Voyager dans le Starship ne sera pas séjourner en enfer

Après le voyage en termes astronautiques, considérons maintenant les aspects santé et confort. Ce sont évidemment des facteurs importants à prendre en compte pour des êtres humains. On peut dire que les conditions seront loin d’être aussi épouvantables que l’écrit Madame Ekström dans son livre « Nous ne vivrons pas sur Mars, ni ailleurs ». NB: Je prends comme précédemment l’hypothèse que le vaisseau spatial sera le Starship d’Elon Musk.

L’apesanteur pose bien sûr problème, comme le mettent en avant mes contradicteurs mais il ne faut pas en déduire que ce problème est rédhibitoire. Il faut d’abord bien distinguer les deux premières missions pour lesquelles il n’y aura pas de « comité d’accueil » sur Mars et les suivantes où il pourra y en avoir. Si aucune mesure n’est prise pour contrer l’apesanteur pendant le trajet interplanétaire parce qu’aucune n’est possible, les premiers astronautes débarquant sur Mars devront rester quelques jours à bord avant de descendre au sol car après six mois ils seraient incapables de faire, immédiatement, quoi que ce soit en surface. Cela « tombe bien » car il y aura toutes sortes de vérifications à faire à bord avant de sortir. Pendant ces jours d’« incapacité » ils pourront se mouvoir avec un exosquelette. Pour ce qui est de l’intensité du « mal d’apesanteur », on peut penser qu’il sera atténué par le fait qu’une gravité de 0,38g est quand même nettement moins difficile à surmonter qu’une gravité de 1g. Bien sûr, recréer une gravité artificielle en vol serait l’idéal. Robert Zubrin, fondateur de la Mars Society, a proposé dès 1990 de mettre en rotation le couple formé par le vaisseau spatial et son lanceur reliés entre eux par un filin. On peut aujourd’hui imaginer la même formule pour deux Starship. Il faudrait évidemment tester la faisabilité de cette possibilité mais l’on sait déjà que pour remplir en orbite de parking les réservoirs de son vaisseau interplanétaire, Elon Musk projette de relier par leurs bases le vaisseau-habitat avec son vaisseau-tanker. Il faudrait donc répéter la manœuvre avec deux starships-habitats, après leur injection interplanétaire quasi simultanée depuis l’orbite de parking, puis dévider entre la base des vaisseaux un jeu de câbles (plutôt quatre qu’un seul !) et mettre le couple en rotation lente après quelques 400 mètres. La vitesse de rotation pourrait ensuite être accélérée et la tension des câbles maintenue en les rembobinant jusqu’à peut-être 200 mètres (il faut bien sûr qu’ils ne soient pas trop gros donc pas trop lourd ni trop volumineux). Si ces manœuvres, certes compliquées, ne sont pas possibles, il faudra faire au mieux pour se maintenir « en forme » à bord, c’est-à-dire faire de l’exercice tous les jours (du moins pour ceux qui devront agir immédiatement à l’arrivée). NB : il y a d’autres concepts pour créer une gravité artificielle. L’un d’entre eux a été exposé par Pierre-André Haldi dans ce blog.

Les termes de « confort et santé » recouvrent également ce qu’il convient de faire pour contrer toutes sortes de nuisances propres au milieu: le niveau élevé de bruit de la ventilation et de la climatisation, l’absence d’alternance naturelle des jours et des nuits, le confinement et la promiscuité, la quantité limitée d’eau disponible au regard des besoins pour assurer un bon niveau d’hygiène personnelle, les mauvaises odeurs. Ce serait selon mes contradicteurs, des inconvénients majeurs (pour ne pas dire insupportables) du voyage. Ils le seraient sans doute si on ne pouvait rien faire mais à partir du moment où l’on envisage des problèmes il faut rechercher des solutions pour les résoudre ou en atténuer les effets. Et pour les inconvénients cités, il y a des réponses.

Il faudra sans doute faire des efforts pour limiter les bruits à leur source mais on peut aussi utiliser la technique du « contrôle-actif » (« ANC ») en émettant des contre-bruits aux longueurs d’émission requises. Comme les bruits seront générés par des moteurs et que donc ils devraient être de longueurs d’onde stables, on peut envisager cette possibilité. Lutter contre l’absence d’alternance naturelle du jour et de la nuit peut être très facilement assuré par un réglage de la luminosité de l’espace intérieur (variateurs d’intensité programmés). On fait ça dans tous les avions de ligne long-courriers.

Il ne faut pas exagérer la promiscuité. D’abord Madame Ekström envisage que le voyage se fasse dans « un espace équivalent à un petit appartement ». C’est inexact, le Starship (que je prends toujours pour hypothèse) aura un volume habitable de 1100 m3, ce n’est pas celui d’un « petit appartement » (ou du DST de 100 m3, donné en exemple par Madame Ekström). Certes, ce volume sera occupé en partie par les équipements nécessaires à la survie des voyageurs mais comme la densité des équipements transportés sera certainement beaucoup plus élevées que celle des corps humains, il y aura de l’espace libre. Il restera surement beaucoup plus de place pour les passagers que dans les locaux qui ont servi pour les expériences en Russie de séjours longs en milieu clos (« Mars 500 »). Et qu’on ne me parle pas de désœuvrement ou d’ennui. Selon Madame Ekström, « il faudra prévoir une jolie quantité de mos croisés et de sudoku pour partir sur Mars ». Personnellement je n’ai jamais perdu de temps à ces « activités », c’est le niveau zéro de la culture  ! Il y aura autre chose à faire. Lors des premiers vols, les passagers seront extrêmement motivés par la perspective de leur activité sur Mars; ils auront une multitude de choses à faire pour préparer leur séjour et à mon avis « le temps passera vite ». De ce point de vue l’expérience Mars 500 ne pouvait absolument pas restituer les conditions psychologiques d’un vol vers Mars et elle était donc totalement inutile.

Pour ce qui est de la sexualité, je pense qu’on peut choisir quelques couples stables et testés et je ne pense pas, contrairement à Madame Ekström, que faire l’amour sur Mars, en gravité 0,38g pose des problèmes insurmontables. Pour « pratiquer » dans l’espace, je suis sûr qu’on trouvera des solutions (penser le contraire me semble sous-estimer grandement la créativité de l’homme en cas de vrai besoin) et on ne va quand même pas refuser le voyage Terre-Mars pour cette raison!

L’eau évidemment sera en quantité limitée. Il faudra absolument la recycler. Pourquoi pas ? Pour nettoyer les vêtements, un excellent agent seraient les radiations spatiales, notamment les UV. Je pense qu’on pourrait trouver un endroit mal protégé dans le vaisseau spatial, derrière un hublot par exemple, pour y exposer ses vêtements (et une fois les bactéries mortes, il n’y aura plus d’odeurs). De toute façon un soin de soi exigeant et une excellente ventilation seront importants. « Tout le monde » devra prendre sa part de « maintenance sanitaire » (ce qui se passe dans l’ISS, n’est-ce pas ?). Je ne pense pas que les passagers des premiers vols s’y refusent car l’intelligence et le savoir-vivre auront été des critères de sélection. Ils disposeront aussi des conseils d’un microbiologiste. « Plus tard », lorsque les voyages seront devenus routiniers, on peut envisager que certains passagers aux ressources les plus faibles se portent candidats pour assumer quelques taches domestiques en échange d’une réduction du prix de leur transport. Mais ce « comportement sanitaire » ne sera jamais un détail. Le risque de dérèglement microbiologique est très sérieux en milieu clos. On ne pourra jamais se permettre de le négliger en quittant la Terre pour 30 mois.

Les radiations sont un vrai problème, les SeP (Solar energetical Particles), c’est-à-dire les protons rayonnés par le Soleil, résultant, lorsque l’intensité est forte, en SPE (Solar Particle Event), allant parfois jusqu’aux CME (Coronal Mass Ejection) et, constamment, les quelques 2% de GCR (Galactic Cosmic Ray) composés d’éléments lourds (HZE, énergie d’une particule atomique plus massive que l’hélium), jusqu’au fer ou davantage. Contre les impacts de HZE (et les rayons gamma dérivés), on ne peut rien sauf en recevoir le moins possible, donc pratiquement ne pas rester dans l’espace trop longtemps (sur 6 mois, « ça ira »). Contre les SeP, les doses sur la même durée sont raisonnables, si on ne subit pas un SPE sans protection. Dans cette éventualité on aura intérêt à pouvoir se mettre à l’abri dans un caisson protégé d’eau ou d’aliments (protons !) pendant le temps de l’évènement. Dans ces conditions on peut envisager deux ou trois voyages aller-retour Terre/Mars/Terre sans conséquences graves (fixées internationalement à l’augmentation de plus de 3% du risque de développer un cancer, ce qui n’est pas rédhibitoire). Il faudra bien évidemment mesurer les doses reçues pour rester dans des limites acceptables (« ALARA »…même si dans ce sigle, le 3ème « A » est pour « Achievable » et non « Acceptable »). On pourrait cependant très bien faire le voyage aller et retour pour 0,3 sieverts, bien à l’intérieur des 1 à 4 sieverts conduisant à ce seuil de 3% de risques.

Illustration de titre : partie habitable du Starship. « unofficial interior concept ». TechE Blog, Deep Space Courrier. SpaceX n’a pas donné de plan précis de son aménagement. Il va varier suivant les différentes étapes de l’établissement de l’homme sur Mars.

Illustration ci-dessous : plan de l’intérieur d’un Starship (crédit Philip Lütken, architecte). A noter que ce plan a pour objet de loger 100 personnes, c’est une version futuriste du transport. Au début il n’y aura à bord qu’une douzaine de personnes et beaucoup d’équipements.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 03 06

Aller sur Mars ne sera pas une épreuve mais un plaisir ! Le nouvel administrateur de la NASA est un partisan des vols habités

Les adversaires de l’implantation de l’homme sur Mars, comme Madame Ekström dans son livre « Nous ne vivrons pas sur Mars, ni ailleurs », sont dans une situation facile. Ils déclarent impossible quelque chose qui n’existe pas encore et qui n’a pas été tentée. Je ne nie pas que le projet de vivre ailleurs que sur Terre soit difficile à mener à bien, puisque l’environnement terrestre est celui dont nous sommes le fruit et que nous devrons transporter avec nous ou recréer ailleurs ce qui dans cet environnement est vital pour nous. Mais je pense qu’on ne peut affirmer qu’il soit impossible de mener à bien ce projet car ce ne serait pas la première fois que l’homme aurait quitté son milieu pour s’adapter à un autre. La difficulté n’est pas une raison pour renoncer car nos avancées technologiques sont tout près de nous permettre de réussir.

Mes contradicteurs (Sylvia Ekström et son mari, Javier Nombela) invoquent d’abord le risque astronautique. Je réponds.

Mon premier point concernera les statistiques. Les voyages jusqu’à Mars ne sont certes pas des voyages de routine et « faciles » mais dire qu’un pourcentage très élevé sont des échecs n’est pas vrai. Tout dépend de la période à laquelle on se réfère et des équipes d’ingénieurs qui en sont chargés. On ne peut mettre dans la même statistique, comme le font mes contradicteurs, les premiers vols et les plus récents, ni les essais de ceux qui visiblement ne maîtrisent pas la technologie et les réussites de ceux qui la maîtrisent, c’est-à-dire les Etats-Unis, comme le prouve leur « track-record » : depuis 2001, onze succès, aucun échec. C’est sur cette base qu’il aurait fallu considérer l’avenir, du moins en ce qui concerne les missions robotiques impliquant les mêmes masses que les plus récentes (Perseverance) et qui seraient transportées par les mêmes vecteurs.

Par ailleurs la statistique n’a vraiment plus aucun sens si on considère la dépose sur Mars non plus de la charge utile d’une tonne (cas de Perseverance ou de Curiosity) mais d’une charge utile de 100 tonnes comme veut le faire Elon Musk avec son entreprise SpaceX, charge utile complétée par son vaisseau Starship, lui-même d’une masse (à sec) de 180 tonnes, puisqu’il veut le faire atterrir sur Mars pour ensuite pouvoir en repartir avec des passagers. Il est indispensable d’évoquer ce projet d’Elon Musk car je crois que si l’on va sur Mars en vol habité, on utilisera son Starship plutôt que n’importe quel autre vecteur (SLS, Chang-Zheng-9 ou Blue-Origin). Or, avec ce vaisseau, on aura une véritable rupture technologique puisque l’EDL ne sera plus une simple chute freinée par un bouclier largable puis par un parachute, mais un vol freiné par le corps même du vaisseau, donc une portance avec une certaine trainée, et un certain contrôle de la direction donné par des ailerons (99% de l’énergie sera absorbée par ce freinage aérodynamique). Enfin il y aura beaucoup plus de contrôle à l’atterrissage parce que le vaisseau disposera de davantage d’ergols en fin de descente et surtout d’une présence humaine à bord. Quand on prend en compte que la commande en direct depuis la Terre est impossible puisqu’il y a un décalage de temps de 3 à 22 minutes entre la Terre et Mars, cela est très important. Donc une nouvelle série statistique sera à ouvrir lors de la mise en service de ce Starship. Ce qu’on peut mentionner quand même comme acquis des Américains, c’est qu’avec la technologie des missions robotiques antérieures, ils ont appris à gérer les fluctuations de l’atmosphère martienne et ils devront toujours utiliser leur savoir-faire dans ce domaine.

Lors de l’atterrissage, mes contradicteurs évoquent un choc comparable à « un accident de voiture à vitesse modérée, supportable mais pas agréable à subir ». Il résulterait du freinage brutal par airbags et par parachute précédant, au dernier moment, une phase, violente, de rétropropulsion. C’est un « doux mélange » de techniques qui ne sont pas employées ensemble. Quand les astronautes descendent de l’ISS avec une capsule Soyouz, ils n’utilisent pas de rétropropulsion mais seulement des parachutes, d’où sans doute le choc mentionné. Par ailleurs lorsque le rover Perseverance comme le Rover Curiosity ont touché le sol, ils y étaient déposés en douceur par la grue volante embarquée rétropropulsée, sans choc (il n’y a qu’à voir le film de l’atterrissage de Perseverance et l’état du véhicule après pour constater qu’il n’y a pas eu « d’accident de voiture »). Lorsque les passagers d’un Starhip se poseront sur le sol de Mars, ils seront également rétropropulsés et ils le seront bien plus tôt que dans le cas d’un EDL  (Entry, Descent, Landing) actuel puisqu’il n’y aura pas de phase parachute. Même si tout au long de l’EDL la décélération sera très forte (de toute façon on partira de 27.000 km/h en haut de l’atmosphère) l’atterrissage se fera sans changement brusque de vitesse, donc « en douceur » (du fait des possibilités de propulsion et rétropropulsion, l’EDL pourrait durer un peu plus que les fameuses « 7 minutes de terreur »). De toute façon cet EDL sera un événement exceptionnel (deux pour un voyage et au plus deux ou trois voyages dans une vie).

En passant, je veux mentionner aussi le ridicule de choisir le terme « amarsissage » pour dire qu’on atterrit sur Mars. On ne va pas changer de mot à chaque fois qu’on change d’astre où l’on va se poser (qu’aurait-on dû dire en « langage correct » quand Philae s’est posé sur la comète Churyumov-Guerasimenko ?). Les Anglophones utilisent un seul terme, le verbe « to land » et ils ont bien raison. Mais le choix de ce terme restrictif d’« amarsissage », peut aussi avoir un sens plus profond, celui de ne pas vouloir aller se poser ailleurs ou du moins de limiter a priori les possibilités puisqu’on ne veut même pas les considérer.

Pour ce qui est du trajet interplanétaire, Madame Ekström considère que les corrections de trajectoires présentent une difficulté particulière. Ce n’est pas exact. Je ne veux pas dire qu’une correction de trajectoire ne soit pas un exercice délicat, et dangereux si elle échoue, mais je constate qu’aucune des missions robotiques qui ont visé Mars depuis des décennies et quelle que soit l’équipe de quelques pays que ce soit qui ait réussi son injection interplanétaire, n’est allé se perdre dans l’espace. Une sonde japonaise (Nozomi, en 2003) n’a pas pu se mettre en orbite de Mars mais c’est parce qu’elle avait perdu ses ergols, ce qui l’a empêchée d’exécuter la manœuvre commandée (mais elle est quand même parvenue dans l’environnement martien).

Pour ce qui est de la durée, je suis comme mes contradicteurs, dubitatif sur la possibilité de la réduire à un mois. A mon avis, tant qu’on utilisera la propulsion par ergols liquides, on ne descendra pas en-dessous de 5 mois. Je ne pense pas d’ailleurs qu’il soit souhaitable de descendre en dessous de 6 mois car, par mesure de sécurité, il faut sauvegarder autant que possible une « trajectoire de libre retour », c’est-à-dire une trajectoire qui permette de revenir sur Terre sans dépenses supplémentaires d’énergie, au cas où pour une raison ou une autre l’équipage ou le contrôle mission déciderait que le vaisseau ne doit pas descendre sur Mars. Le voyage de retour serait beaucoup plus long que le voyage aller (les planètes se déplacent et il ne suffit pas de revenir jusqu’à l’orbite terrestre, il faut aussi que la Terre se trouve à l’endroit de l’orbite où le vaisseau accède au moment où il y accède !) mais au moins il serait possible. L’optimum, de ce point de vue, serait un vol propulsé à 5,08 km/s au départ de la Terre qui induirait un voyage aller de 180 jours et un « libre retour » de deux ans. La durée est une contrainte et six mois est sans doute un maximum supportable et souhaitable pour diverses raisons mais il ne faut pas en exagérer le désagrément. Claude Nicollier m’a dit avoir énormément apprécié ses séjours dans l’espace.

Je parlerai dans le prochain article de la vie à bord.

NB : Je ne veux pas omettre de mentionner un autre biais négatif des auteurs que je trouve absolument ridicule, celui de l’écologie poussé à l’absurde. Ils évoquent la « pollution » causée par Elon Musk à l’espace profond par l’envoi de sa voiture Tesla lors du lancement de la première fusée Falcon-Heavy. Parler de pollution dans l’espace profond où se trouve toute la matière de la Terre, et le reste, n’a absolument aucun sens. Il n’y a pollution que s’il y a gêne créé à quelqu’un par corruption de son environnement. La Tesla et son « Starman » ne généreront pas plus de pollution que n’importe quel astéroïde et il y en a des milliards dans notre système solaire.

Illustration de titre : Nous sommes à environ 120 km au dessus de la surface de Mars. Le Starship amorce sa descente dans l’atmosphère. On voit déjà à la surface exposée, la formation d’un plasma qui va devenir ultra-chaud au fur et à mesure que l’atmosphère épaissira et avant que la vitesse se réduise du fait précisément de cette résistance de l’atmosphère. Une double coque en acier inoxydable et des tuiles ablatives, en matériau composite réfractaire, vont dissiper la chaleur la plus forte. Image, crédit SpaceX.

Illustration ci-dessous : l’architecture du vol aller et retour. C’est simple, efficace…et beau. Crédit SpaceX.

PS: Le Sénateur démocrate (centriste) de Floride, Bill Nelson, a été proposé hier par le Président Joe Biden comme nouvel Administrateur de la NASA. cette proposition doit être ratifiée par le Sénat. Bill Nelson, né en 1942, est diplômé des Universités de Yale et de Virginie-Charlottesville (comme moi, pour ce qui est de l’UVa, Virginie-Charlottesville, mais il était étudiant à la Law School et moi en Economie, ce qui aux Etats-Unis est totalement séparé !). Juriste, il a suivie une longue carrière politique. Mais il a été également astronaute à bord de la navette Columbia du 12 au 18 janvier 1986 (dix jours avant l’accident de Challenger). Il était membre du NSC, National Space Council (comité consultatif de la NASA) depuis Mai 2019. Ce comité se prononce sur les grandes questions programmatiques de la NASA.

Il est intéressant de noter qu’il avait été nommé à ce NSC par l’ancien Administrateur Jim Bridenstine qui d’après Wikipedia avait dit de lui :  « Nelson est un véritable champion des vols spatiaux habités et il ajoutera une valeur considérable lorsque nous irons sur la Lune et sur Mars ». Cela augure bien de la suite…n’en déplaise aux adversaires des vols habités qui pensaient que le Président Joe Biden allait les soutenir (et cela constitue une heureuse surprise pour ceux qui, comme moi, pensaient qu’il allait redonner priorité à l’« espace pour la Terre »)!

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 03 06

Compétences en études martiennes

Dans le cadre de la controverse sur le livre de Sylvia Ekström, certains m’ont critiqué parce que j’étais a priori moins qualifié qu’elle pour parler de Mars puisqu’elle est astrophysicienne et que je suis économiste. Je reviens sur le sujet parce que je pense qu’il est important que mes lecteurs réalisent certaines vérités (certains l’ont déjà fait mais je m’adresse à tous).

Ce qui est aujourd’hui l’objet de réflexions et de discussions concernant Mars, ce n’est plus l’identification d’un objet dans le ciel par étude de la lumière qu’il réfléchit et que l’on reçoît dans nos télescopes, c’est l’astronautique pour y aller…et en revenir ; c’est les sciences de l’énergie pour savoir comment l’extraire d’une planète sans pétrole et sans eau liquide ou, si l’on doit l’importer de la Terre, ce qui fonctionnera le mieux dans l’environnement particulier de Mars ; c’est la géologie et l’exobiologie pour comprendre l’histoire de la planète et ce que contient son sol, le comparer à celui de notre Terre et mieux comprendre le phénomène de la vie (que l’on en trouve ou non des traces sur Mars) ; c’est la mesure de la force des radiations et la connaissance du corps humain ; c’est bien sûr la médecine pour prendre soin de la machine la plus précieuse que nous ayons, notre propre corps ; c’est l’ingénierie chimique pour savoir comment exploiter les ressources minérales locales ; c’est l’agriculture pour savoir comment faire pousser des plantes, sous serre, en surface d’une planète dont le sol est stérile mais qui reçoit une quantité non négligeable de lumière du Soleil et qui dispose d’eau, cet élément si précieux, en phase solide et donc liquéfiable ; c’est l’ingénierie de la construction pour savoir comment édifier des habitats qui devront être conditionnés pour être vivables ; c’est les télécommunications pour obtenir la meilleure liaison possible avec la Terre et pour atteindre n’importe quel point de la planète en dépit de la ténuité de l’atmosphère et de l’absence d’ozone (ce qui devrait imposer le choix de satellites géostationnaires plutôt que de flottes de satellites en orbite basse, le problème des distances étant atténué du fait de la plus petite masse de Mars) ; c’est l’impression 3D pour pallier l’impossibilité d’importer en masse des objets usuels et l’impossibilité de le faire en dehors des fenêtres éloignées de 26 mois ou les transports sont possibles ; c’est enfin l’économie pour savoir comment financer le démarrage d’une implantation et comment ensuite y favoriser des activités qui rendront la vie possible sur le long terme sans que les gens soient obligés de vivre avec l’assistance de la Terre pour l’« éternité » (ce qui serait impossible).

Donc aujourd’hui Mars, est un objet interdisciplinaire qui est devenu un sujet d’étude et de réflexion pour un économiste ou un agronome ou un ingénieur, en quelque sorte un « polytechnicien », mais qui n’est plus que très partiellement un sujet où un astrophysicien puisse apporter une contribution dominante pour ne pas dire exclusive. Le seul sujet qui reste de son domaine est celui des radiations, mais seulement sur le plan des sources, des doses et des probabilités de variations d’intensité, pas sur celui des dommages qu’elles peuvent causer, ni des protections nécessaires et suffisantes, ni sur celui des traitements réparateurs. Ceci n’exclut évidemment pas qu’une personne qui a démontré ses capacités d’intelligence, de réflexion et de travail, en passant avec succès des diplômes dans une discipline difficile, puisse s’intéresser utilement au sujet, comme très certainement madame Ekström. Mais il n’y a malheureusement pas (encore) de diplôme d’études martiennes pour reconnaître les compétences générales et suffisantes des uns et des autres, pour permettre de dire qui est habilité à en parler avec autorité et qui ne l’est pas.

Donc quand Mme Ekström choisit pour titre de son livre « Nous ne vivrons pas sur Mars ni, ailleurs », elle exprime une opinion, son opinion. J’ai exprimé l’opinion contraire tout au long de ce blog. Comme nous sommes à l’aube de l’ère spatiale et que nos technologies sont toujours dans une phase d’élaboration, et bien que cette phase soit aujourd’hui très avancée, la certitude n’est pas possible. Nos arguments, à elle et à moi-même, ne peuvent reposer que sur des faits et une logique pour les extrapoler. Elle a une approche a priori pessimiste. Je pense que mes anticipations sont meilleures que les siennes car plus équilibrées. L’avenir donnera raison à l’un ou à l’autre.

PS: Dans les prochaines semaines je prendrai un à un les arguments de Mme Ekström pour y répondre avec mes propres arguments. Le lecteur jugera.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 03 06

Demain, pour commencer votre retraite, vous irez faire du tourisme sur Mars !

Dans l’étude que nous avons menée Richard Heidmann* et moi-même sur l’économie martienne, le tourisme a été évoqué comme l’une des ressources sur lesquelles on pouvait compter pour rentabiliser un établissement martien. Les « marso-sceptiques », qui sont très nombreux, au moins dans le monde francophone (beaucoup moins aux Etats-Unis), se sont moqués de nous.

*Richard Heidmann, ingénieur en aéronautique et diplômé de l’Ecole Polytechnique de Paris a été le fondateur de l’Association Planète Mars (branche française de la Mars Society) après avoir été cadre supérieur chez Safran, le concepteur et producteur des moteurs de la fusée Ariane.

Je voudrais qu’ils regardent aujourd’hui attentivement ce magnifique paysage de Mars capturé par le rover Perseverance et qu’ils me disent honnêtement s’ils pensent qu’il ne tentera pas quelques Terriens de tout âge en suscitant chez eux un désir de voyage.

Je sais que ce voyage n’est pas encore possible mais imaginez quelque chose qui n’est pas impossible du tout. Imaginez qu’Elon Musk réussisse à faire voler son Starship et que d’autres sociétés autour de SpaceX et avec SpaceX puissent alors construire une base sur Mars permettant d’y faire vivre des hommes. Croyez-vous que les seules personnes intéressées à y aller, seront des chercheurs en géologie et en exobiologie ? Personnellement je ne le crois pas.

Je « sens » (sans avoir fait à ce stade d’étude de marché, qui n’aurait pas beaucoup de sens puisque le vecteur de transport n’existe pas encore) qu’il y aurait au contraire beaucoup de gens intéressés par un séjour alors qu’ils n’ont a priori aucune qualification particulière pour se décider à le faire. Certes ce séjour sera cher et long. Pour la durée, tout le monde sait qu’elle sera de trente mois (6+18+6). On ne peut pas faire autrement compte tenu de l’évolution des planètes sur leur orbite (elles ne vont pas à la même vitesse et parcourent des distances différentes), de la distance à la Terre et d’un mode de propulsion réaliste. Pour le prix, Elon Musk (puisque c’est lui le promoteur du seul vaisseau spatial possible, le Starship) nous parle d’un ticket de 200.000 dollars, pour le vol seul (aller et retour tout de même), auquel il faudra ajouter « quelques » frais pour le séjour. Le prix exact dépendra très largement de l’économie d’échelle à laquelle parviendra SpaceX (plus il y aura de vols de Starship, autour de la Terre, vers la Lune et vers Mars, le moins cher sera le coût unitaire vers Mars…et retour) et bien sûr de la demande (mais ce sera surtout le coût qui comptera). Disons pour être « raisonnable » ou « prudent », que l’on puisse offrir un forfait de 2 millions de dollars pour les trente mois (on pourrait faire un tarif « couple » à 3 millions, étant donné que les deux partenaires occuperaient la même cabine). C’est beaucoup d’argent mais je crois qu’on pourrait trouver dans l’ensemble de la population de notre planète et par période de 26 mois, une quarantaine de personnes qui seraient prêtes à se l’offrir.

Mais qui donc pourraient partir, tout quitter (physiquement) pour 30 mois ? Et bien je pense d’abord à certains cadres supérieurs (j’en ai connu !) qui viennent de prendre leur retraite et qui se trouvent coupés de leur multiples contacts habituels (les successeurs sont ingrats et « occupés »), qui ont retrouvé leur femme et leurs enfants après ne les avoir vus que quelques heures de temps en temps pendant quarante ans (et ils s’aperçoivent qu’ils ont « leur vie », séparée de la sienne). Laissez-les « mariner » six mois (maximum) et proposez-leur une aventure extraordinaire, le voyage et le séjour sur Mars. Cela vaut bien une croisière autour du monde, non ? Pourvu que le confort soit acceptable et la sécurité correcte, je suis certain que vous aurez plus de candidats que de places disponibles, même à ce prix (on peut toujours étaler un peu le paiement ou obtenir un crédit selon les revenus probables). Ce n’est qu’un exemple. A part les retraités, vous aurez aussi des peintres, des romanciers, pourquoi pas des musiciens, des artistes conceptuels, « et autres »…qui voudront chercher l’inspiration, tenter une expérience, « faire un break » après un divorce « ou autre »…dans un endroit étrange, stimulant et lointain.

Que feront-ils ? Les artistes, on l’imagine mais les autres ? Ils auront chacun un passé et le passé on le transporte avec soi, qu’il soit proche ou lointain (j’ai été banquier !). Alors, ce passé ils l’utiliseront sur Mars après s’être promenés ou même en se promenant. La société martienne sera jeune, elle sera aussi complexe qu’il est nécessaire pour qu’une société moderne puisse vivre et elle sera avide de compétence et de capacités car elle sera peu nombreuse (au moins pendant très longtemps). Beaucoup donc de ces visiteurs trouveront des conseils à donner, des tâches à accomplir (et s’ils rendent vraiment service, ils y gagneront peut-être une rémunération qui viendra réduire – un peu – le prix du séjour !). Par ailleurs le milieu martien sera un milieu extraordinaire sur le plan scientifique, puisque vous aurez, réunie sur les quelques km2 de la base, la quintessence de l’intelligence, technologique et scientifique, dont les membres, peut-être un peu esseulés, seront ravis de bavarder, d’échanger, de créer pour que leur environnement soit toujours « mieux » et toujours plus agréable à vivre. Dans ce contexte les non-scientifiques ou ingénieurs seront plus que bienvenus puisqu’ils apporteront la diversité, la couleur en quelque sorte, dans un monde à dominante ocre.

Ils reviendront sur Terre, ils se seront faits de nouveaux amis, ils auront retrouvé une nouvelle jeunesse et ils redoubleront d’activité. Le tourisme, c’est la clef d’une présence pérenne de l’homme sur Mars!

Illustration de titre: Vue du cratère Jezero vers le mur du cratère. Photo prise par le rover Perseverance, crédit NASA/JPL-Caltech/MSSS/ASU. Publication le 24 février 2021.

PS.1 : 19ème festival du Film et Forum International des Droits Humains

Avant de partir pour Mars (et pour pouvoir un jour y partir !) je vous recommande d’assister vendredi 12 mars à 20h00, à l’émission en ligne que propose la FIFDH* sur la pollution de l’espace proche. Un problème grave pour la solution duquel la Suisse est en pointe (startup ClearSpace et société ADRIOS, spin-off de l’EPFL). Le problème de la pollution de l’espace-proche du fait de la multiplicité du lancement des satellites dans une zone située entre 600 et quelques 1500 km d’altitude, est grave et urgent à considérer (lancement en cours de « constellations de satellites »). Il gêne l’observation astronomique et peut nuire au fonctionnement des satellites vraiment utiles à la vie sur Terre ou au lancement des sondes ou vaisseaux spatiaux en dehors de l’orbite terrestre. Il faut agir mais que peut le droit international pour contraindre ? Qui va contrôler l’application du Droit et comment ? Vastes sujets !

*Film et Forum International sur les Droits Humains.

Lien pour participer à l’émission :

https://fifdh.org/rencontres-debats/grands-rendez-vous/lespace-une-zone-de-non-droit

PS.2: Succès de l’essai SN 10 du Starship de SpaceX

Le 4 mars SpaceX nous a fait une magnifique démonstration de la maîtrise en vol de son Serial Number 10.

On a pu admirer la montée du prototype jusqu’à 10 km dans l’atmosphère, avec un contrôle parfait de la combustion des moteurs (trois puis deux puis un seul allumé). Ensuite le vaisseau s’est couché à l’horizontal, comme demandé, en restant complètement stable tout en redescendant vers le sol. Enfin il s’est redressé et il est allé se poser, en vol toujours contrôlé, jusqu’à sa plateforme de lancement. Un “sans faute”.

Il a certes explosé quelques minutes après l’atterrissage mais cet incident, retenu comme essentiel par la plupart des médias, est périphérique à la démonstration de maîtrise en vol et ne ternit absolument pas le succès. Bravo Elon; un pas de plus vers l’atterrissage du premier Starship sur Mars!

lien vers la vidéo: https://www.spacex.com/vehicles/starship/index.html

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 02 26

 

‘Oumouamoua, brève rencontre avec un objet extraterrestre

Le 19 octobre 2017 des astronomes terriens ont remarqué dans le ciel un objet étrange. L’astrophysicien Avi Loeb s’y est intéressé et a fait part dans un livre publié en Janvier 2021, de sa conviction : selon les indices recueillis durant notre brève rencontre, la meilleure explication de cet objet est qu’il soit artificiel. Le professeur Abraham (Avi) Loeb est directeur du département d’Astronomie de l’Université de Harvard, président du Conseil des académies de physique et d’astronomie des Etats-Unis et président du comité consultatif du programme Breakthrough Starshot Initiative.

Quand j’ai abordé la lecture de ce livre, étant a priori sceptique car critique et très peu enclin à croire que la vie, a fortiori une vie intelligente, ait pu se développer en dehors de la Terre, j’ai ressenti une sorte de malaise mêlé à une forte curiosité. En effet je me demandais à quels arguments un scientifique aussi reconnu par ses pairs que l’est le Professeur Loeb, pouvait recourir pour écrire ce qui pouvait apparaître comme une « énormité » (et qui est effectivement apparu comme telle à beaucoup de ses confrères).

L’observation n’a pu se faire que sur une période de onze jours parce que l’objet « 1I2017UI » que l’on affubla ensuite du nom d’Oumouamoua*, se déplaçait à grande vitesse (180.000 km/h avant son périhélie, puis 320.000 km/h après) et aussi parce qu’on ne l’avait tout simplement pas remarqué auparavant. Venant du Nord, de la direction de l’étoile Véga, il avait franchi le plan de l’écliptique après l’orbite de Mercure, infléchi sa course à l’intérieur de l’orbite de Mercure et était repassé au-dessus du plan de l’écliptique un peu après l’orbite de la Terre. Il nous y avait précédé en termes de longitude solaire de quelques dizaines de millions de km et il repartait vers l’extérieur de notre système.

*mot de la langue Hawaïenne que d’après Avi Loeb on peut traduire par « éclaireur ». En effet la première observation se fit dans le télescope Pann STARRS1 dans l’Ile de Maui. C’est aujourd’hui la mode d’aller chercher des noms qu’on aurait autrefois qualifiés d’« exotiques », ce que personnellement je trouve totalement ridicule.

Sa vitesse était telle qu’on l’a tout de suite identifié comme un objet provenant de l’extérieur du système solaire puisqu’aucun astéroïde ou aucune comète ayant décroché de son orbite dans les Nuages de Oort, n’aurait pu l’atteindre. Cela signifiait déjà qu’il ne ferait que passer, sans pouvoir être retenu par la force gravitationnelle du Soleil. C’était le premier objet interstellaire* ayant pu être observé et il était déjà, de ce fait, exceptionnel (il y en eu très vite un autre, nommé Borissov). On en aurait donc parlé de toute façon mais cela n’aurait pas bouleversé « les têtes les mieux faites » car il était logique qu’une telle observation se fit un jour.

*Le « 1I » en préfixe de l’identification UAI (Union Astronomique Internationale) indique précisément ce fait.

L’objet avait d’autres particularités : (1) Ce n’était pas une comète car aucun dégazage n’est apparu même lorsqu’il est passé à proximité du Soleil*. (2) Ce n’était pas un astéroïde car il réfléchissait beaucoup de lumière (un astéroïde est un objet sombre alors que la glace d’une comète peut théoriquement briller). Ce fut d’ailleurs le contraire dans le cas de Borissov, tout aussi « étranger » en raison de sa vitesse mais, lui, tout à fait « classique ». (3) Sa luminosité variait d’un facteur 10 toutes les 8 heures, très précisément. Cela signifiait que l’objet avait un rapport longueur/largeur de 10 à 1 et qu’il était en rotation sur lui-même. (4) L’objet était petit car en passant près du Soleil, il aurait dû chauffer ; or le télescope à infrarouge spatial Spitzer qui peut mesurer les variations de températures d’objets très petits à cette distance, n’a noté aucune variation. Cela implique que la variation, si elle avait eu lieu, était en dessous de son seuil de détection, c’est-à-dire que l’objet devait avoir une dimension inférieure à 100 mètres sur moins de 10 mètres, donc que sa forme était plus étirée ou aplatie que tous les autres objets observés à ce jour (aucun n’a un rapport supérieur à 3 sur 1). Cela implique également qu’il est extrêmement brillant puisqu’il réfléchissait beaucoup plus de lumière que ne le devrait un objet « ordinaire » d’une taille si petite. (5) Lorsque Oumouamoua a passé son périhélie, sa trajectoire a dévié de celle qu’il aurait dû suivre s’il avait simplement répondu à la force gravitationnelle du Soleil et c’est après cette constatation qu’Avi Loeb a commencé à être vraiment intrigué. La déviation correspondait à une force additionnelle, antisolaire, qui déclinait proportionnellement au carré de la distance au Soleil. Si l’accélération avait été due à l’éjection d’un gaz (comme d’un moteur-fusée ou d’une comète) le delta de vitesse aurait dû occasionner la perte de 1/10ème de la masse de l’objet. Ce n’était pas le cas car on ne constata aucun dégazage, aucune perte de matière tout comme on n’observa aucun changement dans la rotation.

*lorsqu’on identifie un objet astronomique, on peut rechercher sa position antérieure à celle de l’observation, par les prises de vue du ciel antérieures et aussi par le calcul. Je fais là-dessus, confiance totale aux astronomes (ils ont été nombreux à observer le phénomène et aucun n’a contesté la base chiffrée du raisonnement d’Avi Loeb).

Avi Loeb en déduit que pour réfléchir autant de lumière, et subir l’accélération qu’il a subi (vitesse donc direction), la forme de l’objet devait être beaucoup plus celle d’un « pancake » ou d’un disque que d’un cigare comme on l’a communément représenté. Cela évoqua immédiatement chez lui la « photovoile » (appelée aussi voile solaire quand l’on considère que la source de lumière est le Soleil). Il en connaissait parfaitement le principe pour l’avoir étudié pour le projet Breathrough Starshot à la demande de son ami Youri Milner. Ce projet fabuleux qui les passionne tous les deux (et auquel participait Stephen Hawking) consisterait à envoyer en seulement 20 ans des voiles solaires de très faible masse, observer Proxima Centauri sous l’impulsion initiale et brève de lasers ultrapuissants. En appliquant cette hypothèse, Avi Loeb et ses collègues ont estimé que la voile devait avoir une épaisseur de moins de 1 mm.

Cerise sur le gâteau, on s’aperçut ensuite, d’après sa trajectoire reconstituée (on peut en effet le faire avec une vitesse et une direction), qu’Oumoumoua était positionné avant son intrusion, à une vitesse tout à fait particulière dans sa rotation autour de la galaxie, qu’on appelle le « Local Standard of Rest » ou « LSR ». Ce référentiel est particulier en ce qu’il est la vitesse moyenne de déplacement dans notre petit coin d’univers. Dans le disque galactique, les étoiles tournent autour du centre galactique à des vitesses variables, certaines vont relativement vite, comme le Soleil, à 70.000 km/h, ce qui lui permet de faire le tour du centre galactique en quelques 230 millions d’années terrestres, d’autres vont plus lentement (et nous changeons ainsi de voisins au cours du temps…très long pour nous puisqu’il faut le compter en dizaines de milliers d’années). Mais les objets qui se déplacent exactement à cette LSR sont extrêmement rares (le propre des moyennes). Avi Loeb en propose l’explication que nous avons heurté une sorte de balise (c’est donc nous qui aurions perturbé l’objet plutôt que l’objet qui aurait pénétré dynamiquement notre sphère d’influence). Quoi qu’il en soit, la constatation ajoute à l’étrange et renforce la probabilité d’un objet non-naturel.

Nous n’en saurons pas plus. Oumaoumoua est reparti et ne reviendra jamais, nous ne pourrons donc jamais l’observer à nouveau, jamais en avoir d’image. Il faut « vivre avec » en espérant capter un peu plus d’informations lorsque nous bousculerons une autre « balise »…si nous en avons l’occasion car l’Univers est vaste, les balises probablement rares et le temps pendant lequel une civilisation nait, se développe et meurt, sans doute extrêmement limité relativement à son échelle. D’ailleurs Avi Loeb considère que la plus grande probabilité est qu’Oumoumoua soit une épave produite par une civilisation disparue et il propose de développer une recherche d’« astro-archéologie » pour être prêts en cas de nouvelle rencontre.

Je vais donc vous laisser avec ce résumé en vous invitant à lire le livre. Avi Loeb nous montre bien que toutes les explications que l’on peut donner d’Oumouamoua sont extraordinaires mais que la moins extraordinaire serait celle de la photovoile. Ce n’est pas pour autant que les extraterrestres « courraient les rues » mais cela ébranle autant que cela fait rêver.

Illustration de titre : la trajectoire d’Oumouamoua. L’objet a été observé quand il venait de passer l’orbite de la Terre, en route vers l’extérieur du système solaire. Crédit Nageldesign, Tom Ruen.

Lecture : Le premier signe d’une vie intelligente extraterrestre, par Avi Loeb, Editions du Seuil, janvier 2021. Excellente traduction en Français du géologue Franco-Américain, Charles Frankel (titre en Anglais: “The first sign of intelligent life beyond Earth”).

Hypothèse (22/03/2023) publiée par le journal Nature, selon laquelle l’accélération d’Oumouamoua serait due à la libération d’hydrogène moléculaire qui se serait formé à partir d’un corps de glace d’eau. Auteurs: Jennifer Bergner et Darryl Seligman.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 02 26

 

Congrats to the EDL NASA team for landing safely Perseverance on Mars!

Nous sommes le 18 février; il est 21h57, heure CET (la nôtre). Ça y est ! L’atterrissage a réussi. La NASA a encore une fois démontré son savoir-faire en exécutant de main de maître le fameux parcours des « 7 minutes de terreur »* entre la haute atmosphère de Mars où elle a positionné son atterrisseur à 5,3 km/s (19.000 km à l’heure) et le sol martien, 120 Km plus bas. Le vaisseau a effectué sans faute les différentes manœuvres nécessaires de façon totalement autonome (aucun contrôle n’est possible compte tenu du « time-lag » dû à la finitude de la lumière). Le rover Perseverance se trouve maintenant en sécurité sur le sol du cratère Jezero tout près de ce fabuleux delta dont les spécialistes admiraient les photos depuis si longtemps en pensant qu’il fallait absolument y aller. Nous y sommes et on peut maintenant voir les cailloux au sol par l’intermédiaire des yeux du robot (illustration de titre). C’est fantastique !

L’équipe « sécurité, santé » de la NASA a pris le relais des mains de l’équipe « EDL » (Entry, Descent, Landing) et va procéder aux différents “checkings” pour savoir dans quel état se trouve le rover et ses équipements mais il semble que le « touch-down » se soit passé en douceur. Donc, sauf mauvaise surprise, l’exploration de ce site magnifique va pouvoir commencer.

Tout le monde a bien vu depuis les photos prises par les satellites, le dessin de ce delta et du fleuve asséché en amont. L’eau a coulé abondamment dans ce fleuve en charriant toutes les alluvions possibles, de toutes les tailles possibles et créant des roches très riches en argiles, jusque-là où se trouve aujourd’hui notre “observateur” à roues. Toutes les conditions ont été remplies pour que cette eau imbibant suffisamment longtemps ce sol, permette dans l’environnement calme du lac, de faire évoluer longuement les molécules organiques qui pouvaient s’y trouver. « Jusqu’où ? » est LA question que tout le monde se pose. Mais il ne faut pas rêver. Le plus intéressant serait de trouver un degré de complexification organique sensiblement plus important que dans les astéroïdes. Ce qui nous intéresse, à mon avis, encore plus que le résultat d’une évolution concrétisée dans une cellule ayant été vivante, c’est l’évolution vers ce résultat qui nous permettrait de comprendre mieux les étapes intermédiaires et donc les contraintes environnementales qui les ont permises à comparer avec nos propres contraintes qui ont permis quelque chose de plus abouti dans la même ligne d’évolution.

Vous avez remarqué que le fond du lac est plus bas que le delta et que même le cours d’eau domine ce niveau d’assez haut. C’est que le relief est « inversé ». Plus dense, les sites d’écoulement et d’accumulation de matière n’ont pas été érodés avec le même succès que les dépôts plus « tendres » du fond du lac. Et sur plusieurs milliards d’années, ça se voit.

Le petit hélicoptère, « Ingenuity » fixé sous le ventre du rover, va être testé dans les 30 jours. Il pourra faire quatre vols. Il n’est pas prévu qu’il fasse d’observations scientifiques ; c’est une démonstration technologique. Mais ce serait formidable qu’il fonctionne. Le terrain martien est traitre, avec rochers acérés et surtout sables mouvants (le rover Spirit y a perdu la vie). Naturellement l’hélicoptère pourrait servir d’éclaireur. Il pourrait aussi aller prendre des photos ou analyser les roches situées dans des lieux inaccessibles aux véhicules à roues et il y en a évidemment beaucoup sur Mars. Le seul problème est que ces hélicoptères ont des pales qui tournent très vite (2400 tours minutes) et qu’ils consomment beaucoup d’énergie. Comme ils peuvent emporter peu de masse avec eux, leurs vols sont forcément courts. Disons que c’est mieux que rien (ou qu’un dirigeable mais la portance serait très faible).

La tache principale de ce rover outre l’examen à distance de la composition chimique des roches jugées intéressantes (notamment avec le spectrogramme laser SuperCam, une amélioration de ChemCam), sera de carotter le sol sur une dizaine de cm pour en extraire des échantillons qui seront ramassés « plus tard » par une autre mission, conjointe avec l’ESA, pour les envoyer sur Terre. La « mission de retour d’échantillons », comme on l’appelle, pourrait avoir lieu en 2030. Ça me semble très loin et j’aimerais qu’Elon Musk les rapporte à la main (de ses astronautes !) lors de sa seconde mission habitée qui aura lieu avant. Il pourrait aussi prendre d’autres échantillons sur un autre site, un peu plus gros et prélevés un peu plus profondément (donc moins dégradés par les radiations).

Enfin, le rover avec son instrument MOXIE va tester la faisabilité de produire de l’oxygène à partir du gaz carbonique de l’atmosphère (95%). C’est facile sur Terre en laboratoire, c’est moins facile sur Mars à cause de la faible pression atmosphérique (610 pascals en moyenne) et de la poussière mais c’est vital pour les futurs missions habitées. Et la NASA le dit et le répète. Donc, n’en déplaise à certains scientifiques, surtout européens, qui n’aiment pas ce qu’ils considèrent comme des enfantillages qui distraient beaucoup d’argent des budgets de la Recherche, la NASA persiste à vouloir envoyer l’homme sur Mars. Ça fait plaisir à entendre et la réussite de l’atterrissage de Perseverance est en soi un encouragement vers ce but.

*NB : qu’on arrête de dire comme beaucoup le mettent en avant pour souligner la dangerosité du vol, que seules 50% des missions sur Mars sont arrivées au sol sans dommage. C’est vrai si on prend tous les vols depuis le début de l’ère spatial mais ça n’a en réalité aucun sens car les premiers avions ont disparu souvent corps et biens et on ne les prend pas dans les statistiques des accidents d’avions contemporains. Ce qu’il faut voir, c’est que les Américains n’ont pas connu un seul échec d’atterrissage depuis 2001 et qu’ils ont posé 5 rovers sur Mars depuis le petit Pathfinder en 1997. Sur douze tentatives, y compris celles des Russes (trois) et des Européens (une) qui ont échoué, la NASA en a effectué huit dont un seul échec, Mars Polar Lander en 1999. Elle sait faire.

illustration de titre: première photo du sol du cratère Jezero prise par la caméra Hazcam embarquée à bord du rover Perseverance. Crédit NASA/JPL

Les Chinois ont réussi l’insertion de leur satellite en orbite autour de Mars

Le satellite chinois, Tianwen-1 (question au Ciel), lancé le 23 juillet dernier et arrivé dans l’environnement martien hier, a pu être inséré en orbite martienne, ce jour, 10 février. C’est la première fois que la Chine tentait d’accéder à la Planète-rouge et c’est donc un exploit qui place le pays au niveau de ses prédécesseurs, URSS, Etats-Unis, Europe (ESA), Inde et Emirats Arabes Unis.

Mais les ambitions de la Chine vont bien au-delà de cette mise sur orbite. Il s’agit en effet de descendre un “atterrisseur” (“lander”) à la surface de la planète, d’en débarquer un véhicule robotique (“rover”) et de le faire évoluer pendant un minimum de 90 jours, tout en utilisant toute une batterie d’instruments scientifiques. Evidemment tous ces équipements sont “made in China”.

Sur le plan astronautique, c’est une confirmation des capacités de la fusée Chang-Zheng 5 (Longue-Marche 5) qui peut hisser 25 tonnes* en LEO (orbite basse terrestre) et bien sûr des équipes de l’agence spatiale chinoise, “CNSA”, acronyme de Chinese National Space Administration. La CNSA est rattachée à la SASTIND, agence gouvernementale pour la Science, la Technologie et l’Industrie de la Défense Nationale. Cette dernière qualification, précise bien le contexte dans lequel se déroulent ces missions. On peut remarquer que l’atterrisseur et le rover sont identiques à ce que les Chinois ont déposé récemment sur la face cachée de la Lune (Chang’e 4 et son rover Yutu 2).

*contre 130 tonnes, tout de même, pour la fusée Saturn 5 du programme lunaire Apollo. Mais l’Atlas V “541” utilisé par les Américains pour la mission Mars 2020 peut placer 17 tonnes en LEO. Sa version “HLV” pourrait y placer 29 tonnes. Le SuperHeavy de SpaceX (encore en développement) doit pouvoir y  placer 150 tonnes mais déjà le Falcon Heavy (opérationnel) peut y placer 63,8 tonnes.

Sur le plan scientifique, le programme est très ambitieux. L’orbiteur doit être opérationnel pendant au moins deux années terrestres (une année martienne). Il est équipé de deux caméras dont une à haute résolution, d’un radar à pénétration du sol, d’un spectromètre infrarouge, d’un magnétomètre et de deux détecteurs de particules. Il servira également de relai de télécommunication à l’atterrisseur et à son rover. Le rover est équipé d’une caméra stéréoscopique de navigation et d’une caméra multispectrale, d’un radar à pénétration du sol, d’un magnétomètre, d’un spectromètre imageur et d’une station météorologique. Tous ces équipements ont pour objet l’étude de l’environnement spatial et atmosphérique de la planète et surtout, à partir du rover mais aussi de l’orbiteur, celle de sa géologie, en particulier détecter la présence d’eau, aujourd’hui et dans le passé.

A cet effet il est intéressant de noter que les Chinois ont l’intention de faire atterrir leur “lander” dans l’Ouest d’Utopia Planitia, une vaste région des Basses terres du Nord, situées à l’Est d’Isidis Planitia. Dans cette région, Sylvain Piqueux du California Institute of Technology (CalTech) et un groupe de scientifiques, ont identifié des éléments de relief de type glaciaire permettant de déduire la présence toujours actuelle de banquises enterrées*. La couche superficielle de ces reliefs a été très certainement asséchée par sublimation de l’eau qu’elle contenait mais sa porosité, si elle est confirmée, sera le signe de la présence passée de l’eau. Sous cette couche, à seulement un ou deux mètres, on devrait pouvoir trouver de la glace en proportion très élevée sur une très vaste surface (plusieurs centaines de milliers de km2). Ce qui est encore plus intéressant c’est que ces banquises se situent à une altitude moyenne, bien qu’un peu élevée (40°N à 50°N), ce qui permettrait l’établissement d’une base habitée dans une région ou les conditions environnementales seraient encore acceptables (à la différence des pôles).

*lire l’article scientifique (lien ci-dessous) et mon article du 11 janvier 2020: “Mars de la glace d’eau facilement accessible, dans une région vivable“.

Il est également intéressant de noter que le rover Perseverance sera déposé par les Américains dans une région proche (plus à l’Ouest) qui, elle aussi, est très riche sur le plan géologique puisqu’il s’agit du delta d’un ancien fleuve à l’entrée d’un cratère (Jezero). Le site choisi par les Américains est nettement plus accidenté mais il ne faut pas oublier que les Chinois en sont encore à leur coup d’essai. D’ailleurs ils vont prendre le temps, plusieurs semaines, avant de se lancer dans la descente (“EDL” pour “Entry, Descent, Landing”), manœuvre très périlleuse que les Américains sont jusqu’à présent les seuls à avoir pu maîtriser. Les Chinois sont donc dans la position d’un étudiant qui vient de passer sa licence (mise en orbite) mais qui doit maintenant passer son master (fonctionnement de l’orbiteur) et presque simultanément, passer son doctorat (opération du rover au sol). A noter que le rover des Chinois à une masse de 240 kg contre une tonne pour Perseverance (comme d’ailleurs pour Curiosity).

Ce n’est pas gagné pour les Chinois mais disons que la concurrence pointe le bout de son nez!

illustration de titre: orbiteur de Tianwen-1, crédit image agence chinoise CNCA.

lien vers l’article scientifique cité :

“Widespread shallow water ice on Mars at high latitudes and mid latitudes” par Sylvain Piqueux et al. in Geophysical Research Letters, doi.org/2019GL083947.

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL083947

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 01 26

La sonde emirati “espoir” a réussi son insertion en orbite de Mars

Les Emirats Arabes Unis ont réussi leur pari “fou” de mettre en orbite une sonde autour de Mars. La nouvelle est tombée ce 9 février à 17h15. Il y avait, dit-on, 50%* de chances de succès et le monde entier de l’astronautique et de la science planétologique se réjouit avec les Emirati qui en même temps célèbrent le 50ème anniversaire de leur fédération.

*en fait ce pourcentage prend en compte la totalité des vols effectués vers Mars, même les premiers, qui ont presque tous échoué, ce qui est bien normal. Il est plus exact de dire que les Américains sont les seuls à maitriser la dépose de masse en surface de Mars et que ceux-ci, avec les Européens, les Indiens (depuis le cycle synodiques précédent) et maintenant les Emirati sont les seuls à maitriser l’insertion en orbite martienne.

La sonde partie le 20 juillet de l’astroport de Tageshima, au Japon, est donc arrivée dans l’environnement de Mars ce jour après 7 mois de voyage. Sa vitesse de 120.000 km/h a été réduite en 27 minutes à 18.000 km/h. C’était avec le décollage puis l’injection interplanétaire la manoeuvre la plus difficile sur le plan astronautique (il y a eu, en plus, trois ajustements de trajectoires, ce qui est normal pour une telle mission).

Il est vrai que la sonde et le lanceur ne sont pas 100% production locale. Le lanceur a été japonais (Mitsubishi Heavy Industry H-IIA), la partie scientifique a été portée par l’Université du Colorado* aussi bien que par des spécialistes du monde entier dont le Français François Forget pour la météorologie. Le suivi du satellite a été effectué par le DSN, Deep Space Network de la NASA. Mais ce sont les Emirati qui sont au centre, comme organisateurs, fédérateurs et financiers. Le projet a été voulu par le “Leadership” de l’Etat (Sheikh Khalifa bin Zayed Al Nahyan, souverain d’Abu Dhabi. Il est le Président de la fédération des Emirats Arabes Unis, fils du fondateur Sheikh Zayed bin Sultan al Nahyan).

*University of Colorado Boulder’s Laboratory for Atmospheric and Space Physics

C’est une déclaration politique, progressiste et pacifique, à l’attention du monde arabe aussi bien que du monde entier et ce message est d’autant plus remarquable que l’équipe des quelques 200 ingénieurs et scientifiques du Centre spatial Mohammed Bin Rashid (MBRSC) est jeune (28 ans d’âge moyen) et composée à 80% de femmes.

Sur le plan scientifique, la sonde qui va évoluer sur une orbite très elliptique, va étudier le temps (qu’il fait) et le climat sur Mars avec la possibilité d’avoir une vue globale aussi bien que détaillée de l’évolution, jour et nuit, heure par heure, et ce sur la durée d’une année martienne (deux années terrestres). Nous aurons donc une connaissance plus précise, des vents, des températures et de leurs évolution planétaire au fil des jours et des saisons.

Toutes nos félicitations au Leadership qui a rendu cette performance possible et à l’équipe de l’agence spatiale des Emirats qui a permis de la réaliser. Nous les retrouverons un jour sur Mars car leur ferme intention est de contribuer à ce que l’homme y parvienne physiquement et ils participeront à l’aventure. Pour commencer, nous souhaitons plein succès à la mission EMM (Emirati Mars Mission).

Illustration de titre: vue d’artiste de la sonde Amal (espoir) approchant Mars, crédit agence spatiale des Emirats Arabes Unis.

Parmi les planètes-orphelines, des sœurs de la Terre pour toujours dans la nuit

Dans le noir de l’espace, en dehors de tout système stellaire, on s’est rendu compte relativement récemment qu’il existe des astres solitaires qui ne sont ni des astéroïdes ni des étoiles, mais d’une masse suffisante pour être des planètes, les « planètes-orphelines ».

On les nomme également « Objets libres de masse planétaire » ou en Anglais, « rogue-planets ». Leur découverte remonte à la fin des années 1990 (Japonais) mais la première étude bien documentée, par David Bennett de l’Université de Notre-Dame (Etats-Unis, Indiana), date du 19 mai 2011 (voir lien ci-dessous).

Tout d’abord on n’a observé que des astres de type Jupiter et de masse comprise entre environ 13 et environ 3 masses joviennes. Le 13 est important parce qu’au-dessus, la masse de l’astre serait telle que la réaction de fusion nucléaire (Hydrogène => Deutérium) se déclencherait et qu’on serait en présence d’une étoile de premier niveau de puissance (« naine-brune »). Le 3 est également important puisque les effets discernables causés par ces astres et qui permettent de les identifier sont très faibles. Mais cette seconde limite est en train de s’abaisser grâce à nos progrès technologiques et à l’expérience, c’est-à-dire la pratique du type d’observation requis. En Septembre 2020, on a ainsi pu déclarer avoir observé (en 2016) une planète-orpheline d’une taille située entre celles de Mars et de la Terre, à qui l’on a donné le doux nom « OGLE-2016-BLG-1928 ».

Détecter ces planètes n’est donc pas facile. Ce qui l’a permis c’est l’effet de loupe des microlentilles gravitationnelles (« gravitational microlensing ») qu’elles-mêmes peuvent créer, comme toute masse par rapport à une source émettrice de lumière située derrière elle dans la ligne de l’observateur. L’effet de loupe est une application de la théorie de la relativité générale d’Albert Einstein* et on ne peut le vérifier et l’utiliser pour des masses aussi faibles qu’une planète, que si l’on dispose d’instruments suffisamment sensibles pour les détecter. Cette condition étant remplie, il s’agit donc de profiter de l’instant fugace (deux heures maximum) de l’alignement avec la Terre, d’une telle source observable (évidemment une étoile) avec la masse qui passe entre elle et nous (la lentille). C’est de ce bref passage (41,5 minutes pour OGLE-2016-BLG-1928) de la planète-orpheline qui apparaît sur le graphe (voir ci-dessous) comme un pic de lumière plus ou moins haut et plus ou moins large, que l’on peut déduire sa masse, son volume (donc la nature gazeuse ou rocheuse), sa distance. Il faut être très clair : nous n’avons pas d’image.

*microlentille gravitationnelle : la lumière est courbée lorsque ses rayons éclairent un objet massif, par cet objet lui-même. La gravité de la masse au premier plan déforme l’espace environnant et agit comme une loupe.

Bien entendu il faut que, sur la durée, le phénomène ne se répète pas périodiquement (cela signifierait que la planète appartient à un système stellaire) et ce dernier « détail » n’est pas facile à vérifier car l’expérience nous a appris que les géantes gazeuses peuvent se trouver à plusieurs UA (Unités astronomiques, distance Terre-Soleil, soit 150 millions de km) de leur étoile. De ce fait, les passages d’une planète éloignée devant son étoile sont rares. Neptune qui se trouve à 30 UA du Soleil a une période de révolution de 165 ans ; Jupiter, à 5,2 UA, a une période de révolution de 11,86 ans. Un indice à rechercher est de voir si lors du passage de la planète devant l’étoile, celle-ci modifie très légèrement sa position. Ce serait la preuve d’un lien gravitationnel. Faute d’arguments contraires, on présume que ces planètes sont orphelines si elles se trouvent à au moins 10 UA d’une étoile (la distance exacte dépendra du type d’étoile), distance à laquelle on considère qu’il y a peu de chances de trouver un Jupiter et encore moins une planète tellurique, et bien sûr on vérifie l’évolution de cette distance.

Dans le cas d’OGLE-2016-BLG-1928 il faut cependant ajouter un bémol. L’objet est si petit que la parallaxe de la lentille (la planète) à la source émettrice de la lumière (une géante rouge) n’a pu être mesurée. On a estimé, d’après la mesure par le télescope Gaia du mouvement-propre de la source, que celle-ci devait être située dans le bulbe de la Voie-lactée et que la lentille devait être plutôt située dans le disque que dans le bulbe. Cela impliquerait une masse de 0,3 masse terrestre. Si elle était dans le bulbe, sa masse maximum serait de l’ordre de 2 masses terrestres, ce qui serait quand même très petit. A noter que d’une façon générale l’on oriente les instruments vers le bulbe ou vers le Nuage de Magellan en raison de la richesse en étoiles de ces régions qui donne la possibilité de très nombreux transits astronomiques. C’est important car les circonstances qui permettent l’observation de ces planètes sans étoile sont quand mêmes difficiles à remplir.

Les premières observations de planètes-orphelines ont été faites par une collaboration nippo-néo-zélandaise (Microlensing Observations in Astrophysics, « MOA »). Dès la première campagne (2006/2007), elle a découvert une dizaine d’astres, ce qui signifiait que les planètes de ce type n’étaient pas exceptionnelles bien que difficiles à observer. Plusieurs équipes poursuivent les mêmes recherches, notamment l’Optical Gravitational Lensing Experiment (« OGLE ») de l’Université de Varsovie qui a plusieurs partenariats. OGLE-2016-BLG-1928 a été découverte, avec OGLE, par Korean Milcrolensing Telescope Network, « KMTNet » du Korea Astronomy and Space Science Institute (« KASI ») .

L’origine de ces astres est toujours débattue. Deux possibilités se présentent. Soit, ils se sont formés directement par contraction d’un nuage de gaz, comme les systèmes stellaires, soit ils se sont fait éjecter de systèmes qui avaient commencé leur formation. C’est la seconde hypothèse la plus probable (ou du moins la plus fréquente) car pour que la contraction d’un nuage interstellaire soit suffisante pour créer des planètes, il faut sans doute que sa densité soit suffisamment élevée, donc que ses éléments soient tenus et resserrés par un centre gravitationnel fort qui non seulement les concentre mais aussi les entraine autour de lui à une vitesse suffisante pour créer des tourbillons de matière et de gaz. Cela ne peut résulter que d’une masse importante, suffisante pour créer une étoile. En fait, dans un nuage protoplanétaire les planètes ne peuvent pas se former avant les étoiles. Autrement dit, il est sans doute nécessaire qu’une étoile se soit déjà formée (allumée) pour que les éléments qui vont former les planètes disposent de suffisamment de vitesse orbitale pour devenir des planètes (sous réserve de cas limites). Mais on peut aussi envisager qu’un nuage protoplanétaire commence à se contracter autour d’une étoile et que, pour une raison quelconque (proximité d’un phénomène analogue en cours qui déchire le nuage ?), il se détache un fragment contenant une partie déjà suffisamment concentrée en planète (on a crû d’ailleurs, observer une planète-orpheline au centre d’un disque de poussière). Quoi qu’il en soit, le plus probable est l’éjection d’un système à la fin de sa période d’accrétion. C’est ce qui aurait pu arriver à notre fameuse et toujours hypothétiques « Planète-9 » (cinquième des géantes gazeuses, entre Saturne et Neptune) dont j’ai déjà parlé. Les auteurs d’une étude publiée le 29 Octobre 2020 dans l’Astrophysical Journal Letter concernant OGLE-2016-BLG-1928* nous disent (1) qu’au moins 75% des systèmes comprenant des planètes géantes (type Jupiter) doivent avoir connu des dispersions planétaires, (2) que les interactions entre planètes géantes (du type Jupiter + Saturne avec les autres géantes gazeuses) conduisent fréquemment à la perturbation des orbites des planètes de la partie interne des systèmes (en dessous de la ligne de glace), en principe telluriques, et parfois à leur éjection du système, aussi bien qu’à la perturbation des orbites des planètes gazeuses, (3) que les planètes peuvent aussi être éjectées à la suite d’interactions entre étoiles d’un système multiple ou parties d’un essaim d’étoiles, du survol d’une étoile voisine, ou de l’évolution de l’étoile après qu’elle soit sortie de la Séquence-principale du diagramme de Hertzprung-Russel (en fin de vie).

Il devrait donc y avoir beaucoup de tels astres dans notre Galaxie. En fait dans l’étude de Nature publiée en mai 2011, les chercheurs estimaient qu’ils pourraient y en avoir deux fois plus que des étoiles (au moins 400 milliards selon David Bennett). On en saura plus avec le télescope « WFIRST* » de la NASA. Ce télescope qui s’appelle maintenant « Nancy-Grace-Roman Telescope » ou « Roman telescope » (Nancy Roman est une astronome américaine de la NASA, mère du télescope Hubble, décédée en 2018), est un télescope à infrarouge, donc permettant de déceler les astres peu ou non lumineux. Outre des preuves de l’énergie noire où la capture d’images et de spectres de quelques grosses exoplanètes proches, il va rechercher les exoplanètes de petites tailles en utilisant le phénomène susmentionné des microlentilles gravitationnelles. Il doit être lancé en 2025.

Mais n’exagérons pas ce qu’on peut déduire de cette recherche. Certains scientifiques (un peu exaltés, à mon avis) comme Neil DeGrasse Tyson après David Stevenson du CalTech (1999), ont imaginé que si ces planètes avaient une atmosphère d’hydrogène épaisse au moment de leur éjection (c’est effectivement possible compte tenu de l’abondance de l’hydrogène et compte tenu de ce que les planètes telluriques dans leur jeune âge ont une atmosphère dense), cette atmosphère pourrait servir de « couverture isolante » planétaire si elle a été préservée lors de l’éjection. Les planètes-orphelines pourraient ainsi maintenir une certaine chaleur en surface (la chaleur interne de la planète étant ainsi conservée) jusqu’à permettre la présence d’eau liquide et donc de vie à condition que la planète ait une taille minimum, c’est-à-dire au moins celle de la Terre (hypothèse pression atmosphérique 1000 bars à l’origine). Comme vous voyez, on retombe toujours sur les mêmes rêves mais ici sans aucun fait pour les étayer. C’est un peu tôt pour s’y laisser entrainer compte tenu des moyens d’observation dont on dispose, aujourd’hui.

Illustration de titre: vue d’artiste d’une planète-orpheline approchant une étoile (qui n’est bien sûr pas la sienne puisqu’elle n’en a pas !). Crédit Christine Pulliam, Center for Astrophysics (Harvard & Smithonian).

Illustration ci-dessous : les différents cas de figure pour une observation par microlentille gravitationnelle.

Le pic lumineux d’une planète-orpheline (rectangle de droite) est petit et étroit, dissocié de toute autre masse. Crédit : Nature. Joachim Wambsganss, Bound and unbound Planets abound. Nature 473,289-291 (2011). https://doi.org/10.1038/473289a.

liens:

https://www.nature.com/articles/21811

https://science.nd.edu/news/astronomer-david-bennetts-team-discovers-new-class-of-planets/

https://www.nature.com/articles/nature10092

https://science.nasa.gov/science-news/science-at-nasa/2011/18may_orphanplanets#:~:text=The%20team%20estimates%20there%20are,our%20Milky%20Way%20galaxy%20alone.

Microlensing, vidéo descriptive de la NASA : https://www.youtube.com/watch?v=6vVetE5cEMA

https://www.nationalgeographic.com/science/phenomena/2014/03/13/a-guide-to-lonely-planets-in-the-galaxy/

https://www.lefigaro.fr/sciences/2011/05/19/01008-20110519ARTFIG00590-des-planetes-sans-etoile-derivent-dans-le-vide-sideral.php

Nature 18 mai 2011 : file:///C:/Users/pierr/Downloads/473289a.pdf

*Prezemek Mróz et al 2020 ApJL 903 L11 : https://iopscience.iop.org/article/10.3847/2041-8213/abbfad

https://www.universetoday.com/148097/a-rogue-earth-mass-planet-has-been-discovered-freely-floating-in-the-milky-way-without-a-star/

https://fr.wikipedia.org/wiki/Objet_libre_de_masse_plan%C3%A9taire

*WFIRST : https://fr.wikipedia.org/wiki/Nancy-Grace-Roman_(t%C3%A9lescope_spatial)

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 01 26

Les météores, porteurs de menaces ou de rêves et in fine…de données scientifiques

De tout temps les météores ont beaucoup impressionné les hommes. Ils les ont vus, soit s’il s’agissait de « bolides », comme des manifestations de la colère des dieux, soit s’il s’agissait de comètes, comme des messagers porteurs de bonnes ou de mauvaises nouvelles. Ils étaient et sont toujours des passeurs, une sorte de vecteur de communication du « lointain » jusqu’à nous mais évidemment, à notre regard rationnel, ils portent de nos jours un autre message, celui de la géographie et même de l’histoire de notre système solaire.

Un astéroïde ou éventuellement une comète devient un météore s’il pénètre dans l’atmosphère terrestre. On dit aussi que ce sont de « petites-planètes » puisqu’ils orbitent autour du Soleil et non d’une autre planète. Mais ce qui les distingue des « vraies » planètes et des planètes-naines (du type de Pluton ou de Cérès) ou encore des plus grosses lunes (Ganymède ou Titan) c’est leur taille. Les astéroïdes ou comètes sont tout simplement plus petits (en volume et en masse). Je préfère donc les appeler des « petits corps » pour mieux les caractériser. La différence fondamentale avec les planètes et les plus grosses lunes est que leur masse, trop petite, ne leur a pas permis d’acquérir du fait de leur gravité, de leur pression et de leur échauffement internes (qui en résultent), une forme approximativement sphérique (on parle d’« équilibre hydrostatique »). Si on va plus loin, tout se complique mais on sait (aujourd’hui) très bien ordonner ou classifier leur complexité.

Il faut d’abord distinguer les astéroïdes et les comètes. Les secondes sont beaucoup plus riches en gaz (à l’origine gelés) et en eau, on dit en « éléments volatiles ». Elles génèrent de ce fait une chevelure et une « queue » opposée au Soleil quand ils entrent dans la région du système solaire où l’irradiance est suffisamment élevée pour que ces éléments, à l’origine solides, passent en phase gazeuse. La chevelure et la queue étant une diffusion dans l’espace d’une partie de la masse de la comète, elle va s’épuiser par perte de matière et désagrégation au cours de ses passages successifs à proximité du Soleil (pour être plus précis, dans une région plus proche du Soleil que celle de leur origine où l’irradiance solaire est telle que les éléments volatiles puissent se sublimer). Les autres caractéristiques de la comète sont la longueur de leur période par rapport à celle des astéroïdes, leur vitesse et la diversité de l’inclinaison de leur trajectoire sur le plan de l’écliptique. Ce sont ces caractéristiques qui ont fait penser à l’existence d’une source lointaine (Ceinture de Kuiper et Nuages de Oort). La première, la longueur de la période (le temps mis pour passer et revenir) est évidemment le signe de la distance du lieu d’origine ; la vitesse permet de savoir si l’astre a pu l’acquérir du fait de la distance et si in fine il va être renvoyé par le Soleil vers son aphélie après avoir passé son périhélie (certains astéroïdes récemment observés ont été considérés de ce fait comme provenant d’un autre système stellaire); l’inclinaison sur l’écliptique va nous dire s’il vient d’une zone suffisamment lointaine pour que l’attraction du Soleil soit suffisamment faible et la vitesse suffisamment faible pour qu’elles ne contraignent pas les astres de cette région à se concentrer dans un disque mais à subsister comme une sphère (ou une « coque »).

Les astéroïdes, astres « secs » , proviennent d’une région beaucoup plus proche du Soleil, en principe la nôtre, c’est-à-dire celle qui s’étend de Mercure (en fait plutôt de Vénus) jusqu’à la Ceinture d’astéroïdes entre Mars et Jupiter. C’est une zone de laquelle l’irradiance du jeune Soleil, au rayonnement très actif, a rejeté la « plus grande partie » des éléments volatiles. A l’origine cette zone s’étendait jusqu’à la « ligne de glace » (d’eau évidemment ; il y a d’autres distances en fonction des différents matières susceptibles de s’évaporer ou de se sublimer) qui se situait au milieu de la Ceinture d’astéroïdes (à environ 3 UA, correspondant à une température de 130 K) mais les « chamboulements » occasionnés par les changements d’orbite de Jupiter et de Saturne, ont perturbé fortement la Ceinture d’Astéroïdes au point de mélanger les astres riches en eau avec les astres secs, même si les premiers sont plus nombreux au-delà de la ligne de glace.

Sur ces bases, on va avoir une véritable géographie de la répartition de ces petits corps, avec des régions maintenant clairement identifiées. Outre la Ceinture d’Astéroïdes et les Nuages de Oort déjà mentionnés et situés, on a ainsi diverses populations occupant divers territoires qui peuvent éventuellement (et c’est le problème) interagir les uns avec les autres. Je citerai d’abord (en commençant par les plus proches) les « géocroiseurs » (qui évoluent à un moment ou un autre de leur trajectoire à proximité de la Terre avec une période relativement courte). Nous avons ensuite les astéroïdes « Troyens ». A l’origine (les premiers observés) ce furent ceux de Jupiter, sur l’orbite de cette planète, à ses points de Lagrange L4 (troyens proprement dits) et L5 (grecs), soit à 60° en avance et en retard de la planète. Par extension ce furent les astéroïdes qui se trouvent dans des positions similaires sur l’orbite des autres planètes. La Terre et Mars comme les autres géantes gazeuses ont, elles aussi des Troyens (mais ni Vénus ni Mercure). Plus loin, les « Centaures » gravitent entre les planètes géantes gazeuses. Maintenant, en dehors de toute ces populations, il reste les blocs de matière qui résultent d’impacts d’autres astéroïdes sur le sol de Mars (« SNC* ») ou des planètes naines de la Ceinture de Kuiper (il faut une surface solide pour les créer et ils ne peuvent provenir des planètes gazeuses, ni des planètes situées en-dessous de la Terre vers le Soleil, quoiqu’on ait maintenant un doute pour Vénus**). Ces astéroïdes d’origine planétaire qui mettent un « certain temps » à parvenir jusqu’à nous n’ont évidemment pas la même composition que les autres puisqu’ils proviennent d’astres qui ont eu une histoire géologique particulière liée à leur masse et à leur position dans le système solaire.

*Shergottites, Nakhlites, Chassignites, selon le lieu où elles ont été trouvées (1865/1911/1815).

**Lunar exploration as a probe of ancient Venus” par Samuel Cabot & Gregory Laughlin in “The Planetary Science Journal”, draft 07/10/2020. 

On dit que le premier astéroïde de la Ceinture d’astéroïdes a été observé en 1801 par Giuseppe Piazzi, directeur de l’observatoire de Palerme. En fait, ce qu’il avait vu était la planète naine Cérès, un astre considéré aujourd’hui comme en dehors de cette catégorie (il est approximativement sphérique compte tenu de sa masse). C’est dans la dizaine d’années suivantes qu’on découvrira les premiers véritables astéroïdes. Le premier des Troyens fut découvert en 1906, le premier des Centaures, en 1977, le premier des objets de la Ceinture de Kuiper (objets transneptuniens ou « TNO ») en 1992 seulement (« 1992QB1 » ou « Albion »), indépendamment des planètes naines de cette zone comme Pluton ou Sedna. Aucun objet des nuages de Oort n’a encore été observé in situ. Il est vrai que c’est très difficile puisqu’ils n’émettent aucune lumière propre et réfléchissent très peu la lumière solaire du fait de leur distance et de leur taille. Mais bien sûr on a déjà vu dans notre environnement des comètes qui doivent en provenir.

Les astéroïdes géocroiseurs comme les comètes sont des objets très particuliers et très intéressants puisqu’ils sont accessibles à notre observation, non seulement par des moyens astronomiques, donc astrophysiques mais aussi par des moyens astronautiques. Ils sont aussi intéressants par les craintes qu’ils suscitent d’une collision avec la Terre (justifiée évidemment sur le long terme). Les Japonais comme les Européens sont les plus en pointe dans les technologies permettant l’observation in situ. Pour mémoire rappelons les missions Rosetta et Hayabusa 1 et 2.

Mais pourquoi aller voir de près ces astéroïdes et en recueillir des échantillons ? Parce qu’ils sont les témoins de l’histoire de notre système solaire et en portent les traces dans les roches qui les constituent. De ce point de vue les petits astres sont plus intéressants que les plus gros (planètes-naines) puisqu’ils ont été les moins transformés par l’évolution résultant de leur masse (force de gravité, pression, chaleur). C’est par eux que l’on pourra le mieux savoir quel était l’état du nuage protoplanétaire dans les premières étapes de sa contraction. Des nuances importantes seront apportées par la distance au Soleil de leur zone de formation. Il est évident que les moins transformés seront trouvés le plus loin du Soleil (comme Arrokhot, le TNO observé par la Sonde New Horizon au-delà de Pluton) et que ceux qui comporteraient le moins de matières volatiles, seront ceux situés en dessous de la Ligne de glace. Dans notre environnement on trouve des météorites différenciées qui proviennent d’un corps-parent plus massif et aussi des météorites indifférenciées qui sont justement le reste des éléments de la nébuleuse protoplanétaire. Ces dernières sont ce qu’on appelle des « chondrites » et il y a, bien sûr, différents types de chondrites (« ordinaires », « carbonées », « à enstatite »).

Donc si les chondrites nous parlent d’un monde très ancien, les achondrites nous parlent d’un monde plus récent et de nos voisins planétaires. Les chondrites contiennent des « chondres », petites billes surtout formées de silicates (la matière dominante de nos planètes telluriques et première phase de la condensation du nuage protoplanétaire). Avec les microscopes dont nous disposons aujourd’hui, on peut voir des détails extrêmement fins qui nous disent « presque tout ». C’est tout l’intérêt des missions de retour d’échantillons qui permettent d’utiliser les laboratoires terrestres quand même beaucoup plus performants que les spectrographes embarqués à bord des sondes. C’est ainsi qu’au cours du siècle passé les météorites sont devenus non plus des objets mystérieux mais des livres de notre histoire.

Illustration de titre : passage de la comète Siding Spring dans le ciel de Mars le 19 octobre 2014, vue d’artiste, crédit NASA.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 01 22