une fois que l’ELT sera achevé**.

*Gravity a déjà obtenu deux résultats majeurs concernant le centre galactique : la mesure du rougissement gravitationnel de l’étoile S2 au passage de son péricentre et la détection de mouvements orbitaux à l’occasion de sursauts lumineux près de la dernière orbite circulaire stable, à trois fois le rayon du trou noir (donc à trois rayons de son « horizon des événements »), ce qui est très proche.

**c’est ce que suggère les auteurs du papier sur la première détection de l’atmosphère d’une exoplanète par interférométrie optique mentionné ci-dessus.

GRAVITY est ce qu’on appelle dans le monde de l’astronomie une « collaboration », disons une association constituée pour un but commun. Elle regroupe l’Institut Max Planck en Allemagne (Physique extraterrestre et Astronomie), le LESIA en France (Observatoire de Paris, CNRS, Uni. Paris Sciences et Lettres, Uni. Paris Diderot), IPAG (CNRS et Uni. Grenoble Alpes), l’Uni. De Cologne, le Centre d’Astrophysique et de Gravitation (Portugal), l’ESO. L’instrument n’a coûté que 8 millions d’euros.

NB : Je remercie pour ses avis précieux, Guy Perrin, astronome au LESIA (Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique), Observatoire de Paris, Université PSL (Paris-Sciences-et-Lettres), directeur adjoint scientifique du CNRS-INSU, responsable du domaine Astronomie et Astrophysique.

Illustration de titre: Image composite du Centre Galactique obtenue à partir d’observations NACO. Pour les observations interférométriques de GRAVITY, l’étoile IRS 16C a été utilisée comme source de référence tandis que la cible scientifique était l’étoile S2. La croix orange indique la position du trou noir supermassif Sgr A*. Crédits : ESO/MPE/S. Gillessen et al. NB : NACO est un instrument situé dans l’UT1 : son objet est l’imagerie dans le proche infrarouge (CONICA) avec optique adaptative (NAOS).

Image ci-dessous : vue partielle de l’observatoire du Mont Paranal de l’ESO (désert d’Atacama, nord du Chili, 2635 mètres). Vous voyez ici les quatre UT. Les quatres AT, plus petits, sont mobiles et permettent de faire varier les dimensions du télescope virtuel:

Image ci-dessous : schéma de traitement des ondes reçues par GRAVITY (éléments en bleuté) publié dans Astonomy & Astrophysics in First Light for Gravity: Phase referencing optical interferometry for the VLTI; DOI 10.1051/0004-6361/201730838, copyright ESO 2017. 

Image ci-dessous, le recombinateur (BCI) élément central de Gravity. Même source que ci-dessus:

Liens :

First light for GRAVITY in Astronomy & Astrophysics : https://www.aanda.org/articles/aa/pdf/2017/06/aa30838-17.pdf

Rougissement de S2 :

https://www.eso.org/public/news/eso1825/

Détection de sursauts en orbite près du bord du trou noir : https://www.eso.org/public/news/eso1835/

http://lesia.obspm.fr/-GRAVITY-.html

http://lesia.obspm.fr/GRAVITY-un-design-complexe.html

https://www.eso.org/public/france/news/eso1905/

https://fr.wikipedia.org/wiki/Interf%C3%A9rom%C3%A9trie

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 06 17

Pour la NASA d’aujourd’hui, le succès n’est pas une option

L’approche par la NASA des vols spatiaux habités met hors de portée l’objectif de l’atterrissage sur la Lune en 2024. Son projet de Lunar Orbital Platform-Gateway est une complication plus qu’inutile, donc une erreur.

Article de Robert Zubrin, ingénieur en astronautique, président-fondateur en 1998 de la première Mars Society, aux Etats-Unis, et président de Pioneer astronautics. Il a été publié dans la National Review le 12 juin 2019. Il est ici traduit et commenté par moi-même.

L’administration Trump a proposé une nouvelle initiative audacieuse, nommée Programme Artemis, qui prévoit d’envoyer des astronautes sur la Lune en 2024 et sur Mars en 2033. Comme l’a précisé Jim Bridenstine, administrateur de la NASA, dans une présentation le 23 mai, ce programme doit comporter quelque 37 lancements d’ici 2028. Ils commenceront en octobre 2020 par le lancement inaugural du SLS (Space Launch System), le nouveau lanceur lourd de l’agence.

Malheureusement le programme tel qu’il est prévu actuellement a très peu de chances de réussir car il semble être conçu d’abord pour servir de mécanisme de distribution de fonds plutôt que pour atteindre des objectifs dans l’espace. On l’a compris très clairement lorsque Bridenstine a déclaré qu’une des conditions de base du programme serait que toutes les missions habitées utilisent le SLS et la capsule d’équipage Orion, qui n’ont encore jamais volé, plutôt que des alternatives beaucoup moins chères qui, elles, ont volé. De plus, avec ses 26 tonnes, l’Orion est si lourd que le SLS ne pourrait pas le transporter sur une orbite lunaire basse avec suffisamment d’ergols pour pouvoir revenir sur Terre. Donc, plutôt que d’utiliser le Dragon de SpaceX (qui avec ses 10 tonnes, offre cependant un espace habitable 50% plus grand que celui de la capsule utilisée par le programme Apollo pour la Lune), une capsule que le SLS ou le Falcon Heavy (déjà opérationnel et beaucoup moins cher) pourraient transporter sans problème (150 millions de dollars contre plus d’un milliard de dollars – pour le SLS – par lancement), la NASA propose de construire une nouvelle station spatiale, nommée Deep Space Gateway (ou plus récemment Lunar Orbital Platform-Gateway), en orbite haute autour de la Lune, en tant que base intermédiaire entre la Terre et la Lune pour Orion. La NASA tente de justifier la Gateway avec des platitudes telles qu’ « elle fournira un centre de commandement», «elle créera de la résilience» ou encore «elle établira une présence stratégique autour de la Lune». Mais cela n’a aucun sens ! En réalité, le fait est qu’une station spatiale en orbite lunaire est un passif et non un actif. On n’en a pas besoin pour assister les vols à destination de la Lune et on n’en a certainement pas besoin, contrairement à ce que prétend la NASA, comme base intermédiaire pour les vols à destination de Mars. Cela coûtera une fortune à construire et une fortune à entretenir et cela imposera de nombreuses contraintes négatives – allant de significatives à sévères – en terme de propulsion et de gestion du temps, à toute mission obligée de s’en servir – comme elles le seront sûrement toutes pour éviter que l’inutilité de Gateway apparaisse évidente au Public.

La NASA a eu raison de choisir le pôle sud de la Lune pour son atterrissage puisque les ressources en glace d’eau qui s’y trouvent pourraient être transformées en carburant/comburant hydrogène/oxygène. Cela pourrait permettre aux véhicules d’excursion lunaire d’explorer la Lune ou de décoller et de revenir directement en orbite terrestre, où ils pourraient être facilement ravitaillés en carburant. Cela rendrait l’ensemble du système de transport pleinement réutilisable donc beaucoup plus performant et économique. Cela libérerait également nos capacités de transport lourd de la partie la plus massive du service logistique lunaire et nous permettrait par ailleurs d’entreprendre plus rapidement des missions vers Mars. Mais placer la base en orbite lunaire plutôt qu’à la surface de la Lune rendrait ces ressources potentielles inutiles, car il faudrait plus d’ergols pour hisser la glace jusqu’à la Gateway, qu’on pourrait en produire à partir de la glace en surface. De plus, comme elle gaspille des milliards de dollars pour des motifs purement politiques, pour la construction de la Gateway et le lancement d’un vol SLS à l’automne 2020 sans aucune charge utile significative, la NASA n’a plus suffisamment d’argent pour financer le développement d’un atterrisseur lunaire – ce qui est réellement nécessaire si on souhaite atterrir sur la Lune. L’agence a donc demandé une augmentation de ses financements, ce à quoi la Maison-Blanche a répondu avec un baiser de mort – c’est-à-dire une exigence selon laquelle les fonds doivent provenir d’un budget éducatif (le « Pell Grants ») dont le montant doit être alloué par le pouvoir législatif. Cela garantit le rejet du Congrès puisqu’il est sous contrôle démocrate.

Apparemment, le succès n’étant pas une option, la priorité est d’attribuer le blâme à « quelqu’un ».

L’ingénierie est l’art de rendre l’impossible possible. La bureaucratie est l’art de rendre le possible impossible. En choisissant la bureaucratie plutôt que l’ingénierie, les planificateurs de l’administration américaine ont transformé l’exploration de l’espace par l’homme, de « mission » en « vision ».

La question est fondamentalement la suivante: la NASA aura-t-elle un plan axé sur un objectif ou un plan axé sur l’intérêt de ses fournisseurs? Un plan axé sur des objectifs conduit à dépenser de l’argent pour « faire des choses ». Un plan axé sur des fournisseurs conduit à faire des choses pour dépenser de l’argent. Au cours du demi-siècle suivant la fin du programme lunaire Apollo les programmes d’exploration planétaire robotique ainsi que ceux d’astronomie spatiale de la NASA ont accompli des performances extraordinaires, car ils sont restés axés sur des objectifs. En revanche, le programme NASA de vols habités spatiaux est devenu très vite axé sur l’intérêt de ses fournisseurs et on l’a laissé dériver. Si nous laissons la NASA persister dans ce mode, nous n’atteindrons pas la Lune en 2024 ni Mars en 2033. Mais si nous insistons pour que notre programme spatial dans son ensemble vise des objectifs précis, exploitant pleinement les ressources spatiales pour réduire le nombre de lancements et la révolution spatiale des entreprises pour réduire drastiquement leurs coûts, nous pourrons non seulement atteindre ces objectifs longtemps espérés mais encore les dépasser largement pour véritablement commencer l’histoire de l’humanité en tant qu’espèce multi-planétaire.

Tel est le choix devant nous.

Robert Zubrin

Commentaire de Pierre Brisson :

Robert Zubrin veut corriger le programme d’exploration de l’espace par vols habités de la NASA et il a raison. Il est très décevant de constater que cette magnifique machine qu’est la NASA, dotée d’excellents ingénieurs, d’excellents chercheurs et de (relativement) beaucoup d’argent, persiste à ronronner prudemment en termes de vols habités.

Les raisons sont probablement en grande partie, l’institutionnalisation d’une entreprise qui était aventureuse lors de sa création et qui à force de grossir et de dépendre d’une direction très politique, est devenue une administration comme une autre, c’est-à-dire un organisme qui pense avant tout à sa survie c’est-à-dire qui est devenu « risk-adverse », ce qui est un comble pour une entreprise supposée couvrir l’entièreté du sujet de l’exploration spatiale, c’est-à-dire aussi un organisme inséré dans un tissu économique, social et politique qui la force à soutenir les entreprises locales en les faisant travailler quels que soient les besoins dictés par la finalité qui devrait éclairer la vision de ses dirigeants, l’exploration spatiale, par vols habités aussi bien que robotiques.

Heureusement l’Amérique dans son tréfonds et dans son imaginaire, reste l’Amérique, c’est-à-dire le pays de la Nouvelle Frontière, le pays de l’entreprise, le pays de la liberté et de l’audace. Pour l’exprimer, davantage que son administration qui se fossilise, il y a les entrepreneurs privés, les Elon Musk, les Jeff Bezos et autres, pour lesquels même le ciel n’est pas la limite. Ce sont eux qui en fin de compte vont tout emporter et nous conduire sur la Lune et sur Mars parce qu’ils ont la volonté de le faire et parce qu’ils en ont les moyens financiers.

image à la Une: Orion approchant le Deep Space Gateway, crédit NASA.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 06 14

Le dernier livre de Robert Zubrin, “The Case for Space, how the revolution in spaceflight opens up a future of unlimited possibilities” a été publié chez Prometheus books le 11 juin.

ClearSpace, une entreprise de salut public pour notre cognosphère*

ClearSpace, une startup suisse spin-off du Space Center de l’EPFL**, veut nettoyer l’espace proche qui commence à être sérieusement encombré de vieux satellites hors d’usage et de débris de toutes sortes. C’est un vrai défi mais elle pourrait le relever. C’est aussi un business et il dispose d’un créneau important pour se développer. Nous lui souhaitons plein succès !

*ensemble de la population humaine, consciente, éduquée et communicante, à la surface de la planète

**fondée par Luc Piguet, Muriel Richard-Noca et Catherine Johnson

Le 23 mai 2019, SpaceX a lancé 60 satellites de 227 kg chacun qui doivent être placés sur des orbites situées à environ 550 km d’altitude (la station spatiale internationale évolue entre 350 et 400 km). Ce lancement a été effectué dans le cadre du programme « Starlink » qui a pour objet de permettre l’accès à Internet partout dans le monde. Il en est prévu beaucoup d’autres car Elon Musk veut mettre en place une constellation de 12.000 satellites, qui seront positionnés entre 500 et 1325 km d’une part et 346 et 335 km d’autre part afin de « couvrir » l’ensemble du globe ! L’orbite basse (« LEO ») a été choisie plutôt que l’orbite géostationnaire (36.000 km d’altitude) pour limiter au maximum le temps de latence entre une demande et une réponse (vitesse de la lumière) et c’est ce choix qui impose la multiplicité des satellites (étant plus proches du sol leur couverture est plus réduite).

12.000 c’est vraiment beaucoup et c’est beaucoup trop ! Il y a deux problèmes résultant du nombre : ces satellites peuvent créer des effets parasites gênants pour l’observation du ciel à partir des observatoires terrestres et ce non seulement en termes de lumière visible mais aussi en termes d’ondes radio (non seulement ils réfléchissent mais aussi ils émettent); ils sont d’autre part la source potentielle de collisions et donc d’une multitude de débris futurs qui disparaitront d’autant plus lentement que leur altitude est élevée. En-dessous de 600 km, les orbites sont qualifiées de « self-cleaning » car les objets qui les parcourent sont freinés par une atmosphère de plus en plus dense et s’y consument relativement vite (25 ans, tout de même, au plus haut !). Ceux qui évoluent au-dessus constituent potentiellement une vraie nuisance (qui peut dégénérer en syndrome de Kessler par enchaînement des impacts). Ils ne pourront redescendre pour être consumés dans l’atmosphère dans un délai de temps raisonnable que s’ils disposent d’un système de propulsion qui peut les freiner et d’ergols pour l’alimenter ou bien si l’on va les chercher !

Elon Musk est conscient du problème mais répond « that the chances of collisions happening in space will be small. The space junk thing — we don’t want to trivialize it or not take it seriously, because we certainly do take it seriously — but it’s not crowded up there. It’s extremely sparse ». Il est vrai que la société SpaceX a dû déclarer à la Federal Communications Commission qu’elle avait pris les mesures supposées nécessaires pour éviter les collisions et la production des débris. Mais un expert de l’ESA (Stijn Lemmens, Senior Debris Mitigation analyst) exprime publiquement ses doutes sur la probabilité que ces mesures soient suffisantes. En ce qui concerne la pollution lumineuse Elon Musk suggère de pratiquer plutôt l’astronomie à partir de l’espace. C’est un peu désinvolte !

De plus SpaceX n’est pas la seule société à faire des lancements d’objets en LEO au-dessus de 600 km. Aux satellites de Starlink vont s’ajouter ceux de OneWeb, Telesat, Amazon et d’autres (comme on dit, « the sky is the limit » !). On estime aujourd’hui à 1540 les satellites en fonction dont 1300 en LEO entre 600 et 1100 km. Ce nombre va quadrupler dans les prochaines années. A côté d’eux il y a environ 23.500 objets de plus de 10 cm en orbite (dont 3000 satellites non opérationnels), résultat d’une histoire qui a commencé en 1957 avec Spoutnik (il y a eu depuis lors plus de 5250 lancements et plus de 500 explosions, collisions, destructions en orbite). 18.000 d’entre eux ont été catalogués par le Space Surveillance Network de l’US Air Force (SSN). 75% sont situés en LEO et ce sont les plus dangereux car ils occupent la zone la plus fréquentée et la moins vaste (surface de la Terre 510 millions de km2, surface d’une sphère de même centre mais de rayon augmenté de 600 km : 610 millions de km2, sphère de l’orbite géostationnaire : 22.490 millions de km2). Pour apprécier ces chiffres, il faut bien comprendre qu’un satellite ce n’est pas seulement un point dans le ciel. C’est d’abord une masse parcourant une trajectoire à environ 8 km/s (plus précisément, la vitesse qui permet de conserver son altitude en LEO). Pour aggraver la situation toute collision aboutit à la dispersion des objets dans plusieurs directions (fonction de l’angle d’impact, des vitesses relatives et de la structure des satellites, cf. syndrome de Kessler mentionné ci-dessus). Et certains se moquent totalement de cette dégradation comme le prouvent les destructions de satellites par des missiles à partir du sol, comme l’on fait l’URSS et les Etats-Unis (ils y ont aujourd’hui officiellement renoncé) et la Chine ou l’Inde encore tout récemment (sans excuse ni remord !).

Il est évidemment inenvisageable d’interdire à qui que ce soit de lancer des satellites, l’interdiction ne serait pas respectée puisque l’humanité a besoin de ces équipements et qu’il n’y a pas de gouvernement mondial pouvant imposer une interdiction. D’un autre côté c’est notre intérêt commun à nous tous Terriens de ne pas continuer à polluer l’espace comme on l’aurait fait il y a quelques dizaines d’années quand on n’avait pas pris conscience du danger, réel, d’étouffer notre civilisation sous nos propres débris ou déchets. Ce qui est valable à la surface de la Terre est évidemment valable dans notre espace proche.

Les constructeurs de satellites peuvent y incorporer, avant le lancement, des dispositifs qui permettent leur freinage, la désorbitation et donc la destruction dans la haute atmosphère quand ils le décideront. Mais quid pour ceux qui ne le font pas et pour les autres qui n’ont rien fait ou qui ont voulu faire et n’y sont pas parvenus ? L’électronique d’un satellite est fragile face aux radiations, en plus des risques de collisions…Même si un satellite dispose de tout un système pour le faire revenir sur terre, il peut y avoir des défaillances et donc un risque qu’en dépit de toute bonne volonté, un tel retour soit impossible.

C’est là ou intervient la société ClearSpace qui nous propose une solution indispensable et réaliste. ClearSpace s’est constituée à partir du projet CleanSpace One initié par Muriel Richard-Noca du Centre Spatial de l’EPFL en 2012. Il s’agit d’abord de lancer (en 2024) un satellite expérimental « CleanSpace One » pour aller décrocher le nano satellite SwissCube (lancé en 2009) puis, sur la base de cette expérience, de commercialiser un service de satellites récupérateurs-désorbiteurs qui serait adapté aux divers types de débris à désorbiter.

Le projet CleanSpace One a été conçu en collaboration avec l’université de Bern, la HES-SO et la NTB. Le satellite sera équipé d’un système de rendez-vous « non coopératif » (la cible visée ne participe pas à la manœuvre et sa rotation peut être erratique) et d’un système de capture. Pour le premier il a fallu adapter/développer les technologies nouvelles pour détecter la cible, la rejoindre ; pour le second, les technologies nécessaires pour saisir l’objet (déploiement d’un filet en forme de cône par cinq tubes de carbone), stabiliser le couple, le désorbiter et le diriger vers l’atmosphère terrestre basse. Le choix de la propulsion est important. On parle d’électricité mais ce mode donnera-t-il toute l’agilité nécessaire ?

Comme mentionné ci-dessus, le premier désorbitage va concerner un petit satellite. Le SwissCube est par définition un cubesat, un cube de 10 cm de côté avec des antennes en plus. Les ambitions de ClearSpace sont évidemment de ne pas se contenter de ce format et d’appréhender des cibles allant jusqu’à 300 kg ce qui couvre un pourcentage important des cas à traiter. La plupart des technologies développées aujourd’hui serviront pour la suite et permettront de mieux évaluer les besoins et les possibilités effectives.

Il y a donc incontestablement du travail. Ce travail sera-t-il rémunérateur, suffisamment pour faire vivre et prospérer une société comme ClearSpace ? Evidemment les sociétés desquelles les satellites inactifs, ou leurs débris, proviennent ne vont pas se précipiter pour payer le désorbitage si elles ne l’ont pas prévu ou s’il n’a pas fonctionné. Cependant il y a plusieurs moyens de les y contraindre au-delà de la démarche polie les priant de le faire. En effet presque tous les satellites sont connus, leur nombre n’étant pas encore si extraordinairement élevé et l’histoire des lancements dans l’espace n’étant pas si longue. Le registre du SSN est une bonne base pour effectuer les démarches. On peut ensuite s’appuyer sur les relations internationales pour demander les désorbitages et notamment sur l’United Nations Office for Outer Space Affairs qui devrait normalement pleinement collaborer en faisant appliquer ses « Lignes directrices relatives à la réduction des débris spatiaux du Comité des utilisations pacifiques de l’espace extra-atmosphérique » adoptées en 2007 par les pays membres. Au-delà, il y a le « name-bashing » (ou la crainte qu’il se manifeste) car l’opinion publique a de nos jours une puissance redoutable. Il y a donc matière à espérer mais avant tout il faut qu’un service de désorbitage existe. ClearSpace ayant développé une technologie efficace et complexe aura une avance déterminante sur ses concurrents. Pour ce qui est du prix, ce sera comme toujours quand il s’agit d’une offre formulée sur le marché mondial, la résultante de l’offre et de la demande. L’offre même si elle est au début non concurrencée, le deviendra vite. Il faudra donc aussi conquérir vite une bonne part de marché et donner satisfaction au client par un service efficace.

Alors, la situation est-elle grave ? Non pas encore mais elle risque fort de le devenir bientôt si les constructeurs de satellite ne prennent pas les dispositions nécessaires et si ClearSpace et ses concurrents ne parviennent pas à commercialiser leurs services. Déjà le projet Starlink devrait causer une détérioration notable. A terme les observations astronomiques risquent de souffrir de ces parasites, d’autant que leur focalisation tend à devenir de plus en plus précise, que les événements observés demandent souvent un temps long de collecte de données et que la mise en commun des ressources d’observatoires partout dans le monde (VLBI) vont demander de plus en plus un ciel clair simultanément un peu partout dans le monde (dans le domaine visible mais aussi dans le domaine des ondes radio). Le public doit donc insister pour non seulement avoir une nuit moins polluée par les lumières domestiques et industrielles (ce qui va aussi dans le sens de l’économie de nos ressources énergétiques) mais aussi pour un espace propre et clair (clear & clean). Les bonnes habitudes doivent être prises maintenant pour que tous les nouveaux satellites lancés au-delà de 600 km d’altitude (au-dessus des « self-cleaning-orbits ») soit équipés d’un dispositif de désorbitation et que les projets aussi polluants pour la visibilité des observatoires terrestres que le projet Starlink ne se répètent pas. Quand il s’agit de l’utilisation d’un bien commun (l’espace proche) il faut que les hommes se soumettent à une certaine discipline. S’ils ne le font pas spontanément, une “autorité” finira bien par l’imposer (peut-être tout simplement au moyen de sociétés comme ClearSpace?). Nous devons le faire comprendre à Elon Musk pour qu’il donne lui aussi l’exemple. Nous ne voulons pas nous couper du ciel et de notre fenêtre sur l’espace proche et lointain ; il ne le devrait pas le vouloir non plus !

Image de titre : CleanSpace One sur le point de prendre SwissCube dans son filet. © EPFL, J.Caillet.

NB: cet article a été soumis à la relecture de Luc Piguet et de Jean-Paul Kneib (directeur d’eSpace à l’EPFL).

Liens :

https://actu.epfl.ch/news/une-start-up-se-lance-dans-le-nettoyage-de-l-espac/

https://clearspace.today/

https://www.esa.int/Our_Activities/Space_Safety/Space_Debris

https://gsp.esa.int/article-view/-/wcl/Fd1ZihgaGrwB/10192/end-of-life-disposal-of-satellites

https://www.futura-sciences.com/sciences/actualites/astronautique-cleanspace-muriel-richard-noca-nous-presente-son-satellite-nettoyer-orbite-terrestre-36845/

https://www.skyandtelescope.com/astronomy-news/starlink-space-debris/

https://www.iau.org/news/announcements/detail/ann19035/

https://gizmodo.com/a-history-of-garbage-in-space-1572783046

https://en.wikipedia.org/wiki/Orbital_speed

lire aussi dans Le Temps (publié le 29 mai 2019):

https://www.letemps.ch/sciences/satellites-spacex-vontils-aveugler-astronomes

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 31 05 19

 

Pourquoi le premier village spatial doit être construit sur Mars et non sur la Lune

L’actualité est aujourd’hui la Lune. Notre astre compagnon est la cible aussi bien des Américains que des Européens. Je pense qu’effectivement l’homme y reviendra mais je doute fort qu’il y crée un village, c’est-à-dire un établissement permanent habité de façon permanente.

Au-delà de l’intérêt scientifique qu’on pourra trouver une fois arrivés sur place, les raisons de préférer aller sur la Lune plutôt que sur Mars sont compréhensibles. Constatant la proximité de l’une et l’éloignement de l’autre, on est naturellement conduit à penser qu’il est beaucoup plus facile d’aller sur la première. On a largement tort car il faut consommer autant d’énergie pour un voyage que pour l’autre puisque l’essentiel (environ 90%) est utilisé pour s’affranchir de l’attraction terrestre et la plus grande partie du reste est utilisée pour se freiner afin d’éviter de s’écraser en arrivant à destination (la gravité, toujours!). On a cependant un peu raison dans la mesure où la proximité de la Lune permet d’y accéder ou d’en revenir en trois jours alors qu’il faut au moins six mois pour aller sur Mars et surtout que l’on peut n’y partir que lors de fenêtres de lancement, ouvertes tous les 26 mois, et n’en revenir qu’après 30 mois d’absence alors qu’on peut partir et revenir de la Lune à tout moment de l’année.

Cependant les contraintes qui s’imposent aux séjours de longue durée sur la Lune sont trop fortes pour que l’on s’y installe vraiment puisque précisément on peut en repartir et y revenir facilement. Dit autrement, les raisons de s’y installer durablement plutôt que pour de courtes périodes ne sont pas telles qu’elles justifieraient de surmonter les difficultés que cela représente. En effet quel intérêt y aurait-il à rester sur la Lune 14 jours d’affilée sans lumière du Soleil (durée de la nuit lunaire) et exposé à une température de -150°C (sans compter que les températures de +100°C pendant le jour lunaire poseront aussi un problème énergétique)? Quel intérêt cela aurait-il de vivre longtemps soumis à une force de gravité de 0,16 g, débilitante pour les os ou les muscles* et gênante pour tout déplacement  alors que l’on n’y est pas obligé ? Quel intérêt cela aurait-il de rester exposé sans aucun écran aux radiations solaires (SeP) et galactiques (GCR) ou de vivre enterré pour s’en protéger alors qu’on peut revenir sur Terre quand on le veut (c’est à dire en fait, à la fin du jour lunaire, 15 jours terrestres après être arrivé)? Il y aura certes des missions de géologie ou de mises en place techniques (observatoires sur la face cachée) ou encore des séjours touristiques sur la Lune mais ils pourront être menés ponctuellement, pendant le jour lunaire et avec une installation de support vie fonctionnant par intermittences avec approvisionnement adéquat pour la période. Les géologues, astronomes ou autres scientifiques pourront déposer leurs instruments robotisés y travailler quelques jours et les télécommander ensuite en direct depuis la Terre (la Lune n’est distante que de 380.000 km soit à peine plus d’une seconde lumière !).

*la marche sur la Lune est rendue très difficile par la faible pesanteur et par le centre de gravité est placé très haut dans le corps, rendant l’équilibre précaire; la pompe cardiaque fonctionne avec la même force pour des besoins moindres.

Au contraire, les opérations sur Mars seront beaucoup facilitées par une installation permanente. Cela tient à la fois aux conditions d’accès relativement plus difficiles et aux conditions environnementales relativement moins dures. En effet le plus gros obstacle des missions martiennes est qu’on ne peut y commander en direct les robots qu’on y envoie puisque le « time-lag » varie entre 3 et 22 minutes dans un seul sens (6 minutes et 44 minutes pour une impulsion et le retour de cette impulsion sur Terre). Par ailleurs le fait d’être obligé de rester 18 mois sur place avant de pouvoir revenir, implique d’installer toutes les facilités nécessaires pour un séjour de toute façon déjà long. L’exposition aux radiations pendant le voyage, beaucoup plus long que pour aller sur la Lune, alors que les doses de radiations reçues au sol seront moindres (masse de l’atmosphère équivalente à une colonne d’eau de 20 cm), poussera à limiter le nombre de voyages dans une vie (on peut évaluer le maximum à trois ou quatre selon l’âge et le sexe). De plus, ce voyage restera cher non pas tant en argent (même énergie dépensée que pour aller sur Mars), qu’en temps passé (deux fois six mois !). Une fois sur Mars on sera donc incité à y rester aussi longtemps que nécessaire pour y mener à bien l’intégralité d’un programme prévu, sans la ou les coupure(s) d’un (ou plusieurs) aller et retour. Sur le plan environnementale, la durée du jour de 24h39 n’imposera pas les longues périodes d’obscurité et de froid de la nuit lunaire et permettra en particulier des cultures sous serres utilisant en partie plus ou moins grande l’énergie solaire. Une gravité de 0,38g ne sera pas aussi débilitante que celle générée à sa surface par la masse lunaire et la réadaptation sur Terre ne devrait pas être aussi difficile qu’au retour de la Lune pour une même période. Enfin, autant on pourra se contenter d’un confort spartiate pendant une quinzaine de jours, autant ce serait plus difficile pendant 18 mois.

Sur la Lune il n’y aura donc pas un village mais un dépôt d’équipements ou plus exactement une base activée périodiquement, pendant le jour lunaire, en fonction des missions (scientifiques ou techniques) ou des visites touristiques. Ce sera un peu une projection de ce qu’on fait aujourd’hui en Antarctique. Peu de personnes y hivernent et sur la Lune on se contentera aussi d’un service minimum pendant la nuit, pour veiller au bon fonctionnement des équipements des habitats en mode « repos », pour effectuer des dépannages d’urgence sur les équipements scientifiques (en dehors bien sûr de périodes de construction ou d’observation qui peuvent conduire à travailler la nuit). Il ne serait ni rationnel, ni économique de procéder autrement. Sur la Lune il pourra y avoir du personnel affecté à ces trois fonctions, qui feront des séjours assez longs, disons un an, mais compte tenu des problèmes de santé que cela implique et de la facilité relative de revenir sur Terre, il serait étonnant qu’ils soient vraiment plus longs. Enfin sur la Lune les ressources en eau semblent beaucoup moins importantes et facilement accessibles que sur Mars et la poussière plus agressives (érosion nulle puisqu’il n’y a jamais eu ni atmosphère ni eau courante) ; ce ne sont pas des détails pour la logistique. Sur Mars, par contre, il devra y avoir toutes les facilités nécessaires à la vie en autarcie pour un séjour qui ne saurait être inférieur à 18 mois et qui sera souvent du double (deux périodes synodiques).

On doit donc bien parler d’un projet de base lunaire et d’un projet de village martien. Ce n’est pas pareil ! Le risque à craindre en commençant par la Lune c’est que la difficulté de vie sur cet astre ne décourage d’aller un jour sur Mars qui lui sera assimilée à tort.

Image à la Une : Village lunaire (à gauche, crédit ESA) ; village martien (à droite, crédit SpaceX).

Megapower un réacteur nucléaire d’un nouveau type qui nous permettra de vivre sur Mars

Le Los Alamos National Laboratory *(LANL), travaille en partenariat avec la NASA sur « Megapower », un nouveau type de réacteur nucléaire qui convient parfaitement aux besoins énergétiques d’un établissement humain sur Mars.

* Appartient au « Department of Energy » (« DOE ») des Etats-Unis.

Megapower est un réacteur extrêmement robuste, aisément transportable et contrôlable. Il pourrait être utilisé dans tous les endroits difficiles d’accès et ne disposant pas d’infrastructures énergétiques préexistantes. On pense évidemment tout de suite à la Lune ou à Mars. Son principe est le même que le réacteur « KRUSTY » (« Kilopower Reactor Using Sterling Technology », présenté en février 2018 dans ce blog) mais il aura une puissance beaucoup plus élevée (jusqu’à 10 MWe* au lieu de 10 kWe*).

*puissances visées par le LANL .

De l’Uranium 235 (235U) sous une forme légèrement enrichi (« LEU » pour « Low Enriched Uranium », 19,75%*) génère de la chaleur par le phénomène de fission généré par l’impact de neutrons provenant d’autres noyaux préalablement fissionnés (2 à 3 en moyenne par fission). L’effet est renforcé par des réflecteurs (en alumine – Al2O3 – ou oxyde de béryllium -BeO) placés autour du cœur et qui renvoient vers l’intérieur de la masse de ce cœur, les neutrons qui auraient tendance à s’en échapper (ce qui permet aussi d’utiliser ce matériau, LEU). La chaleur est conduite par des fluides caloporteurs (sodium dans le cas de KRUSTY, potassium dans le cas de Megapower) circulant dans des tuyaux caloducs (« heat-pipes », conçus par LANL) au dehors du cœur du réacteur, où elle alimente un moteur (Stirling dans le cas de KRUSTY) ou une turbine à gaz (cycle de Brayton dans le cas de Megapower) qui la convertit en énergie mécanique puis en électricité au moyen d’une génératrice couplée au moteur.

*tout près de la limite de 20% qui qualifie cette catégorie; c’est un enrichissement relativement élevé néanmoins si l’on considère que le combustible des centrales nucléaires n’est, lui, enrichi qu’à 3-4 % seulement.

L’efficacité de conversion en énergie électrique est d’autant plus grande qu’il existe un différentiel de températures important entre la chaleur produite par le réacteur et la source froide extérieure dans laquelle est rejetée la chaleur résiduelle (2ème Principe de la thermodynamqiue). Lorsque la demande en énergie est forte le fluide caloporteur retire la chaleur plus vite du cœur, le réacteur commence par se refroidir et le combustible se contracte ce qui tend à faire augmenter le nombre de réactions et in fine à provoquer un plus fort dégagement de chaleur (contre-réaction positive). Inversement lorsque la demande d’énergie est moins forte, la chaleur augmente dans le cœur ce qui conduit le combustible à se dilater et les réactions à diminuer, ce qui permet une auto-régulation et un retour à l’équilibre. C’est la grande originalité et le grand avantage de Megapower qui contrairement aux centrales nucléaires traditionnelles, n’a pas besoin d’un système complexe de valves et de pompes pour obtenir un refroidissement à partir de quantités d’eau importantes prélevées dans un fleuve, dans un lac ou dans la mer. Par ailleurs, le réacteur dispose à sa périphérie (avant le bouclier/réflecteur d’alumine) de 12 tambours rotatifs revêtus chacun d’un arc de carbure de bore qui peut être plus ou moins exposé vers le cœur pour freiner la réaction, et de deux barres de carbure de bore que l’on peut insérer facilement au cœur du dispositif (le carbure de bore, B4C, est un puissant absorbeur de neutrons) en cas d’urgence pour faire chuter rapidement le nombre de neutrons et donc les réactions de fission. Enfin, comme dans tout réacteur, un évacuateur de puissance résiduelle (« decay heat exchanger ») intégré entre le cœur et l’échangeur primaire de chaleur avec le moteur/convertisseur, permet de dégager de l’intérieur du cœur tout excès de chaleur.

La structure du Megapower est complexe, pour exploiter le plus efficacement possible la source de chaleur et assurer la bonne maîtrise du dispositif. C’est un monobloc d’acier inoxydable dans laquelle sont installés en hexagone autour d’un vide central lui-même hexagonal, six secteurs de cœur de réacteur couvrant chacun 60° de celui-ci, dans chacun desquels courent un grand nombre de de tubes verticaux (2112) remplis de pastilles de LEU entre lesquels s’insèrent de nombreux tubes verticaux caloporteurs (1224). Comme indiqué ci-dessus, les tubes de LEU ne sortent pas du cœur du réacteur (il comporte à ses extrémités deux blocs réflecteurs); seuls les tubes caloporteurs se prolongent en dehors pour conduire la chaleur jusqu’au dispositif de conversion en électricité, en passant ensuite par l’évacuateur de puissance résiduelle.

Le tout donne un ensemble cylindrique de 4 mètres de long et de 1,5 mètres de diamètre qui devrait peser entre 35 et 45 tonnes (dont 3 tonnes de combustible). Ce n’est ni léger ni tout petit mais un vaisseau spatial du type Starship de SpaceX devrait pouvoir déposer 100 tonnes sur Mars et ni le volume ni le poids de Megapower ne devraient donc poser problème.

Le transport entre la Terre et Mars de tels réacteurs est donc possible. Un village martien d’un millier d’habitants comme il est envisagé d’en établir une vingtaine d’années après le 1er vol habité vers la quatrième planète, pourrait fonctionner avec quatre ou cinq d’entre eux, avec en complément plusieurs réacteurs KRUSTY pour donner de la flexibilité et peut-être équiper quelques sites éloignés de la base et du fait que KRUSTY sera aisément transportable d’un endroit à l’autre. Il ne faut pas oublier qu’il n’y a aucune infrastructure sur Mars et qu’il faudra tout installer et tout construire, y compris des unités d’industrie lourde pour produire acier, verre, aluminium, éthylène, polyéthylène, méthanol, engrais, etc…On aura donc besoin de beaucoup d’énergie dès le « début ». On commencera sans doute par expédier deux réacteurs avec la première mission habitée (redondance minimum nécessaire) puis on expédiera un réacteur lors de chaque fenêtre de tirs (tous les 26 mois). On aura ainsi toujours plus de puissance disponible, en parallèle avec la croissance des possibilités de l’utiliser. Comme pour d’autres produits sophistiqués, il ne peut être question au début de fabriquer ces réacteurs sur Mars. Il faudra en continuer l’importation depuis la Terre pendant la durée nécessaire, pour en augmenter le nombre et renouveler régulièrement ceux qui arriveront en fin de vie car ils ne devraient maintenir leur puissance nominale que sur une dizaine d’années. Progressivement, il faudra s’efforcer de produire sur Mars les éléments les plus massifs ou dont le transport pourrait poser problème. Il faudra s’y appliquer dès le début car pouvoir réduire le transport de volumes et de masses depuis la Terre sera une des premières conditions d’une installation pérenne, compte tenu du coût élevé du transport, des limitations en volume des soutes des vaisseaux spatiaux et de l’espacement des fenêtres de tirs.

On voit bien les avantages de ce type de réacteur pour l’installation de l’homme sur Mars. Le Soleil sera certes également une source d’énergie. Il serait stupide de ne pas en tirer profit mais il est impossible de compter dessus pour satisfaire l’ensemble des besoins. L’irradiance solaire varie de 492 à 715 W/m2 à la distance de l’orbite martienne contre 1321 à 1413 à la distance de l’orbite terrestre, l’efficacité énergétique des panneaux photovoltaïques est (aujourd’hui) au maximum de 40% et bien sûr, les panneaux solaires ne fonctionnent pas la nuit, moins bien si on s’éloigne de l’équateur et plus du tout pendant les tempêtes de poussière ! Donc l’énergie solaire ne pourra être qu’un appoint et, comme il n’y a ni charbon, ni pétrole, ni eau courante, les autres sources possibles d’énergie se réduisent à la géothermie, si l’on trouve des points chauds offrant avec la surface un différentiel de températures intéressant.

LANL espère que ses réacteurs seront prêts dans 5 ans, c’est juste ce qu’il nous faut puisque le premier voyage avec le Starship d’Elon Musk devrait avoir lieu en 2024 ! Il ne reste qu’à souhaiter plein succès aux ingénieurs qui travaillent à résoudre les dernières difficultés techniques levées par l’« INL » (« Idaho National Laboratory ») qui appartient aussi au DOE et qui a été chargé par ce dernier de faire une étude critique du projet.

Image à la Une : Un réacteur Megapower dans son camion de livraison. Cela donne une bonne idée des dimensions. Crédit LANL

Image ci-dessous : volumes principaux d’un Megapower (crédit LANL).

Images ci-dessous : coupe horizontale du réacteur (crédit LANL). On y voit les six segments de cœur du réacteur, en acier inoxydable, traversés par des tubes où sont empilées les pastilles LEU de 235U, entourées par d’autres tubes remplis de potassium, tout autour les 12 tambours de contrôle portant leurs arcs en carbure de bore et au centre la cavité hexagonale dans laquelle peuvent être introduites les barres en carbure de bore. Le cercle jaune extérieur est le bouclier/réflecteur en Alumine.

Image ci-dessous : coupe horizontale de l’un des six segments du cœur du réacteur (crédit LANL). Chaque tube de combustible (“fuel”, couleur pourpre) de LEU est entouré de trois conduites de transport de chaleur (blanc).

Image ci-dessous à gauche: un des six segments du cœur du réacteur (crédit LANL) et, à droite, une coupe verticale de ce segment (crédit LANL).

             

 

Des précisions / corrections ont été introduites après relecture par le Dr Pierre-André Haldi (directeur du Master of Advanced Studies en énergie, à l’EPFL)

Références :

article dans 1663 (la revue du LANL) : https://www.lanl.gov/discover/publications/1663/2019-february/_assets/docs/1663-33-Megapower.pdf

Proposition alternative de l’INL : https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2017/power/Ananth19349.pdf

 

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 05 10

A la recherche d’un cousin de LUCA notre ancêtre ultime

LUCA, notre « Last Universal Common Ancestor »*, a-t-il été unique dans l’Univers ? C’est pour tenter d’obtenir une réponse à cette question que l’exploration attentive et approfondie de Mars est essentielle.

*LUCA a probablement vécu il y a près de 4 milliards d’années.

La Vie sur Terre (la seule que nous connaissons) est apparue dans des conditions que l’on ignore. On peut constater l’inanimé d’une part avec la présence d’éléments plus ou moins élaborés utilisés par la Vie, l’animé d’autre part et, de ce seul fait, la preuve d’un passage d’un état à l’autre, mais non connaître le processus du passage, même si on en suppose les conditions et certaines phases. Le plus grand prodige c’est le résultat, la Vie, c’est-à-dire un processus continu de transformation de la matière par des organismes puisant leur énergie et leurs éléments constituants dans leur environnement, pour se reproduire presque à l’identique mais pas tout à fait ce qui leur permet de s’adapter aux conditions extérieures et donc d’évoluer.

L’expression de la Vie la plus simple et la plus ancienne c’est la cellule autonome procaryote, bactérie ou archée, qui comprend une enveloppe (membrane) qui sépare et protège un intérieur d’un extérieur mais en même temps permet le contact et les échanges, et à l’intérieur les éléments essentiels au fonctionnement et à la reproduction, c’est-à-dire à la continuité de la Vie. La bactérie ou l’archée ne comprennent que les éléments dont elles ont strictement besoin pour satisfaire cette pulsion homéostatique*. Elles se débarrassent des autres. Ce sont des modèles de rationalité et d’économie. Des êtres certes qui n’ont pas la complexité des eucaryotes métazoaires avec tout un jeu d’organes complémentaires ou même celle des eucaryotes unicellulaires avec leur noyau et ses mitochondries, mais des êtres déjà extraordinairement élaborés et ajustés à leur fonction. Il s’agit pour ces procaryotes de se reproduire plus vite que « les autres » pour disposer du terrain et donc des aliments pour se perpétuer et de l’espace pour projeter leurs descendances. L’instrument de base est l’ADN, la matrice et le modèle qu’il faut transmettre à la génération suivante et qui contrôle « tout » c’est-à-dire la production de protéines et le processus de captation d’énergie pour faire fonctionner l’ensemble de la cellule, ainsi que le mécanisme de reproduction.

*cf: “L’ordre étrange des choses” d’Antonio Damasio

LUCA est l’ancêtre dont nous descendons tous. Tous les êtres vivants sur Terre ont en commun un assemblage génétique qui remonte jusqu’à lui. Il est le seul de ses frères ou cousins cellulaires à avoir transmis ses gênes à une descendance, même s’il a pu faire partie d’une communauté pendant sa très courte vie. A partir de lui la Vie a proliféré en se divisant toujours plus, à commencer par l’embranchement bactéries / archées et jusqu’à la diversité extrême des espèces que nous constatons aujourd’hui. Pour comprendre LUCA c’est-à-dire l’assemblage merveilleux dont toute vie découle, il nous faut connaître l’avant LUCA au plus près de LUCA.

Ses prédécesseurs sont des éléments de plus en plus complexes (composition chimique, polymérisation, choix d’un énantiomère) fonctionnant ensemble dans la nature puis à l’intérieur d’une membrane, peut-être des cellules douées d’une capacité reproductive mais évidemment moins performantes que LUCA puisqu’elles n’ont pas laissé de descendance si ce n’est par l’intermédiaire de LUCA. Il s’agit donc de savoir quels ont été les éléments ultimes de la construction et celui qui a déclenché l’étincelle qui a mis en route le moteur qui ne s’est ensuite jamais éteint. Sur Terre, la tâche est très difficile. Les roches les plus anciennes, remontant à l’époque ou l’alchimie de la Vie a produit son chef-d’œuvre, son LUCA, sans doute non avant -4 milliards d’années (-4Ga) et probablement entre -4 et -3,8 Ga, sont extrêmement rares, n’occupant que quelques tout petits km2 au Nord-Ouest de l’Australie ou au Nord du Groenland. L’érosion a été terriblement abrasive, la tectonique des plaques a recyclé presque tout ce qui pouvait l’être, en dépit de la flottabilité des masses continentales au-dessus de la croûte de la planète. La taphonomie (science de la transformation des êtres vivants après leur mort) est très difficile du fait de cette histoire compliquée et à l’extrême (vestiges de plus de 3,5 Ga) les doutes sont forts. Pour tenter de les lever on doit associer l’étude visuelle (morphologie des biomorphes) à l’étude chimique (présence de matière kérogène, abondance de l’isotope 12 du carbone, traces d’activités métaboliques) en prenant en compte l’évolution que la forme ou la composition ont pu subir du fait du temps, en prenant un soin extrême à écarter toute contamination du fait de l’histoire de la roche examinée ou de la manipulation lors de l’examen lui-même, et en affermissant les hypothèses en discutant les indices.

Sur Mars, la situation est très différente car la vie planétologique s’est considérablement ralentie depuis l’époque où la Vie est apparue sur Terre et a pu par analogie commencer sur Mars, puisque les conditions environnementales antérieures des deux planètes étaient très semblables*. La tectonique des plaques s’est arrêtée très tôt, empêchant le recyclage et la transformation des roches de surface, l’érosion aqueuse, forte par intermittence, n’a plus été généralisée et l’érosion éolienne bien que non nulle est évidemment restée faible puisque la densité de l’atmosphère est devenue nettement plus faible. Il y a eu beaucoup de volcanisme mais les laves ont laissé indemnes des millions de km2 de surface. On peut donc supposer que si le processus de Vie était enclenché vers -3,5 Ga et avait donné naissance à un LUCA local, il a pu continuer, en évoluant uniquement à l’occasion de chaque épisodes humides, donc au ralenti par rapport à ce qui s’est passé sur Terre et en préservant de ce fait des types plus archaïques (et aussi plus robustes).

*NB: elles n’étaient cependant pas identiques, essentiellement parce que Mars bénéficie d’une irradiance solaire moindre, d’une masse planétaire moindre, probablement de moins d’eau, peut-être aussi d’un mixe atmosphérique un peu différent et enfin parce qu’elle souffre d’une absence de Lune.

Maintenant il y a deux alternatives : soit le processus de Vie a démarré, soit il n’a pas démarré pendant la période favorable des quelques centaines de millions d’années autour de -4Ga. S’il n’a pas démarré, on trouvera un jour jusqu’où l’environnement planétaire martien a conduit l’évolution des éléments organiques prébiotiques (non-biologiques ou presque-biologiques) et, connaissant les particularités de l’environnement martien par rapport à celui de la Terre à cette époque, on comprendra mieux pourquoi il a réussi sur Terre et les difficultés qu’il a dû surmonter pour y apparaître. S’il a démarré sur Mars, soit on trouvera un jour des êtres vivants martiens descendant de cet autre LUCA, soit des fossiles de ces êtres vivants. Dans un cas comme dans l’autre nous aurons des preuves et des indication sur la force adaptative (et éventuellement les limites) de la Vie une fois qu’elle a commencé. Puisque l’érosion a été moins forte sur Mars que sur la Terre, on peut aussi espérer que la taphonomie des objets les plus anciens (remontant à l’hypothétique LUCA martien) soit moins difficile (même si le temps passé et l’irradiation de la surface du sol a pu évidement induire des évolutions importantes).

Par ailleurs, si la Vie a commencé sur Mars, il sera passionnant de voir avec quels éléments elle s’est constituée. Au tout début de notre Vie terrestre, nous avons deux branches, celle des bactéries et celle des archées. Elles présentent des différences fortes, au niveau des membranes plasmiques et de la paroi cellulaire, dans le mode de réplication de l’ADN ou dans celui de l’expression des gènes. Il n’y a aucune raison pour qu’une Vie martienne ne présente pas des différences aussi fortes ou même plus. Il n’y a aucune raison que la Vie martienne n’utilise pas d’autres acides aminées que les nôtres, que le sucre ou la base azotée de ses nucléotides soient exactement les mêmes, que son mode de respiration conduise aux mêmes échanges d’énergie que sur Terre en passant par l’ATP. Tout ceci sera très important pour comprendre et apprécier le processus vital en général, savoir ce qui est irréductiblement nécessaire et ce qui l’est moins. Cela nous donnera aussi une compréhension plus abstraite de la Vie comme processus d’évolution de la matière.

La recherche biologique est une motivation fondamentale de l’exploration humaine. Cela justifie toutes les dépenses que nous pouvons effectuer pour aller examiner en dehors de la Terre, le sol et le sous-sol de la planète accessible où la répétition de l’événement est le plus probable, c’est à dire Mars. Mais il ne faut pas rêver. Pour que ces dépenses soient vraiment efficaces, le retour de quelques échantillons ne sera pas suffisant, surtout si la Vie n’a pu véritablement s’étendre à l’ensemble de la surface de Mars, ou si elle revêt des formes et une composition inattendues. Il faudra une présence humaine avec tous les équipements d’investigation de pointe dont nous pouvons disposer et beaucoup d’intelligence appliquée au plus près du terrain, sur Mars.

Illustration de titre: microstructures parmi les premières traces incontestables de vie terrestre. In “Microfossils of sulphur-metabolizing cells in 3.4 billion-year-old rocks of Western Australia (Strelley Pool), par David Wacey et al. publié le 21/08/2011 dans Nature Geoscience, DOI:10.1038/NGEO1238

Conférence le 22 mai à 18h00 à l’EPFL (en Anglais) sur le thème ‘Logistic & economic challenges to realize a Martian village”. Accès libre mais inscription demandée.

Pour (re)trouver dans ce blog un article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 05 10

La sismologie martienne une clé essentielle pour mieux comprendre Mars…et la Terre

Le sismomètre SEIS1 est le fruit de la recherche scientifique française avec la collaboration de la Suisse3. L’équipe est menée par Philippe Lognonné2. SEIS est le principal instrument de la mission Insight de la NASA. Il a enregistré le premier tremblement de Mars ce 7 avril 2019 (sol 128 de la mission InSight). Ce que cet enregistrement nous dit est porteur d’espoir mais aussi de difficultés. L’information dominante est que la structure interne de Mars ressemble plus à celle de la Lune qu’à celle de la Terre. Cela a plusieurs implications.

(1) « Seismic Experiment for Interior Stucture »;

(2) P.I. (responsable scientifique, « Principal Investigator »), Université Paris-Diderot et Institut de Physique du Globe de Paris;  

On peut lire sur le site internet de SEIS ce qui particularise les tremblements de Lune :

« Sur la Lune…les ondes sismiques…sont…diffractées dans toutes les directions par une immensité de structures de toutes tailles. Exposée sans protection au martèlement des impacts météoritiques depuis des milliards d’années, la croûte lunaire, bien loin d’être homogène, est effectivement intensément concassée. En se réverbérant de manière incessante sur les fractures de cette enveloppe morcelée et brisée, les trains d’ondes se complexifient et se dispersent dans le temps. Au lieu d’enregistrer un signal clair, sur une période assez courte, un sismomètre…capte au contraire un signal diffus et déstructuré, qui s’étale sur des intervalles de temps plus longs».

Si on obtient le même type de résultats sur Mars, c’est donc que la croûte de la planète a été pareillement « intensément concassée » par les impacts et qu’elle l’est restée. Cela peut s’expliquer par une histoire météoritique tout aussi riche que celle de la Lune et aussi par le fait que depuis au moins 4 milliards d’années il n’y a plus eu de tectonique des plaques pour renouveler cette croûte.

Apparemment les sismologues ne désespèrent pas, malgré tout, de pouvoir interpréter correctement les signaux de leur sismomètre déposé en surface le 19 décembre dernier et mis en service le 5 avril, c’est-à-dire localiser leur source et constater par leur déplacement depuis elles jusqu’au capteur, la structure de la planète. On peut simplement craindre que la lecture ne puisse être aussi précise que sur Terre compte tenu des nombreuses interférences parasites.

Un deuxième point à noter c’est que le premier tremblement de Mars clairement identifié comme tel, était extrêmement faible, tellement faible qu’on ne peut lui assigner aucune magnitude (vous connaissez certainement la fameuse échelle ouverte de Richter ; sur cette échelle le tremblement enregistrée n’atteindrait pas l’échelon 1). Cela peut témoigner bien sûr d’une activité sismique faible, ce qui ne serait pas étonnant sur une planète plus petite que la Terre (1/10ème de sa masse), qui s’est refroidi (on pourrait dire “a séché”) beaucoup plus vite et profondément qu’elle, en générant donc une croûte beaucoup plus épaisse, d’un seul tenant, et qui de plus n’est pas exposée à l’attraction d’un astre compagnon aussi massif que la Lune l’est pour la Terre (qui exerce de ce fait sur cette dernière des forces de marée non négligeables).

On peut espérer bien sûr d’autres événements, soit un tremblement interne nettement plus important, bien sûr possible puisque la collecte de données ne fait que commencer, soit l’impact d’une météorite importante. Un tel impact aurait le même effet déclencheur d’ondes sismiques qu’un tremblement et si celles-ci ne témoigneraient pas d’une activité interne, elles pourraient du moins décrire par leur cheminement, la structure interne de la planète.

De toute façon les résultats de SEIS seront intéressants car ils permettront sûrement de mieux connaître cette structure, avec des données beaucoup plus nombreuses et précises qu’aujourd’hui (on dispose de la dimension de la planète, de sa vitesse sur orbite, de sa masse et de la mesure de la précession de ses équinoxes) et aussi parce qu’il est important de bien connaître toutes les différences de Mars avec la Terre pour mieux apprécier les particularités de cette dernière (notamment mieux comprendre l’effet dynamo interne qui génère notre champ magnétique global).

Avec la sensibilité proprement extraordinaire de SEIS, nous saurons aussi quelle dangerosité présentent les astéroïdes pour les hommes qui un jour s’installeront sur Mars. Il est important de connaître sur une surface donnée et sur une durée donnée, le nombre d’impacts et l’énergie cinétiques dont ils sont toujours, actuellement, porteurs. Cela nous dira encore mieux que l’observation d’une carte montrant ces impacts, quel type d’habitats il faut privilégier (totalement enterrés ou construits en surface et avec quelle protection) et quelle mesures, il conviendra de prendre lorsqu’on s’éloignera beaucoup de la base (refuges).

Nous sommes au tout début de la sismologie martienne, on peut dire « aux prémices » puisque les sismographes précédemment posés remontent aux Vikings et qu’il n’avaient pas fonctionné. Tout commence; grâce à la performance déjà accomplie par l’ensemble des équipes de la mission InSight.

(3)NB: avec l’ETH Zürich la Suisse est en effet un partenaire important de la mission franco-germano-américaine (la sonde allemande HP3 est le second instrument embarqué sur InSight). C’est son « Gruppe für Seismologie und Geodynamik », « GSG », qui est responsable de l’« eBOX », cœur informatique de l’instrument SEIS. Les signaux reçus du sismomètre proprement dit, déposé au sol et relié physiquement à l’atterrisseur par câbles, sont transmis à cette boîte qui se trouve à l’intérieur de l’atterrisseur en température stabilisée (les variations de températures pourraient perturber les prises de mesures). Elle renferme neuf cartes électroniques dont deux réalisées par le GSG. L’une contrôle l’alimentation en énergie, la seconde assure l’acquisition des données et le contrôle général de l’instrument. C’est le Service sismologique suisse (SED), de cette même ETHZ qui analysera les données en vue d’élaborer un catalogue de sismicité martienne.

Les cartes qui contrôlent les pendules à très large bande (les « VBB », « Very Broad Band », qui donnent une sensibilité extrêmement étendue au sismomètre (fréquence de 0,1 à 1000 Hz), lui permettant de couvrir l’ensemble du spectre possible des ondes sismiques martiennes) et assurent leur rétroaction (remise en place des éléments de pendules dès qu’ils ont été actionnés par un événement) sont françaises (IPGP+EREMS). Une autre carte pour une sismologie plus classique et redondante (capteurs à courte période, « SP », sensibles à des ondes sismiques de fréquence allant de 1 à 40 Hz,) est anglaise (Imperial College, Oxford). Les Allemands sont chargés du contrôle de mise à niveau de l’instrument par rapport au sol (que l’on comprend comme étant aussi très important !).

La très grande sensibilité de l’instrument (notamment résultant de ses pendules VBB) n’a de sens que s’il est très bien protégé de tout « bruit » extérieur (mouvement, température, pression). C’est le rôle de la cloche de confinement sous vide créée par les équipes françaises du CNES, de l’IPGP, de l’Université Paris-Diderot et de la SODERN.

Image à la Une : Image du premier tremblement de Mars enregistré par SEIS pendant le sol 128 (128ème jour martien de la mission InSight).

Image ci-dessous: l’instrument suisse eBOX, cœur de SEIS:

Lire mon premier article sur SEIS (daté des 1er mai et 26 novembre 2018) :

« InSight va ausculter Mars pour nous permettre de mieux la comprendre »

Conférence le 22 mai à 18h00 à l’EPFL (en Anglais) sur le thème ‘Logistic & economic challenges to realize a Martian village”. Accès libre mais inscription demandée.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 05 02

L’histoire de l’eau liquide sur Mars n’apparaît plus si claire

Les traces d’écoulement d’eau liquide apparaissent partout en surface de Mars, surtout dans la zone intertropicale. Une nouvelle étude parue dans Science-advances (AAAS) en date du 29 mars jette le trouble sur une partie de son histoire. Elle a été dirigée par Edwin S. Kite de l’Université de Chicago.

On estime qu’après une période très ancienne correspondant à une partie de nos éons Hadéen et Archéen (ère de l’Eoarchéen) où l’eau liquide a coulé en surface, la planète s’est irrémédiablement asséchée à la suite de la perte de son atmosphère épaisse. Cette période humide est divisée en deux éons martiens, le Phyllosien et le Théiikien (classification stratigraphique proposée par l’astrophysicien Jean-Pierre Bibring de l’Institut d’Astrophysique Spatiale) correspondant chronologiquement plus ou moins aux éons morphologiques Noachien et Hespérien – du moins à la partie la plus ancienne de ce dernier). Le Phyllosien (éon des argiles), jusqu’à -4 milliards d’années («- 4 Ga »), correspond à une planète encore chaude en surface et enveloppée d’une atmosphère épaisse résultant de l’accrétion primordiale et du dégazage interne en résultant ; cette atmosphère est probablement protégée par un bouclier électromagnétique généré par un effet dynamo interne (comme sur Terre encore aujourd’hui), à l’interface du noyau de la planète avec son manteau. Cet éon prend fin avec le « « Grand Bombardement Tardif » (LHB) aux alentours de -4 Ga. Le Théiikien (éon du soufre) succédant à cet événement et se prolongeant jusqu’à environ -3,6 Ga correspond à une période de très fort volcanisme permettant malgré l’arrêt de l’effet dynamo planétaire, de conserver une bonne pression atmosphérique, beaucoup de gaz à effet de serre (notamment soufre, d’où son nom) et une bonne couverture nuageuse.

Après cela, pendant l’éon suivant, le Sidérikien (éon du fer) qui se prolonge jusqu’à aujourd’hui, l’eau liquide n’a fait que des apparitions de moins en moins fréquentes sous forme d’écoulements à l’occasion des grandes éruptions volcaniques ponctuant l’histoire géologique de la planète. Et ces écoulements devaient, selon la théorie en vigueur, avoir été peu abondants (sans doute compte tenu du fait qu’ils étaient rares et que le fond du climat évoluait vers toujours plus d’aridité). Le fait nouveau résultant de l’étude publiée dans Science-advances, n’est pas la contestation du changement climatique entre le Theiikien et le Sidérikien mais plutôt l’abondance d’eau liquide s’écoulant au cours des épisodes humides pendant ce dernier éon, surtout entre -3,6 Ga et -2 Ga mais même vraisemblablement jusqu’après -1 Ga.

L’étude qui a conduit à cette constatation, dérangeante, a consisté à évaluer les flux d’eau courante (volume, force et durée) en prenant en compte (a) la largeur de lits asséchés (plus de 200) partout à la surface de la planète et datant de cette période (-3,6 Ga à -2 Ga), et des chenaux qui les parcourent, (b) les longueurs d’onde des sinuosités des chenaux (méandres) en fonction des dénivelés, ainsi que (c) la masse des sédiments charriés et observés dans les deltas de décharge. Elle a été rendue possible par la précision et l’abondances des photos prises par les caméras HiRISE (High Resolution Science Experiment) et CTX (Context Camera) à bord de l’orbiteur MRO (50 cm à l’horizontal par pixel et moins de 1 mètre à la vertical, permettant de déceler des variations de pente de 2°). Elle a été menée en intégrant toutes sortes de correctifs pour prendre en compte l’érosion.

Il en ressort (1) que les fleuves martiens de cette époque tardive étaient très généralement plus larges que les fleuves terrestres pour un même bassin versant ce qui suggère des précipitations intenses ; (2) que les fleuves de l’éon Sidérikien étaient plus bas en altitude et plus bas en latitude ce qui suggère effectivement une baisse de la pression atmosphérique à moins de 300 mbar ; (3) que le volume des sédiments charriés est caractéristiques de violents épisodes (abondance des flux) intercalés avec de longues périodes d’aridité.

Reste à expliquer ces particularités. On en est pour le moment à des hypothèses. Ce pourrait être une combinaison de plusieurs phénomènes amplificateurs tendant à accroître temporairement un effet de serre déclenché par un événement tel qu’une éruption volcanique ou la chute d’un gros météorite : la fonte des glaces de gaz carbonique au pôle Sud, la fonte des clathrates porteuses de méthane dans le sol ou l’augmentation exponentielle de la vapeur d’eau dans l’atmosphère, formant des nuages de glace d’eau, ces phénomènes interagissant les uns avec les autres et s’auto-alimentant.  Les modélisateurs de climats ont un défi à relever et ils pourraient en tirer des leçons pour notre propre planète (effets d'”emballement”). Ce qui est rassurant dans un certain sens (pour nous), c’est que sur le temps long (dizaines de milliers d’années ?) les fondamentaux planétaires reprennent leur droit. Les caractéristiques structurelles de Mars et sa position par rapport au Soleil (irradiance !) ne lui ont en effet pas permis de recouvrer de façon pérenne un climat tempéré.

Sur le plan de la recherche de la vie, cela donne aussi un nouvel éclairage. Des périodes humides plus importantes au moins en ce qui concerne les quantités d’eau ayant coulé au sol, peuvent avoir permis de prolonger la possibilité pour la vie de continuer à évoluer après qu’elle ait apparu (dans l’hypothèse bien entendu où cela se serait produit). En effet les bactéries se protègent de l’adversité (situations empêchant leur reproduction) en évoluant en spores, ce qui leur permet de conserver leur potentiel reproductif pendant de très longue période d’inactivité (parce que les conditions environnementales ne le permettent pas). Pour certaines bactéries ces périodes peuvent être de l’ordre de plusieurs millions d’années. Les intermittences très humides de l’histoire de Mars prolongées très tardivement (jusqu’à moins de 1 Ga) auraient pu permettre à la vie non seulement de se réactiver pendant ces périodes mais aussi de continuer à évoluer en reprenant même pour peu de temps son activité, et donc de s’adapter à des conditions de plus en plus dures, en surface peut-être mais surtout dans le sous-sol, dans des nappes phréatiques puis simplement dans des endroit plus humides que d’autres.

Nous verrons ce qu’il en est si nous continuons nos recherches sur Mars avec des moyens adéquats…y compris des hommes disposant d’équipements sophistiqués (radars, sondes, analyse chimiques utilisant de multiples réactifs, forage précis, préparation de coupes ultra-fines avec exhausteurs de composants, instruments de manipulation délicats et ultra-propres, microscopes ultra-puissants). Dans l’immédiat le rover Mars2020 de la NASA qui va se poser à proximité immédiate du cratère Jezero et qui va donc disposer d’un champ d’études pertinent pour évaluer plus précisément les corrélations entre les données prises en compte dans l’étude morphologique de Kite et al., permettra surement de l’affiner.

Image à la Une : Extrait de la Carte MOLA (Mars Orbiter Laser Altimeter) montrant les élévations dans le cratère Jezero. On voit bien le Delta alluvionnaire et le lit du fleuve qui l’a produit. Crédit NASA, cartographie exécutée d’après les données recueillies par l’orbiteur Mars Global Surveyor entre 1997 et 2006.

Image ci-dessous: détails du delta alluvionnaire du cratère Jezero (relief inversé par l’érosion).

Références:

(1) Persistence of intense, climate-driven runoff late in Mars history in ScienceAdvances (AAAS) DOI: 10.1126/sciadv.aav7710 par Edwin S. Kite1 *, David P. Mayer1, Sharon A. Wilson2 , Joel M. Davis3 , Antoine S. Lucas4 , Gaia Stucky de Quay5.

1University of Chicago; 2Center for Earth and Planetary Studies, Smithsonian Institution, Washington DC; 3Natural History Museum, Londres; 4Institut de Physique du Globe de Paris, CNRS, Paris; 5Imperial College, Londres.

(2) National Geographic: Rivers may have flowed for longer than anyone realized (by Maya Wei-Haas) 27 Mars 2019

https://www.nationalgeographic.com/science/2019/03/mars-rivers-lasted-longer-scientists-realized/

Pour (re)trouver dans ce blog un article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 04 26

 

Sur Mars le rover Curiosity a atteint la Terre Promise !

Le rover Curiosity de La NASA a procédé le 6 avril a un forage suivi d’un prélèvement déposé le 10 avril dans son laboratoire interne, SAM (Sample At Mars). Ce forage est très particulier car il a été effectué dans un banc d’argile situé à mi-pente du Mont Sharp au cœur du cratère Gale. On attend les résultats de l’analyse.

L’argile, roche sédimentaire, n’est pas un matériau indifférent car non seulement elle se forme dans beaucoup d’eau, après dépôt dans des conditions calmes, mais sur Terre elle est aussi associée à la vie. En effet sa texture et sa structure en feuillets facilitent la création de vésicules de petites tailles (proches de celle des bactéries). Des expériences sur Terre ont montré que des acides gras ( lipides amphiphiles dont les phospholipides comme pour nos cellules vivantes) peuvent pénétrer les vésicules et s’y assembler pour former des liposomes1. Cela a pu être, sur Terre, un chemin vers l’apparition des premières formes de vie, procaryotes (bactéries ou archées). Les terrains argileux sont par ailleurs d’excellents conservateurs de fossiles.

Curiosity avait déjà trouvé des mudstones dans l’arène du cratère Gale mais le mudstone est une roche moins évoluée (mélange de vase séchée et d’argiles) au grain plus fin et moins favorable aux phénomènes décrits ci-dessus (le limon étant dans l’autre direction, une roche à grain plus gros).

Nous sommes en présence du terrain qui, vu des satellites orbitant autour de Mars (notamment MRO -Mars Reconnaissance Orbiter), avait justifié le choix du Cratère Gale pour la mission MSL (Mars Science Laboratory) et la continuation de la mission vers des terrains plus élevées n’apportera sans doute rien en terme de recherche biologique ou, pour être plus modeste et sans doute plus réaliste, « prébiotique ». En effet plus haut on trouvera les couches de sulfates formées à une époque postérieure à celle des argiles, quand les volcans étaient plus actifs et la présence d’eau moins constante. Nous sommes donc ici dans ce qu’on pourrait appeler « la Terre promise ».

Alors cette terre attendue depuis 2012 (atterrissage de Curiosity) sera-t-elle celle où nous découvrirons le Graal ? Il faut bien voir que les instruments de Curiosity sont un peu faibles par rapport au défi.

Ils ont notamment une capacité de discernement visuel un peu limité, une douzaine de microns pour la caméra MAHLI, celle dont la capacité de grossissement est le plus fort, alors que nos bactéries ont une taille de l’ordre du micron. Dans le domaine biologique on ne peut espérer que découvrir un tapis microbien regroupant de très nombreux individus qui présenteraient ensemble l’abondance de certains traits et peut-être une structure significative. La paléomicrobiogéologue Nora Noffke (Old Dominion) spécialiste de ces formations, avait crû en apercevoir au début de la mission MSL, dans la région dite « Kimberley », mais la suggestion de son observation avait été rejetée, sans examen, par le responsable scientifique de l’exploration de la NASA, Ashwin Vasavada (“MSL Project Scientist”). Son argument était qu’on pouvait expliquer (de loin!?) la formation par un processus naturel et que la nature de l’environnement suggérait qu’il s’agissait probablement de grès simplement érodés par la pluie. Les images étaient troublantes et j’ai toujours regretté cette désinvolture mais il est vrai que l’identification visuelle peut prêter à controverses. La taphonomie est difficile sur Mars car les formations sont de toute façon très anciennes et leur évolution possible, encore mal connue.

Une autre possibilité d’identification est celle de l’analyse chimique. Curiosity peut y procéder à distance avec ses lasers, ChemCam qui a visé les bords du prélèvement avant et après l’opération (en cours d’analyse), puis APXS en toute proximité, et ensuite dans son laboratoire SAM – Sample At Mars (également en cours d’analyse). Jusqu’à présent les équipes de MSL n’ont utilisé que l’analyse à chaud, en portant à très hautes températures les molécules des échantillons prélevés (dans son chromatographe en phase gazeuse mais aussi dans son “TLS” (Tunable Laser Spectrometer, spectromètre laser ajustable) déchiffrant la composition moléculaire des échantillons dans l’une des 56 coupelles où ils étaient déposés. Cette méthode a permis de beaux résultats mais son défaut est de rendre les molécules vulnérables aux sels de perchlorates qui deviennent très agressifs lorsqu’ils sont chauffés et qui brouillent le résultat.  J’attends avec impatience que la NASA décide de faire quelques analyses à froid. Elle le peut car elle a embarqué neuf coupelles de réactifs liquides qui le permettraient. Jusqu’à présent elle n’a pas voulu les utiliser (pour ne pas gâcher ses « cartouches » ?) mais le moment est sans doute venu de le faire !

Le forage “Aberlady” s’est passé dans d’excellentes conditions car d’une part le sol était très meuble et d’autre part le foret qui avait connu un très longue défaillance a pu fonctionner à nouveau grâce à l’ingéniosité des ingénieurs de la NASA. Le site a été nommé d’après un village en Ecosse.

Comme vous voyez, il se passe toujours quelque chose sur Mars et l’intérêt est maintenu à un très haut niveau.

1Travaux de Anand Subramaniam (University of California, Merced).

Image à la Une: site Aberlady après forage. On peut remarquer la texture de la roche et constater que le foret a bien fait son œuvre. La cuillère du bras mobile a ensuite ramassé ce qu’il lui fallait pour l’analyse de SAM. Curieusement le socle de la roche s’est soulevé lorsque le foret a été retiré (d’où les lazardes en périphérie du trou de prélèvement). Chemcam en a profité pour faire l’analyse du bord de la plaque (il est toujours intéressant d’aller « voir » sous les roches ou à leur marge, un sol moins exposé aux radiations). Credit: NASA/JPL-Caltech/MSSS.

Illustrations ci-dessous: vues rapprochées des derniers forages de Curiosity, prises avec la caméra Mastcam (mast camera) à gauche pour Aberlady et avec la caméra MAHLI (Mars Hand Lens Imager) à droite pour Kilmarie (ce dernier se trouve à 50 cm sur la droite d’Aberlady). L’objectif se trouvait, pour cette seconde photo, à une douzaine de cm de la cible. Les trous d’une profondeur de 5 cm font environ 2.5 cm de diamètre :

 

Illustration ci-dessous: mosaïque de photos prises en février 2019 à l’entrée de la « Clay-bearing unit » où se trouve le site Aberlady (un peu plus loin, vers la droite). A l’horizon les hauteurs de Vera Rubin ridge, traversées antérieurement par le rover. Dans le creux, des dunes de sables. Crédit: NASA/JPL-Caltech/MSSS.

Pour (re)trouver dans ce blog un article sur un sujet qui vous intéresse, cliquez sur:

Index l’appel de Mars au 24/04/2019

Notre-Dame a brûlé et j’enrage

Notre-Dame a brûlé, je suis triste et en colère.

L’inconcevable est arrivé à une époque où la technologie est reine et aurait pu et dû l’empêcher.

Ce fier monument qui avait franchi le temps, cette merveilleuse création de la foi et de l’esprit, élancée vers le ciel depuis le Moyen-Age, qui avait survécu aux multiples troubles ayant agité l’histoire de France, à la Révolution, à la Commune, à la Guerre, Notre-Dame, a brûlé !

Le cœur immuable de Paris qu’ont chanté les poètes dans notre si belle langue française, qui elle-même a évolué au cours du temps, et qui accueillait pour un même réconfort les faibles et les puissants, a brûlé !

Cette complexité et cette perfection aboutie, cette œuvre d’architecte et cette prière matérialisée, ce refuge et cette affirmation, cet éclat de lumière et ce lieu de paix, a brûlé !

Dans l’ancien temps une église et a fortiori une cathédrale était un livre où le croyant pouvait se remémorer tout ce qui avait trait à sa religion et s’en inspirer ; il lui suffisait de contempler les vitraux ou les statues, de s’imprégner de son atmosphère mystérieuse comme jadis ses ancêtres, des hautes futaies de la grande forêt gauloise. Aujourd’hui que lisons nous dans les cendres et les gravats ?

Sans doute qu’en dehors d’être devenus beaucoup plus sceptiques, nous sommes devenus bien indifférents aux « forces de l’esprit » et aux valeurs artistiques de nos prédécesseurs mais aussi que nous sommes bien présomptueux et bien maladroits.

Il serait étonnant et peu crédible que l’incendie ne résulte pas des travaux engagés pour restaurer la flèche de Viollet-le-Duc. Hélas ! Nous avons d’un côté un travail extraordinaire d’ingénierie ayant abouti à la construction d’un échafaudage gigantesque et d’une habilité touchant au prodige puisqu’il ne repose pas sur la construction qu’il enserre, et de l’autre au moins deux négligences banales : (1) la non-surveillance de l’échafaudage ; (2) le non-respect de précautions préalables élémentaires évidentes pour entreprendre quoi que ce soit dans la charpente d’une telle construction. Dans la « forêt », il n’y avait pas de gicleur (« sprinkler ») ! La question est « comment peut-on être à la fois si sophistiqué et si incapable ? » Et ce qui est terrible, c’est qu’il n’y a pas de réponse satisfaisante ou plutôt aucune justification valable à ces négligences.

Les craintes qu’on peut avoir sur l’ensemble du patrimoine religieux (et autres) de Paris sont immenses. Je tremble pour la Sainte-Chapelle, pour Saint-Eustache, pour la Madeleine ! D’après le directeur de La Tribune de l’Art, Didier Rikner*, la mairie de Paris sous la mandature d’Anne Hidalgo, n’a dépensé, depuis bientôt 5 ans (elle a été élue en 2014) pour l’ensemble du patrimoine parisien, que 50** millions d’euros (à comparer à un budget annuel de plus de 5 milliards d’euros). Et ce qui est encore plus lamentable c’est que la communication sur les besoins a été nulle puisque les personnes responsables s’en moquaient. « Nous » aurions autrement certainement reçu à temps pour effectuer les travaux préventifs indispensables, à défaut des fonds de l’Etat, des dons suffisants des riches Français qui aujourd’hui se précipitent pour réparer la catastrophe. Quand on a ce « track record », on se cache et on ne fait pas semblant de s’intéresser à son patrimoine en débloquant pour l’occasion…50 millions d’euros, comme le fait la Maire de Paris !

*éditorial dans Le Figaro du 16 avril.

**pour toute la France, ce pays dont le passé matériel est si riche, le budget de l’Etat consacré au patrimoine n’est que 300 millions sur un total de 390 milliards (2019) !

Nous sommes 24 heures après l’incendie et je pleure sur cette incapacité évidente de l’administration française, commanditaire et responsable de la surveillance des travaux*, qui par son impéritie, a causé un dommage extrêmement grave à une des expressions les plus parfaites de notre civilisation. Les dons privés ont été considérables et immédiats, un milliard en 24 heures et il y en aurait eu encore plus s’il n’y avait autant d’impôts. Encore une fois la preuve est donnée que nous avons beaucoup moins besoin d’Etat que certains hommes politiques (notamment la quasi totalité des hommes politiques français) veulent nous faire croire. Plus d’Etat, hors le stricte régalien, c’est l’irresponsabilité généralisée et tout simplement moins de services publics (ici culturels) de qualité. L’obésité ce n’est ni l’efficacité ni la mobilité, c’est la démagogie et le gâchis.

*Depuis la Révolution de 1789, l’église cathédrale a été mise « à la disposition de la nation ». L’Etat en est propriétaire, responsable de l’état, de l’entretien et des réparations de l’édifice, l’affectataire (l’évêque) étant tenu de conserver en l’état le lieu et le mobilier et de participer au gardiennage.