L’ESA s’intéresse à la Lune, c’est bien, mais elle s’y intéresse pour de mauvaises raisons

ArianeGroup a annoncé le 21 janvier qu’ elle avait « signé un contrat avec l’ESA pour étudier la possibilité d’aller sur la Lune avant 2025 et commencer à y travailler. » L’intérêt de notre agence spatiale pour notre satellite naturel est certes nouveau mais sur le plan astronautique il n’y a là rien de bien remarquable ni de bien enthousiasmant. On est très loin du « village lunaire » envisagé par son directeur, Jan Wörner. Le lanceur lourd qui serait nécessaire, une « Ariane super-heavy » capable de placer 140 tonnes en orbite basse terrestre (LEO) et de déposer 20 tonnes sur la Lune n’a pas plus de réalité que la « Longue-Marche-9 » de nos amis chinois1.

On parle pour le moment d’une mission robotique. Il s’agit de faire ce que les Américains et les Russes ont fait dans les années 1970, les Chinois avec Chang’e-3 en décembre 2013. On peut donc penser que les Européens, piqués au vif par la réussite de l’atterrissage de Chang’e-4, début janvier 2019, ont voulu réagir pour montrer qu’ils étaient capables de faire au moins aussi bien. Cela situe le projet d’abord comme une action de communication.

Les raisons avancées pour commencer à s’intéresser à la Lune : « extraire eau et oxygène permettant ainsi d’envisager une présence humaine autonome sur la Lune et aussi produire le carburant nécessaire à des missions d’exploration plus lointaine » me paraissent en effet comme une douce musique de pipeau. D’abord il faut rappeler que le régolithe est une matière extrêmement sèche. Il n’y a pas d’eau sur la Lune, ni liquide (bien sûr) ni solide (glace) sauf aux pôles dans le fond de quelques cratères placé dans l’obscurité perpétuelle du fait de l’étroitesse des arènes et des bords particulièrement abruptes et profonds. Pour obtenir de l’eau il faut donc apporter de l’hydrogène (évidemment de la Terre) et le lier à l’oxygène inclus dans certains oxydes ; on parle notamment d’ilménite (FeTiO3) ce qui suppose une électrolyse (donc de l’énergie et quelques installations). Je profite pour mentionner à l’occasion qu’obtenir de l’eau sur Mars serait beaucoup plus facile puisqu’il y a de la glace un peu partout en surface et que cette glace est accessible. Quant à l’idée d’utiliser la Lune pour y produire les carburants nécessaires aux missions lointaines, elle est proprement inepte. L’essentiel de l’énergie nécessaire (environ 90%) à une mission interplanétaire quelle qu’elle soit, est consacré à arracher les masses que l’on veut envoyer dans l’espace à la force d’attraction de la gravité terrestre. Une fois atteinte la vitesse de libération, la quasi-totalité de l’effort est fait. On voit donc très mal pourquoi redescendre sur notre satellite naturel qui lui aussi constitue un puits de gravité, pour aller rechercher du carburant dont une grande partie servirait à se libérer à nouveau de ce puits de gravité. Pour présenter les choses autrement, il est plus économique sur le plan énergétique d’aller directement sur Mars à partir de la Terre que de passer par la Lune pour aller sur Mars ou encore, il est aussi coûteux en termes énergétiques d’aller sur la Lune que d’aller sur Mars. Par ailleurs, aller s’approvisionner en ergols lunaires suppose au préalable une infrastructure d’extraction des minéraux, de production et de stockage/conservation des carburants/comburants, un astroport, un système de transport et probablement des services humains (donc un système de support vie) qui n’existent pas et qu’il sera difficile et coûteux de rendre opérationnels. Ce passage par la Lune pour explorer l’espace profond est donc une complication absolument inutile.

Heureusement le communiqué d’ArianeGroup ne parle pas de l’exploitation du fameux 3He (hélium 3) abondant dans le régolithe lunaire et qui est présenté comme LE carburant du futur puisqu’il serait utilisable par les centrales nucléaires à fusion. Dans l’enthousiasme de l’annonce, certains média réactivent ce fantasme alors que pour le moment nous n’avons rien à faire du 3He puisque nous ne savons toujours pas produire d’énergie par fusion nucléaire. Avant d’en parler, les médias concernés devraient regarder comment avance le projet ITER. Le moins que l’on puisse dire est que la progression est lente.

il ne me semble pas indispensable d’envoyer des êtres humains sur la Lune pour ces motifs. Les conditions de vie y seraient très pénibles (nuit de 14 jours avec des températures de -170°, jour de même durée avec des températures de +120°, poussière très corrosive, absence de protection contre les radiations ou les micrométéorites, gravité très faible gênant énormément les mouvements donc le travail et probablement nuisible pour la santé). Par ailleurs compte tenu de la proximité de la Terre, on peut très bien commander en temps réel les robots qu’on enverrait en surface lunaire, ce qui est impossible sur Mars distant de 3 à 22 minutes-lumière. La commande en temps réel change tout car on peut utiliser les yeux du robot comme nos yeux et ses pinces comme nos mains, en le dotant de commandes asservies à notre cerveau sans programmation lourde tendant vers une certaine intelligence artificielle (choix multiples en fonction de critères de recherche imposés permettant une certaine autonomie) malgré tout imparfaite.

Il serait beaucoup plus intéressant de se contenter d’aller sur la Lune avec des missions robotiques pour l’étudier sérieusement pour elle-même et pour améliorer notre connaissance de l’univers. Pour elle-même car il faudrait analyser le régolithe pour mieux comprendre notre environnement radiatif et son histoire, notamment en comparant celui de la face cachée à celui de la face visible (protégée par la Terre). Pour mieux comprendre l’Univers car en installant des capteurs astronomiques (télescopes optiques mais surtout antennes radio) sur la face cachée, à l’abri des émissions terrestres et bénéficiant de conditions de gravité meilleures que sur Terre et de qualité de nuit excellente (absence totale de pollution lumineuse ou atmosphérique) on pourrait donner une nouvelle puissance à nos moyens d’investigation (masse d’équipements plus importante que dans l’espace, durées d’exploitation plus longues).

Il est donc un peu triste que l’ESA se laisse embarquer pour de mauvais motifs dans la compétition mondiale pour la Lune. Ce n’est pas un jeu et la prendre comme telle peut desservir l’ensemble des projets de missions habitées, notamment pour Mars. En tournant son regard vers la Lune, l’ESA ne regarde pas le doigt mais elle ne cherche pas à voir la Lune pour ce qu’elle devrait être. Le seul aspect positif que je vois est que la compétition internationale se ranime et que, si elle se maintient suffisamment longtemps, l’émulation qu’elle suscite puisse apporter le progrès c’est-à-dire la construction de lanceurs super-lourds.

Image à la Une: Photo de la Terre prise de la Lune par la sonde japonaise Kaguya en Novembre 2007. Les Japonais tournent également autour de l’astre de nos nuits! En l’occurrence Kaguya était un orbiteur (pas de mission au sol). Il évoluait à 100 km d’altitude. Crédit JAXA/NHK (Japan Broadcasting Corporation). Le Soleil est évidemment sur la gauche et la moitié du globe terrestre sur la droite, dans l’obscurité.

Lire le communiqué de presse du 21 janvier d’ArianeGroup :

https://www.ariane.group/fr/actualites/arianegroup-va-etudier-mission-lunaire-lesa/

ArianeGroup est 50% Airbus, ancien EADS et 50% SAFRAN, ancien SNECMA. Dans ce projet, Arianespace filiale d’ArianeGroupe est associée à une petite entreprise allemande PT Scientists qui fournira l’atterrisseur et une petite société belge, Space Applications Services qui fournira le « segment sol » et les équipement de communication. 

1Le lanceur sera une version de la fusée Ariane 6 dont le premier vol est prévu en Juillet 2020. Dans sa version lourde, « 64 » (série 6 à 4 « boosters »), il doit pouvoir placer 21 tonnes en orbite basse terrestre (« LEO ») et 8,4 tonnes environ sur une orbite cis-lunaire, comme le Long-March 5 Chinois (CZ-5) également à l’essai (un vol réussi, un vol raté). A noter que le Falcon Heavy d’Elon Musk peut placer 64 tonnes en LEO.

Pour (re)trouver dans ce blog un article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 25 01 19

Serons-nous demain encore d’humeur à partir pour Mars ?

J’ai mentionné à plusieurs reprises dans ce blog que si nous ne partons pas nous établir sur Mars aujourd’hui, peut-être ne voudrons-nous même plus l’envisager demain. L’affaire des gilets-jaunes confirme pour moi cette crainte*. Cet article est une réponse à ceux qui disent que Mars brillera toujours dans notre ciel, qu’il n’y a pas d’urgence et que nous irons bien un jour. Rien n’est moins certain.

*et aussi les prises de position de certains économistes écologiques extrémistes, par principe « anti-riches », souvent très mal informés sur les sujets astronautiques (cf article du 13 janvier de Laurent Horvath dans son blog Géopolitique mondiale des énergies, hébergé par Le Temps. Voir la réponse de Pierre-André Haldi qui « remet les pendules à l’heure »).

Dans les années 1970, l’espace nous était ouvert et nous envisagions de nous poser sur Mars avant la fin du siècle. Nous disposions pour ce faire de la fusée Saturn V qui avait permis d’aller sur la Lune et qui aurait effectivement permis l’atterrissage en douceur des masses suffisantes sur Mars et nous pensions que nous pourrions relativement rapidement construire des fusées encore plus puissantes pour y transporter davantage de masse utile et de personnes.

Cependant, les Etats-Unis ayant incontestablement remporté la compétition engagée contre l’URSS, avec le succès de leurs programme Apollo, l’intérêt s’émoussa. C’est un phénomène assez surprenant et très regrettable car, à part la dernière mission qui avait permis de commencer à faire un peu de science (avec le géologue Harrison Schmitt), tout s’arrêta brusquement. On était en 1972. Lyndon Johnson avait lancé son pays dans Medicare et Medicaid et surtout la guerre au Viet Nam. Son successeur en janvier 1969, Richard Nixon était totalement indifférent (« did not give a damn ») à la recherche spatiale. On avait là, la preuve que la course à la Lune avait exprimé essentiellement la volonté de montrer qu’on était meilleur que l’autre. Nixon se comportait comme un gamin content d’avoir couru le plus vite. L’accomplissement était certes considérable et remarquable sur le plan technologique mais sur le fond, le progrès de la Connaissance, il restait très limité.

Ayant « gagné », les dirigeants américains se demandèrent alors que faire, dans quelle voie s’engager pour les vols habités et ils donnèrent à cette réponse un choix technologique plutôt qu’un choix d’objectif à atteindre. Il s’agissait de continuer à briller aux yeux des plus simples (ou des moins intéressés) des Américains, en inventant des technologies encore plus spectaculaires, plutôt que d’aller « quelque part » et d’approfondir la recherche lunaire. Le vol robotique, c’était la science, le vol habité, le spectacle. On n’envisageait pas de troisième voie, de vol robotique exhausté par la présence et l’action de l’homme.

Dans cet état d’esprit, rassurés mais en même temps effrayés de leur audace passée, les dirigeants américains firent deux choix catastrophiques car ils ne menaient nulle part (ce n’était pas leur objet) : la navette et la station spatiale internationale (« ISS »). La navette partait d’une bonne idée, créer un véhicule multiusage et récupérable pour abaisser les coûts des lancements. Mais la réalisation montra vite qu’on était sur une fausse piste car la « maintenance » s’avéra extrêmement coûteuse, l’isolation thermique par revêtement de tuiles de céramiques imposant notamment des contrôles et des remplacements fastidieux et très chers. Les vols commencèrent en 1981. Un premier accident mortel intervint en 1986, un second en 2003 et on continua quand même, en renâclant, jusqu’en 2011. A part le sauvetage puis la maintenance / modernisation du télescope Hubble en cinq missions de 1993 à 2009, que de vols inutiles sur les 135 réalisés ! Après que l’ISS fut lancée, en 1998, on ne pouvait plus très bien savoir si la navette volait pour desservir l’ISS ou si l’ISS avait été construite pour servir de but aux petites incursions de la navette dans l’espace (très) proche.

L’autre erreur fut en effet l’ISS. Comme Apollo ce programme fut décidé pour des raisons politiques. Ce n’était plus la compétition mais la coopération qui l’inspirait. Le résultat fut un énorme “machin” pour aller nulle part et qui était censé permettre d’entraîner des hommes à vivre dans l’espace. Il y avait sans doute quelques leçons à en tirer mais lorsque le mécano fut monté, on chercha à l’utiliser d’une manière ou d’une autre, sans beaucoup de logique pourvu que « tout le monde » puisse aller y faire un petit tour. Et puis l’objet ayant coûté si cher (environ 150 milliards d’euros) on rechigna à s’en débarrasser et on l’a toujours sur les bras (jusqu’en 2024, date du retrait annoncé de la NASA), ce qui coûte toujours très cher (3 à 4 milliards par an, à comparer au budget annuel de la NASA de 20 milliards par an). Je ne veux pas dire que l’ISS n’a servi à rien. Ce n’est pas le cas. L’expérience du montage d’éléments dans l’espace, de la maintenance, des tests des systèmes de support vie ont été utiles mais l’étude (principale) des effets (néfastes) de l’apesanteur ne nécessitait pas d’être aussi longue, la conclusion étant vite atteinte qu’il fallait procurer aux astronautes une gravité artificielle. On aurait pu aussi bien étudier tout cela au cours de vrais voyages Terre / Lune.

Le temps passe et comme les retombées sont peu visibles, le public se lasse alors que c’est lui (sauf intervention d’une entreprise privée), en tant que citoyens et électeurs, qui apporte le financement. La perspective de l’arrêt de l’ISS aurait pu faire penser qu’enfin, on allait repartir pour une phase d’expansion. Malheureusement l’administration du Président Trump vient de décider le Lunar Orbital Platform-Gateway, encore un « machin » qui ne conduit nulle part. Au lieu de tourner autour de la Terre, le LOP-G va décrire une ellipse autour du couple Terre / Lune. Les passagers seront exposés à plus de radiations et seront toujours en situation d’apesanteur. Les « expériences » qui seront menées à bord seront rigoureusement les mêmes que celles menées dans l’ISS. Mais pourquoi ne pas avoir décidé de revenir enfin se poser sur la Lune ?! Là au moins il y aurait eu autre chose à faire qu’à tourner en rond dans l’espace. Cette demi-mesure est incompréhensible et ne sera probablement pas comprise. Il n’y a rien dans ce projet pour soulever l’enthousiasme des populations. Le danger étant que les électeurs et « taxpayers » considèrent en majorité qu’il y aurait d’autres dépenses à faire et que cela affecte l’ensemble des vols habités. Nombreux sont ceux qui l’expriment déjà.

Je pensais à cette situation en écoutant les nouvelles de France en ces mois de Décembre  et Janvier et je me disais que présenter au public français un programme d’exploration de Mars par vols habités serait impensable dans cette conjoncture morose. Evidemment cela n’aurait aucun effet pour le monde puisque ce pays n’a pas les moyens de l’entreprendre. Mais qu’en serait-il aux Etats-Unis ? On peut très bien imaginer que les conditions économiques et sociales se retournent après la surchauffe économique provoquée par l’argent facile de l’administration Trump, que l’Etat fédéral soit obligé de concentrer son action sur l’allègement des problèmes sociaux qui pourraient surgir d’une récession et que par ailleurs et compte tenu de la détérioration générale, Elon Musk fasse faillite. Dans une situation comme la grande dépression des années 1930, un programme public de vols habités vers Mars serait-il audible après quelques années de boucles autour de la Lune ? J’en doute fort. Le public assimilerait ces programmes spatiaux à la dépense qu’ils auraient représentée plus qu’aux résultats peu spectaculaires qu’ils auraient rapportés. Après peu de temps, les merveilleuses machines que sont les BFR et autres SLS deviendraient obsolètes, le savoir-faire des gens qui les ont portées tomberaient dans l’oubli comme cela est arrivé pour la Saturn V et Mars redeviendrait un point dans le ciel nocturne qui n’intéresserait plus que les rêveurs comme moi !

Donc si aujourd’hui nous pouvons aller sur Mars, il faut y aller. Une fois sur place, il serait beaucoup plus difficile d’y renoncer surtout si une activité économique rentable parvient à s’avérer possible (sans couvrir évidemment au début, tous les coûts). Je souhaite à Elon Musk une excellente santé, beaucoup de succès dans ses affaires et que la prospérité économique américaine actuelle lui laisse le temps d’aller au bout de son projet !

Sinon, peut-être un jour, ce seront les Chinois mais pour eux le chemin est encore long et donc pour nous l’incertitude plus grande.

Image à la Une: Mars vue depuis l’environnement terrestre par le télescope Hubble, en 2001. Crédit NASA/SIPA.

L’exploration spatiale par vols habités peut-elle bénéficier d’un aiguillon chinois ?

Le jeudi 3 janvier le quatrième avatar de la Déesse de la Lune (« Chang’e-4 ») a « accouché » sur la face cachée de son astre d’un second Lapin-de-jade (« Yutu-2 ») 4. Nous n’en sommes qu’au balbutiement du programme d’exploration spatiale de la Chine mais cet événement mérite l’attention.

Pour progresser dans « sa » conquête spatiale, la Chine a choisi les petits pas, d’autres diraient la sagesse. Contrairement à la stratégie d’exploration spatiale américaine, la stratégie chinoise est très focalisée et très progressive. L’objectif est aujourd’hui d’aller sur la Lune par des moyens robotiques puis par vols habités ; les vols pour Mars suivront (pour être plus exact, on en parle mais on ne fait rien, sauf des maquettes).

En déroulant son « Lunar Exploration Program », la Chine (via la « China National Space Administration », « CNSA »)  avance de manière satisfaisante dans le cadre de la première phase de son plan stratégique d’exploration (ou d’expansion) spatiale et le succès de l’atterrissage de Chang’e-4 nous force à prendre au sérieux ses capacités technologiques et ses ambitions politiques, intimement mêlées. Chang’e-1 lancée le 24 Octobre 2007, consistait à placer un satellite autour de la Lune ; ce qui fut fait. Chang’e-2 lancée le 1er Octobre 2010 devait vérifier les technologies nécessaires à un atterrissage en douceur et repérer le site choisi pour la mission suivante ; ce qui fut fait. Chang’e-3 lancée le 1er décembre 2013 devait tester l’atterrissage en douceur et libérer un rover en surface (le premier Lapin-de-jade) ; ce qui fut fait, bien qu’il faille noter un « bémol » pour cette étape : l’arrêt définitif du rover après seulement trois jours de fonctionnement et un parcours de 100 mètres alors qu’il était prévu pour fonctionner pendant trois mois et parcourir 10 km.

En ce début d’année 2019, Chang’e-4 confirme la capacité des ingénieurs chinois à mener à bien un atterrissage en douceur puisque comme l’a montré la première vidéo de la mission, Yutu-2 est bien descendu de la plateforme de la sonde et a bien roulé sur le sol lunaire. Nous attendons maintenant la suite pour savoir si sa mission de 3 mois minimum peut être menée à bien. Il reste à voir si la commande à distance marche et si le rover fonctionne et peut résister aux conditions environnementales lunaires mieux que son prédécesseur. En effet ces conditions sont extrêmement dures (beaucoup plus que sur Mars), la poussière étant extrêmement agressive pour toutes les jointures ou roulements, les contrastes de températures étant très élevés, -170°C la nuit, plus de 120°C le jour, les nuits étant très longues, égales à 14 de nos jours (outre deux panneaux solaires, le rover est équipé d’un générateur thermoélectrique à radioisotopes, « RTG », pour pouvoir alimenter le rover en chaleur et en électricité pendant la nuit lunaire de 14 jours). C’est ces difficultés qu’il faut maintenant surmonter.

A noter que par ailleurs la mission a permis de maîtriser une « complication » (comme on dirait en horlogerie), celle résultant de la localisation de l’atterrissage, sur la face cachée de la Lune (le cratère Von Karman dans le Bassin d’Aitken). Pour disposer de cette maîtrise, le contrôle des robots (instruments et rover) est effectué depuis la Terre via un satellite relais, “Queqiao”, le bien nommé 1, positionné à cet effet, depuis mai 2018, autour du point de Lagrange Terre/lune EM-L2 (orbite de Lissajous 2), point d’équilibre gravitationnel qui se situe entre 65.000 et 80.000 km au-delà de la Lune (la Lune elle-même orbitant la Terre à 385.000 km en moyenne). Ce type de relais ne représente rien d’extraordinaire puisque les Américains l’utilisent aussi pour les missions martiennes dans le cadre desquelles les sondes au sol reçoivent des instructions ou transmettent des données vers la Terre en passant par les orbiteurs toujours en opération autour de Mars (on ne voit évidemment pas directement depuis la Terre les rovers opérant sur Mars tout comme on ne voit pas Yutu-2 sur la face cachée de la Lune). Disons seulement que ce relais est pour la Chine une bonne préparation aux missions plus lointaines. Sur le même sujet des télécommunications, il faut noter que la difficulté est moindre qu’en situation martienne puisque la distance-lumière est presque la même sur la Lune que si le robot n’avait pas quitté le sol terrestre (au maximum 1,5 secondes pour un trajet dans un seul sens et 3 secondes pour un aller-retour à la vitesse de la lumière) ce qui veut dire que même sur la face cachée de la Lune, le rover chinois peut être commandé presque en temps réel depuis la Terre, ce qui a des implications tout à fait différentes du « time-gap » de 3 à 22 minutes en un seul sens, incompressible, auquel sont soumises les opérations martiennes.

Si l’on regarde la charge scientifique utile, on peut constater que Chang’e-4 et Yutu-2 ne sont pas dépourvus d’intérêt. Ce ne sont pas seulement des appareils de démonstration ou de communication politique. Le rover dispose d’une masse d’instruments scientifiques de 20 kg ce qui est important par rapport à sa masse de 140 kg (Curiosity 75 kg pour 950 kg). Comme son prédécesseur Chang’e-3, Chang’e-4 dispose, à bord du rover, d’une caméra panoramique « PCAM » ; d’un radar d’exploration du sous-sol immédiat, « LPR » (pour Ground Penetrating Radar) ; d’un spectromètre imageur, « VIS/NIR » (pour Visible and Near-Infrared Imaging Spectrometer) pour l’étude géologique. La plateforme d’atterrissage comporte comme celle de Chang’e-3, une caméra d’approche, « LCAM » (Landing Camera) et une caméra topographique (TCAM). Les nouveaux instruments, propres à Chang’e-4, sont un spectromètre à basses fréquences (LFS) pour l’étude du plasma lunaire (environnement des particules électromagnétiques au-dessus de la surface) et trois autres, conçus et mis au point avec des étrangers ce qui est une première pour une mission chinoise: sur l’atterrisseur,  le « LND » (Lunar Lander Neutrons and Dosimetry), avec l’Allemagne pour étudier les radiations, notamment leur force de pénétration 3; sur le rover, l’ASAN (Advanced Small Analyzer for Neutrals) pour étudier la structure du sous-sol, avec la Suède et sur le satellite relais Queqiao, le « NCLE » (Low-Frequency Explorer) avec les Pays-Bas pour l’étude du fond radio basse fréquence dans l’environnement d’EM-L2. Par ailleurs Chang’e-4 porte une expérience biologique (3 Kg). Des œufs de vers à soie vont évoluer avec des plantes (graines de pommes de terre, tomate et d’une plante à fleurs). Dans un environnement de type terrestre, sauf la gravité (et la lumière?), les vers vont émettre du gaz carbonique qui va être consommé par les plantes qui vont rejeter de l’oxygène qui sera consommé par les vers (constatera-t-on les conséquences de la longueur des nuits ?). Chang’e-4 a donc une mission scientifique réelle, pour mieux connaître l’environnement lunaire, celui d’EM-L2, pour préparer les futures missions habitées et peut-être aussi l’action de Chang’e-5 qui doit rapporter des échantillons sur Terre en 2019.

Maintenant rien n’est encore gagné. Pour le moment Chang’e-4 n’a pas fait mieux que Chang’e-3 et l’absence d’information depuis l’atterrissage me semble un peu inquiétant.

Tout ceci pour dire qu’il n’est pas encore avéré que la technologie chinoise puisse être une menace pour la suprématie américaine dans l’espace, ni pour l’exploration robotique ni a fortiori pour l’exploration par vols habités. Pour l’exploration robotique à part les deux incursions sur la Lune de Chang’e, 3 et 4, il n’y a eu aucune mission chinoise. Donc ce pays a fait moins bien que le Japon qui est passé maître dans l’exploration des astéroïdes (ce qui sur le plan astronautique est autrement plus compliqué que se poser sur la Lune, face cachée ou non) avec un lanceur de même puissance (H-IIA) que le meilleur lanceur chinois opérationnel. Sur le plan des vols habités, on en est toujours aux prémices (l’embryon de Station Spatiale « Tiangong-2 »). Pour mener à bien ces vols habités, surtout pour la Lune et a fortiori pour Mars il faut pouvoir placer en orbite basse terrestre (LEO) une centaine de tonnes et « Long-March 5 » (« Chang-Zheng » ou « CZ-5 ») qui est le lanceur chinois le plus puissant à ce jour ne peut encore placer, avec difficulté (deux essais dont un seul, le premier, réussi) que 23 tonnes (comme le Falcon 9, Ariane V ME ou le Proton Russe mais moins que le Delta IV Heavy américain (29 tonnes) ou le Falcon Heavy (64 tonnes). Le lanceur de Chang’e-4 a été un CZ-3B qui a une capacité d’emport de 11,2 tonnes en LEO. On parle du CZ-9, de la catégorie de Saturn-V ou du SLS (130 tonnes), mais pour le moment ce n’est qu’un concept (beaucoup moins avancé dans la réalité que le BFR d’Elon Musk).

Tout ceci pour dire aussi qu’il est encore un peu tôt pour considérer que la Chine puisse être un aiguillon pour forcer les Etats-Unis 5 à reprendre une politique d’exploration spatiale par vols habités plus vigoureuse que celle d’aujourd’hui ! Outre la capacité de lancement, quid notamment de la maîtrise de la viabilité d’un habitat dans l’espace ? Les ambitions spatiales de la Chine ne sont pas négligeables mais ses capacités, indubitables, restent encore limitées et malheureusement insuffisantes pour accélérer l’exploration habitée de Mars par l’humanité, entreprise qui ne reste à la portée que des Américains. Pour l’exploration spatiale, la Chine reste un tigre de papier.

1 “Le pont des pies”. Dans un conte chinois, les pies forment un pont avec leurs ailes la septième nuit du septième mois du calendrier lunaire, pour permettre à Zhi Nu, la septième fille de la déesse du ciel, de traverser et de rencontrer son mari bien-aimé, séparé d’elle par la Voie Lactée

2  Orbite de Lissajous : https://fr.wikipedia.org/wiki/Orbite_de_Lissajous

3 Au-delà des neutrons, protons, atomes, molécules et radiations, la face cachée de la Lune devrait recevoir beaucoup plus de micrométéorites que sa face visible depuis la Terre puisqu’elle n’est pas protégée par cette dernière. Je me demande si l’étude de l’abondance de ces micrométéorites a été prévue par Chang’e-4. Peut-être devrait-on analyser le régolite (qui résulte des impacts innombrables) de cette face cachée et le comparer à celui recouvrant la face visible? A noter que l’atmosphère martienne quoique faible donne une certaine protection contre ces micrométéorites (les plus petites ou les moins énergétiques), évidemment supérieure à la Lune.

4 Pour filer encore plus loin la métaphore en se conformant à la mythologie chinoise, on pourrait rappeler que pour arriver sur la Lune, la déesse Chang’e a consommé la totalité du diméthylhydrazine/tétroxyde de diazote (UDMH/N2O4) contenu dans les deux premiers étages du lanceur CZ-3B, accompagné d’un cocktail d’hydrogène et d’oxygène liquides contenu dans le 3ème étage au sommet de ce même lanceur, ce qu’en d’autre temps on appelait l’« élixir d’immortalité ». Cet élixir avait été obtenu par son mari, l’archer Houyi, aujourd’hui SASEI (le Shanghai Aerospace System Engineering Institute, concepteur et développeur du vaisseau), de la déesse du jardin de longue vie, Xiwangmu, également nommée CAST-du-CASC (China Academy of Space Technology of the China Aerospace Science & Technology Corporation). SASEI avait fait sa demande, persuasive, auprès de Xiwangmu, sur ordre de la CNSA (China National Space Agency), l’un des multiples bras de la Grande-déesse SASTIND (State Administration of Science, Technology and Industry for National Defence).

5 Vous remarquerez que je ne parle pas de l’Europe ou plutôt de l’ESA pour être plus précis. L’ESA a incontestablement des capacités astronautiques supérieures à la Chine et sans doute au Japon mais elle n’a que très peu d’intérêt pour l’exploration par vols habités en dépit des récentes déclarations de son président Jan Wörner en faveur d’un « village lunaire ». Elle n’est malheureusement pas « dans la course ».

Image à la Une : le rover Yutu-2 après qu’il ait parcouru quelques mètres sur le sol lunaire. Crédit CNSA.

Pour (re)trouver dans ce blog un article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 07 01 19

Ultima Thulé

Ce 1er Janvier, à 06h33 du matin, après 13 années de voyage, la sonde New Horizons de la NASA a survolé un petit corps de la Ceinture de Kuiper, surnommé Ultima Thulé, à une distance de 3500 km et à une vitesse de 14,4 km/s (51.000 km/h). On en a découvert 10 heures après, la première image.

Le nom de Thulé donné par le géographe grec Pythéas à une île mythique perdue dans le Nord de l’Océan Atlantique, à six jours de navigation de l’île de Bretagne, évoque le froid, le lointain, l’inconnu. Ultima Thulé, superlatif créé au Moyen-Age, évoque donc un lieu encore plus froid, plus lointain, plus mythique. Le concept s’applique fort bien à ce rocher glacé identifié le 26 juin 2014 par le télescope Hubble et situé aujourd’hui à 43,28 UA (UA = Unité Astronomique = 150 millions de km) du Soleil (soit 6,84 milliards de km), contre 32,91 UA pour Pluton lors du survol (1,55 milliards de km de différence). On est au centre de cette Ceinture de Kuiper, composée de millions de petits corps glacés (KBO pour Kuiper Belt Objects) orbitant autour du Soleil (100.000, sans doute, de plus d’un km) et qui s’étend de 30 à 50 UA, mais ces petits corps sont quand même séparés par de grandes distances tant la bande dans laquelle ils circulent autour du Soleil est immense (plus de 40 milliards de km, parcourus en une année de 298 de nos ans terrestres par Ultima Thulé) et New Horizons n’en a croisé aucun depuis qu’elle a traversé le système de Pluton et a pénétré dans la Ceinture il y a trois ans et demi. Mais l’espace n’est évidemment pas vide et dans la région d’Ultima Thulé, la voûte céleste, parsemée d’autant d’étoiles que le ciel terrestre mais sans aucune pollution lumineuse, le Soleil n’apparaissant que comme la plus grosse d’entre elles, doit offrir un spectacle absolument magnifique.

NB : le « bestiaire » des objets transneptuniens est complexe. Pluton est situé dans la Ceinture de Kuiper (elle évolue entre 29,7 et 49.4 UA). Au-delà, on trouve les nuages de Oort, intérieur (entre 100 et 3.000 UA) et extérieur (entre 20.000 et 100.000 UA) ; la plus proche étoile, Proxima Centauri, se trouve à 270.000 UA (soit 4,24 années-lumière) ; navigant entre la « Ceinture » et les « Nuages », on a connaissance de quelques « objets-épars » dont les planètes naines Sedna, Eris (plus massive que Jupiter), Makemake, Haumea et, on espère découvrir peut-être, encore plus loin, l’hypothétique Planète-Neuf (périhélie 200 à 350 UA, aphélie 500 à 1200 UA).

Un objet lancé vers le ciel par Pythéas lorsqu’il avait une trentaine d’années (vers -350 avant J.C) et qui aurait acquis la vitesse actuelle de New Horizons, aurait parcouru quelques 7000 UA et aurait donc franchi le Nuage de Oort intérieur mais se trouverait encore très loin du Nuage de Oort extérieur. En explorant la Ceinture, on est donc aux limites de ce que permet la science astronautique actuelle.

L’objectif principal de New Horizons, lancée le 19 janvier 2006, était le survol de Pluton, qui a effectivement eu lieu le 14 juillet 2015. L’objectif secondaire pour « la suite » se posait dès le début puisqu’on savait qu’on allait traverser la Ceinture de Kuiper, mais il a fallu convenir au printemps 2014 qu’on ne parvenait pas à détecter quelque objet que ce soit susceptible d’être atteint dans la trajectoire de New Horizons ou à peu près dans celle-ci, compte tenu des disponibilités restantes en hydrazine pour l’infléchir. Aucun grand télescope terrestre (Keck ou Subaru, sollicités) ne voyait quoi que ce soit. Il est vrai que la magnitude apparente de ces astres est très faible puisqu’ils sont petits, se déplacent relativement lentement, ne génèrent aucune lumière et en réfléchissent très peu du Soleil très lointain. La magnitude limite perceptible par l’œil nu est de 6, celle perceptible par une paire de jumelle de 10, celle de Pluton de 13,7, celle perceptible par le télescope Hubble de 31. Les responsables de New Horizons demandèrent donc l’aide à ce dernier au printemps 2014. Hubble trouva effectivement très vite, dès juillet de la même année, deux possibilités intéressantes, PT1 (Possible Target 1) d’une magnitude de 26,8 et PT3 à peu près de même luminosité, et ce fut PT1 (2014 MU69 d’après sa date de découverte) qui allait devenir « Ultima Thulé », car il était plus proche que PT3 de la trajectoire et New Horizons et l’atteindre nécessitait une moindre correction (donc moins d’hydrazine).

Ultima Thulé intrigue, comme tout objet appartenant à une famille inconnue. Sur la première image, encore floue (voir titre), il apparaît de petite taille, une trentaine de km de bout en bout et d’une largeur maximum de 16 km, peut-être de faible cohésion, et d’une très faible luminosité (« rougeoyant »). Les objets de Kuiper (« transneptuniens ») auxquels on pense depuis 1930 (Frédérick Léonard), n’ont été théorisés qu’en 1980 (Julio Fernandez) et 1988 (Martin Duncan, Tom Quinn et surtout Scott Tremaine). La première découverte au télescope de l’un d’entre eux date de 1992. Ils sont composés essentiellement de matière gelée (eau, azote, dioxyde de carbone, méthane et monoxyde de carbone) enrobant de la matière rocheuse (ce qui caractérise aussi Pluton). Ultima Thulé intéresse évidemment en raison de cette nouveauté et aussi parce qu’il est le témoin d’une époque de notre système solaire très ancienne où les éléments constitutifs de ce système étaient encore très peu transformés par le phénomène de concentration de masse sous effet de la force de gravité. En effet ces petits corps n’ont que très peu subi l’influence du Soleil, très lointain, et seulement indirectement, l’influence de Neptune lorsque celle-ci a été éjectée de sa position initiale entre elle-même et Saturne, ce qui les a repoussés encore plus loin du Soleil. Ultima Thulé est parmi eux un corps tout à fait représentatif, normal ou banal à tous points de vue, décrivant autour du Soleil une orbite à peu près circulaire en quelques 298 ans (Pluton 288) soit à une vitesse moyenne de 4,45 km/s (à comparer aux 30 km/s de la Terre ou au 24 en moyenne de la Planète Mars).

Le passage a été rapide mais New Horizons (478 kg) est bien équipé. Les photos prises de Pluton le prouve et pourtant la distance était trois fois plus grande (10.000 km contre 3.500 km). Du fait de cette proximité on devrait obtenir plus de précision dans les détails (70 mètres par pixel au lieu de 183 pour Pluton). Les équipements (30 kg) comprennent une caméra opérant dans le visible et l’infrarouge ; un spectromètre imageur ultraviolet; une caméra avec téléobjectif (LORRI pour Long Range Reconnaissance Imager) ; deux spectromètres pour analyse chimique. Les données captées sont stockées et débloquées périodiquement mais l’envoi vers la Terre est difficile (antenne parabolique à grand gain de 210 cm de diamètre avec un faisceau d’émission radio de 0,3°, complétée par une antenne moyen gain avec un faisceau de 14°). Le débit ne peut être que de 2 kb/s. Il a fallu neuf mois pour transmettre les données recueillies sur Pluton. Dans les quelques secondes où cela était possible compte tenu de la vitesse de survol, quelques 900 clichés d’Ultima Thulé ont été pris (en tout, environ 7 gigabits de données) et il faudra également très longtemps (on parle de 20 mois) pour les décharger tous et recomposer les images mais in fine on devrait avoir quelque chose d’assez précis (et non seulement visuellement mais aussi en termes de composition chimique et physique).

A cette distance pas question d’utiliser l’énergie du soleil. L’énergie de la sonde provient donc d’un générateur thermoélectrique à radio-isotopes (RTG) produisant de l’électricité à partir de la chaleur résultant de la désintégration radioactive de 10,9 kg de dioxyde de plutonium 238 (238PuO2). Elle donne une puissance étonnamment basse de 200 W, qui suffit cependant au chauffage de la sonde (par ailleurs très bien isolée thermiquement) et au fonctionnement des instruments (28 W seulement !). A cela s’ajoute 77 kg d’hydrazine pour le contrôle de l’orientation et les corrections de trajectoire par 16 petits propulseurs (le tout compris dans les 478 kg). Sur ces 16 propulseurs, 4, chacun d’une poussée de 4,4 Newtons sont utilisables pour les corrections de trajectoires et 12, chacun d’une poussée de 0,8 Newton, pour modifier le pointage de la sonde (nécessaire pour la prise de photos ou la collecte de données puis pour leur transmission à la Terre).

La mission New Horizons n’a coûté que 700 millions de dollars. C’est la première du programme New Frontiers (moins de 1 milliards de dollars, pour les missions d’exploration du système solaire de coût intermédiaire), comme ensuite Juno (pour Jupiter) et OSIRIS-REX (pour l’astéroïde géocroiseur Benou). Son P.I. (responsable scientifique) est Alan Stern, membre du SwRI (Southwest Research Institute) et de l’APL (Applied Physics Laboratory) de l’Université John Hopkins (Maryland). Le projet a été sélectionné par la NASA en Novembre 2001.

Après Ultima Thule, New Horizons continuera évidemment son chemin, à la condition (probable) de ne pas heurter un obstacle et en transmettant probablement jusqu’en 2035 (épuisement probable du carburant et/ou du combustible nucléaire). La mission a déjà fait l’objet d’une première extension jusqu’en 2021 (à l’intérieur de laquelle nous nous trouvons).

https://www.space.com/42860-new-horizons-beyond-pluto-ultima-thule.html?utm_source=notification

https://www.nasa.gov/mission_pages/newhorizons/main/index.html

https://fr.wikipedia.org/wiki/New_Horizons

http://pluto.jhuapl.edu/Mission/Where-is-New-Horizons.php#Current-Position

Image à la Une: Première image d’Ultima Thulé reçue de la sonde New Horizons et transmise par la NASA au public le 1er janvier 2019. Elle doit être affinée avec les données qui vont être reçues au cours des prochains jours (faible débit de l’émetteur). L’illustration à droite indique le sens de rotation de l’objet. Crédit NASA/JHUAPL/SwRI/. Illustration explicative de James Tuttle Keane.

Image ci-dessous: orbite d’Ultima Thulé et trajectoire de la sonde New Horizons, crédit NASA.

Pour (re)trouver dans ce blog un article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 01 01 19