Mars notre premier pas vers la Liberté + lien vers présentation d’Elon Musk du 28 septembre

Aller sur Mars n’est pas une fin en soi, c’est entreprendre de vivre en dehors de notre planète avec l’espoir que cela conduise notre espèce humaine à fleurir un jour partout dans l’Univers, repoussant au plus loin possible notre mort certaine. Nous le valons bien !

Beaucoup de critiques de l’exploration de Mars par vols habités, disent que les robots « feraient beaucoup mieux » ou, pour les plus conciliants, « aussi bien » que l’homme, le travail de recherche scientifique que certains partisans de cette exploration humaine mettent en avant pour justifier leur exigence d’aller sur place. Ils ont tort car l’homme avec le robot aurait beaucoup plus d’efficacité que le robot sans l’homme. N’oublions pas le problème de la distance entre les deux planètes qui impose absolument, du fait de la finitude de la vitesse de la lumière, un décalage (« time-lag ») entre le moment où l’on donne un ordre à une machine et le moment où il est exécuté et ensuite celui où l’on reçoit l’information sur ce qui a été exécuté. Mais là n’est pas le vrai problème et la vraie motivation du vol habité car on est bien obligé pour les « terres » plus lointaines que Mars de recourir aux seules machines et on obtient quand même des résultats intéressants même s’ils le sont moins et qu’on les obtient plus lentement que si ces machines étaient « accompagnées ». Non, le vrai problème est que la seule exploration scientifique pour l’accroissement de nos connaissances ne nous fait pas nécessairement « sortir de notre berceau » comme le disait le fondateur de l’astronautique, Konstantin Tsiolkovsky au début du XXème siècle et que ce que nous voulons, nous les « Martiens-terrestres », c’est bien que l’humanité sorte de son berceau.

Cela ne veut pas dire que nous voulons demain que des hordes de Terriens en surnombre sur leur planète s’embarquent pour la planète Mars, la « terraforme » et la couvre de maisons (on dit des « habitats »), d’usines et de routes, pour le simple plaisir de continuer ailleurs ce que nous faisons sur Terre et de détruire Mars comme nous avons déjà pas mal endommagé la Terre (bien que la trajectoire semble aujourd’hui infléchie par une prise de conscience générale). Ce n’est pas si simpliste et de toute façon ce ne serait pas possible car le transport coûtera toujours cher et les « facilités de vie », absolument nécessaires compte tenu des conditions extrêmes imposées par l’environnement martien, ne seront pas si « faciles » à construire et qu’il faudra beaucoup de temps pour le faire.

Non ! Ce qu’on peut envisager c’est une lente progression de notre installation sur Mars et, au début du moins, une sélection très exigeante des candidats pour y participer. Il faudra en effet que les gens soient d’abord compétents car le « support-vie » de toute vie sera extrêmement coûteux et on ne paiera que le voyage de ceux qui seront indispensables au fonctionnement de la « Cité ». Il faudra qu’ils soient aussi ingénieux, adaptables et inventifs car ils devront faire face à toutes sortes de situations inévitablement imprévues avec des moyens limités sans pouvoir recourir à l’aide matérielle de la Terre. Il faudra aussi qu’ils aient un caractère d’acier, non parce qu’ils seront « loin de la Terre » mais parce qu’il sera capital de faire face avec sang-froid à ces problèmes sans être inhibés par leurs difficultés ou les dangers qu’ils impliquent. Et il faudra encore que la personne qui bénéficie de la sélection ait un sentiment de responsabilité qui dans tous les cas la pousse à donner en retour un service aussi bon que ses capacités lui permettent ; ce sera absolument indispensable au fonctionnement de la colonie puisque, la population étant très réduite, très peu sinon lui seul, pourront le fournir.

Mais cette installation sur Mars ne pourra pas être simplement une prouesse technologique. Elle le sera indubitablement mais si elle n’était que cela, elle ne pourrait pas avoir de continuité dans la longue durée. C’est sans doute en partie la raison pour laquelle l’aventure lunaire a été sans lendemain (à ce jour). Ce que nous voulons c’est que les hommes que nous enverrons sur Mars soient des fondateurs avec une vision. Cette vision c’est celle qu’avec Carl Sagan on peut faire germer puis cultiver dans son esprit en se retournant vers la Terre quand on s’en éloigne, en réalisant que toute l’humanité, passée et présente, est là sur ce pâle petit point bleu. Cela peut donner le vertige et cela générer sans doute de l’inquiétude si ce n’est de l’angoisse mais cela peut aussi donner de la fierté et de la force. Comment ne pas être fiers de certains, nombreux, accomplissements de l’homme et comment accepter que tout ce qu’on a créé de sublime sur Terre puisse disparaître un jour du fait de la vulnérabilité de ce petit point bleu ou plutôt de sa cognosphère* qui sur une période très brève, quelques milliers d’années, infime fraction de temps au regard des 4,567 milliards d’années de notre histoire planétaire, s’est développée à sa surface. Comment accepter qu’un jour personne ne puisse plus ressentir l’émotion et les sentiments suscités par la musique de Vivaldi, un poème de Baudelaire, une tragédie de Shakespeare, la lecture des Evangiles, celle de l’Odyssée ou simplement la beauté d’un coucher de soleil sur une dune plantée d’ajoncs au bord de la mer avec à ses côtés la femme qu’on aime (vous avez le droit de remplacer les miennes par vos propres justifications, selon votre sensibilité et votre culture) ?!

*ensemble des individus conscients et communicants.

C’est donc notre devoir en temps qu’êtres humains de porter cette flamme pour la conserver aussi longtemps que nous le permettront nos forces, comme nos ancêtres préhistoriques portaient leurs braises dans un petit réceptacle de pierre et de bois dur et qu’il nourrissait sans cesse de peur qu’elles ne s’éteignent. Ce ne sera pas facile et ce ne se fera pas sur un chemin rectiligne et déjà tracé. A chaque époque cela dépendra des progrès de notre technologie et de notre envie de continuer à vivre.

Cela doit commencer par Mars parce que tout simplement c’est la seule planète où l’on puisse envisager aujourd’hui de le faire compte tenu de la distance accessible malgré le danger des radiations et compte tenu des ressources qu’elle peut nous offrir. Mais cela ne doit pas s’arrêter à Mars. Un jour nous pourrons aller plus loin et il faudra aller plus loin. Un jour nous pourrons construire des îles de l’espace comme en a rêvé Gerard O’Neill et il faudra construire ces îles. Un jour nous pourrons nous embarquer pour aller ailleurs, vers une autre planète orbitant une autre étoile dans la ceinture habitable de notre Voie Lactée et peut-être un jour, inimaginable aujourd’hui, encore plus loin et il faudra aller toujours plus loin. Nous serons partout, toujours plus inventifs et plus créatifs. Il y aura des échecs et il y aura des drames mais il y aura aussi des merveilles et mille fleurs écloront dans l’espace. Nous avons un potentiel extraordinaire. Nous sommes sans doute ce que la Nature a produit de plus complexe, de plus intelligent et de plus sensible (et si ce n’est pas exact, nous devons faire « comme si »). Nous avons donc un devoir vis-à-vis d’Elle (certains l’appellent autrement et je n’ai pas de problème avec ça) et vis-à-vis de tous ceux qui nous ont porté jusqu’ici, et nous devons absolument honorer cette obligation.

Alors un jour « nos descendants » qui ne seront sans doute plus « humains » au sens où nous l’entendons aujourd’hui car à chaque génération l’évolution empoigne nos gênes animés par l’ardente nécessité de survivre et de transmettre, et les triture et les transforme dans ce processus complexe sinon étrange que l’on comprend mieux maintenant avec la prise de conscience de la force homéostatique qui l’anime, mais « nos descendants » tout de même dans la mesure où ils auront gardé l’aptitude aux sentiments que nous leur aurons transmis et qui auront essaimé sur une multitude de planètes, chacune devenue autonome et différente, se retourneront vers leur passé qui se perdra dans les brumes du Temps et, à la lueur du magnifique spectacle de notre Soleil transformé en géante rouge et enflée au maximum avant de se transformer en nébuleuse planétaire, ils auront une pensée pour leur planète d’origine disparaissant dans son enfer et ils nous diront merci pour leur vie et leur Liberté.

NB: Maintenant que nous connaissons mieux notre environnement spatial (qu’il y a, disons, une cinquantaine d’années) on peut dire qu’il y a sans doute des planètes-B (et que Mars pourrait faire l’affaire), mais qu’il n’y a pas d’« Humanité-B ». Je développerai bientôt ce thème.

Image de titre : nébuleuse ouverte NGC2818 (à environ 10.000 années-lumière de “chez nous”). Notre Soleil en fin de vie s’effondrera sur lui-même et rejettera gaz et matière en une coque plus ou moins sphérique qui se dilatera peu à peu autour de lui dans l’espace. Crédit NASA, ESA et l’équipe Hubble Heritage (STScl/AURA).

Image ci-dessous : pale petit point bleu : photo de la terre prise en 1990 par la sonde Voyager 1, à environ 6,5 milliards de km (distance moyenne de Pluton), crédit NASA/JPL-CalTech. C’est cette photo qui a inspiré le titre du livre de Carl Sagan, « Pale Blue Dot : a vision of the human future in Space » (1994). Le point bleu se trouve dans la bande la plus claire, à 40% du bas de l’image.

Image ci-dessous (vue d’artiste): Dans 5 milliards d’années, notre Soleil enflé en géante rouge et la Terre; crédits : Mark Garlick/HELAS

Elon Musk a fait le point hier, Samedi 28, sur son projet Starship + SuperHeavy. Je vous donne le lien vers sa présentation sur Youtube. Je suis heureux de constater que nous sommes tout à fait dans le même état d’esprit qu’exprimé dans l’article ci-dessus. NB: la présentation qui dure 43 minutes a été suivie de questions / réponses (à partir de 48’50). Enjoy!

 https://www.spacex.com/webcast

 

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 09 26

Le radiotélescope géant SKA, un projet exaltant qui pose des défis à hauteur de son ampleur

La communauté mondiale des astrophysiciens s’est lancée dans un projet pharaonique qui pousse les limites de ce que l’on peut faire sur Terre, le télescope « SKA », « Square Kilometer Array ». Il s’agit de construire dans l’hémisphère Sud (Australie et Afrique du Sud) un ensemble d’antennes recueillant les ondes radio et fonctionnant en interférométrie. Cet ensemble sera gigantesque puisqu’il doit s’étendre sur deux continents, pour atteindre un km2 de surface de collecte ce qui lui permettra d’être 50 fois plus sensible que n’importe quel autre télescope radio. Il commence à voir un début de réalisation avec les sous-réseaux « ASKAP », « MeerKAT » et « MWA », trois « pathfinders » (précurseurs), en Australie et en Afrique du Sud, mais les défis sont importants et ils ne sont pas que technologiques bien que la réalisation du projet suppose l’application de technologies de pointe; ils sont aussi organisationnels et environnementaux en raison de son ampleur même.

NB : il n’est pas question ici de développer en profondeur un projet extrêmement complexe mais simplement d’attirer l’attention sur ce qui en fera un instrument très riche en potentialités et qui marquera l’histoire de l’astronomie.

Tout a commencé par des réflexions à la fin des années 1980 puis concrètement en 1993 avec la création d’un groupe de travail sur les grands télescopes et en 1997 avec le lancement d’un programme d’étude technologique en vue de la réalisation d’un « très grand radiotélescope ». Ensuite, en mai 2012, ce fut la signature d’un Memorandum of Understanding, puis la mise en place d’un « Project Office » (en Grande Bretagne, à l’Observatoire de Jodrell Bank, près de Manchester). Après d’autres (nombreuses) réunions et préparatifs, la décision fut prise de construire ce qui fut appelé le « SKA-1 » sur deux sites, en Australie Occidentale, à Mileura, près de Meekatharra, un endroit « perdu » au Nord de Perth dans le « désert de Murchison », pour les basses fréquences, et en Afrique du Sud, dans le désert du Karoo, au Nord Est du Cap ; le choix de l’hémisphère Sud et d’endroits peu peuplés étant justifié par les faibles interférences radio (« bruits ») provenant d’activités humaines.

Le coordinateur, SKAO (« O » pour « Organization »), vise à constituer une organisation intergouvernementale (« IGO »), la seconde en importance dans le domaine de l’astronomie après l’ESO (European Southern Observatory) qui s’appellera aussi le SKAO (mais avec “O” pour Observatory). Un traité international est en cours de signature pour la régir. En 2020 l’IGO SKAObservatory prendra la suite du SKAOrganization et entreprendra la construction puis la gestion du “télescope” mais cela n’empêche pas l’ « Organization » de fonctionner déjà, sous la forme d’un « Project Office » (« Bureau de projet ») car il faut finaliser la phase préparatoire! Pour accomplir cette phase, le « Bureau » a lancé en 2013 un appel budgeté à 200 millions de dollars (et financés par les agences nationales) à la communauté scientifique du SKAOrganization pour faire préciser la définition du projet par onze consortia internationaux : Assembly, Integration and Verification (AIV), Central Signal Processor (CSP), Dish (DSH), Infrastructure Australia (INFRA AU), Infrastructure South Africa (INFRA SAU), Low-Frequency Aperture Array (LFAA), Mid-Frequency Aperture Array (MFAA), Signal and Data Transport (SaDT), Science Data Processor (SDP), Telescope Manager (TM), Wideband Single Pixel Feeds (WBSPF). Les seuls noms de ces différents « groupes » aident à comprendre (un peu) la nature de leurs travaux puisque ce sont ceux de tous les domaines où il convient d’affiner les préparations.

NB: Les pays membres du SKAO ont fluctué avec le temps. Aujourd’hui, l’Australie, l’Afrique du Sud, la Chine, l’Italie, le Portugal, les Pays-Bas et le Royaume-Unis ont confirmé leur adhésion au SKAObservatory en signant le traité de l’IGO qui l’institue. L’Allemagne, l’Espagne et la France (CNRS avec l’Observatoire de Paris, l’Observatoire de la Côte d’Azur, l’université de Bordeaux et l’Université d’Orléans) sont membres spéciaux de SKAOrg. Comme la Suisse (EPFL, UniGE, UniZH, FHNV, CSCS), le Japon et la Corée, L’Inde et la Suède, également membres du SKAOrganization, ils se préparent à signer le traité de l’IGO du SKA Observatory mais n’en sont donc pas encore des membres confirmés. Le Canada est membre de SKAOrg depuis longtemps et décidé à continuer, mais refuse de signer un traité pour un projet scientifique, il deviendra membre associé de l’IGO. 

Techniquement le SKA doit couvrir continûment un spectre de fréquences (une « bande passante ») très large (longueurs d’ondes centimétriques à métriques) allant de 50 MHz à 14 GHz dans ses deux premières phases de construction et, dans une troisième phase, jusqu’à 30 GHz. La première phase, “SKA-1”, couvrira les fréquences basses (50 à 350 MHz, « SKA1-LOW ») et moyennes (350 MHz à 14 GHz, « SKA1-MID ») et doit permettre d’ici 2028 l’établissement d’environ 10% de la surface de collecte totale prévue. Plusieurs types d’antennes seront utilisés ; des antennes dipolaires pour les fréquences basses et des antennes paraboliques de 15 mètres de diamètre pour les fréquences allant de 350 MHz à 14 GHz (dans un premier temps). Bien entendu ces antennes ne seront que la « partie visible de l’iceberg » puisqu’il faudra coordonner leur fonctionnement, recueillir les données collectées (plus de 7 terabits/seconde !), les traiter (« traitement du signal »), c’est-à-dire les corréler, les stocker, les analyser, et tout cela sur des quantités énormes ce qui suppose des moyens informatiques extrêmement puissants (plusieurs centaines de pétaflop/seconde de vitesse de calcul). La clef de voûte de l’ensemble sera le « télescope manager » (TM) cité plus haut qui fait aussi l’objet d’un groupe de travail.

L’ensemble des antennes doit être implanté dans deux régions (Afrique du Sud et Australie), chaque station étant divisée en trois zones : un centre, réseau dense comprenant la moitié de la surface collectrice ; une région intermédiaire et une région extérieure, en bras spiraux. Plus on s’éloignera du centre plus la densité diminuera. Les antennes de fréquences basses seront réparties entre les zones centrale et intermédiaire, les régions externes ne contenant que des antennes à fréquences moyennes ou hautes. En Australie, l’observatoire basse fréquence comprendra 512 stations sur une base de 40 à 65 km. Chaque station comprendra 256 antennes, soit un total d’environ 130.000 antennes. En Afrique du Sud, l’objectif de la première phase est d’ajouter 133 antennes paraboliques aux 64 déjà installées dans le site précurseur MeerKAT. Elles seront disposées sur une base d’une envergure de 150 km. Le but ultime est d’étendre le SKA jusqu’à 10 fois cette taille, avec un million d’antennes basses fréquences et 2000 antennes paraboliques moyennes et hautes fréquences. Les travaux doivent commencer en 2023, et dès 2028, à l’achèvement de la première phase, on devrait avoir décuplé la capacité d’observation disponible sur Terre aujourd’hui en fréquences radio, et ceci pour un investissement proche de 1 milliard d’euros.

Pour le moment nous en sommes aux installations « précurseures » (« pathfinder »). C’est le cas de ASKAP en Australie occidentale (réseau de 36 antennes paraboliques) et c’est aussi le cas de MeerKAT en Afrique du Sud (réseau de 64 antennes paraboliques) et de Murchison Widefield Array  au Nord de Perth en Australie Occidentale (au Murchison Radio Astronomy Laboratory) pour les basses fréquences (70 à 300 MHz).

Les objectifs de SKA rejoignent assez largement ceux de CHIME et de DSA. Il s’agit de détecter la présence et l’évolution de l’hydrogène dans l’espace galactique et intergalactique lointain avec fort décalage vers le rouge, aux environs de 5 à 6 milliards d’années (il s’agit toujours d’observer la période pendant laquelle l’accélération de l’expansion a commencé à se manifester, quelques 7 milliards d’années après le Big-Bang), en ciblant la raie à 21 cm de l’hydrogène neutre (HI). Les télescopes plus anciens pouvant difficilement étudier cet élément au-delà de 2,5 milliards d’années. Il s’agit aussi d’observer la formation des premiers objets lumineux dans l’Univers, l’« Aube cosmique », après l’« Age des ténèbres », 100 à 180 millions d’années après le Big-bang, quand la concentration de matière sous l’effet de la force de gravité (s’exerçant sur les masses d’hydrogène et d’hélium) a provoqué l’apparition des premières étoiles et des premières galaxies. C’est à cette époque de concentration que se sont formés les vides entre les masses et que l’hydrogène s’est ionisé en conséquence de l’activité des premières étoiles. L’observation est difficile compte tenu de la distance et de l’environnement moins ancien beaucoup plus lumineux mais elle sera très utile car elle doit permettre d’obtenir une carte de l’Univers après le fond diffus cosmologique (CMB) et donc de mieux suivre son évolution en donnant une autre étape de référence dans son histoire. Il s’agit aussi de chronométrer simultanément autant de pulsars que possible, ces objets ultra-denses (étoiles à neutrons) qui émettent avec une périodicité extrêmement régulière (stabilité allant jusqu’à 10-16) des rayonnements radio très brefs et très rapides. Cette régularité en fait de véritables « phares cosmiques » et toute infime perturbation dans le temps de transmission du signal de l’un d’entre eux par rapport au temps de transmission du signal des autres, pourra indiquer le passage d’ondes gravitationnelles. Il s’agit encore d’étudier les champs magnétiques divers qui existent dans l’espace pour toutes sortes de raisons et par conséquent non seulement leur densité mais aussi leur source de magnétisation. Les mesures seront faites en observant les rotations imprimées par les champs ionisés sur la polarisation des ondes radio (rotation de Faraday).

NB : le signal provenant de sources radio est polarisé linéairement et sa direction de polarisation tourne lorsqu’il traverse un plasma magnétisé avant d’atteindre nos télescopes terrestres. Cette rotation dépend de la longueur d’onde observée et d’une grandeur (la « Rotation Measure », RM) qui dépend de l’intensité du champ magnétique traversé.

Le grand avantage du SKA par rapport aux meilleurs radiotélescopes actuels, c’est qu’il portera le nombre de sources radio avec une mesure RM, de quelques 40 000 à plusieurs millions. Un autre intérêt du SKA, d’autant qu’il aura un très large champs de vision avec une très large bande passante, est qu’il pourra percevoir un grand nombre de FRB (“Fast Radio Bursts” ou “Sursauts Radio Rapides”, voir mon article du 31/08/2019). Il l’a déjà « annoncé » en fournissant avec son précurseur australien ASKAP, les coordonnées d’un des premiers FRB identifié. Pour être plus précis (mais moins clair!), il faut mentionner que le Bureau du SKAO a constitué une structure de recherche en onze autres groupes de travail. Là aussi vous ne verrez que des noms mais ils donnent également une idée de tous les sujets qui vont être approfondis : Epoque de re-ionisation, Cosmologie, Physique fondamentale avec pulsars, Univers transitoire, Continuum extragalactique, magnétisme cosmique, berceau de la vie, hydrogène neutre dans les galaxies, raies spectrales extragalactiques, notre galaxie, physique solaire et héliosphérique. Vaste programme!

« Petit » problème : toutes ces installations utilisent des surfaces au sol très importantes. Même dans les régions désertiques il y a des gens et certains n’aiment pas qu’on vienne occuper leur territoire. Les indigènes nomades du désert du Karoo en Afrique du Sud ont ainsi exprimé leur opposition au projet. Ceci fait penser aux objections soulevées par les Hawaïens qui se sont élevés, pour des raisons religieuses, contre l’implantation du Thirty Meter Telescope au sommet du Mont Mauna Kea sur l’ile de Hawaï ou, pour des raisons « écologiques » (mais qu’on peut assimiler à des raisons religieuses!), sur le sommet de l’île de La Palma aux Canaries (« back-up » du Mauna Kea).

L’intérêt du SKA est donc son immense champ de vision et sa très large bande passante. C’est incontestablement une révolution en astronomie. Nul doute que si le projet est mené à son terme, il nous apportera une quantité extraordinaire d’informations et que nous acquerrons donc (entre autres !) une connaissance bien meilleure des masses d’hydrogène et de leur répartition, donc de la Matière en général qui nous entoure. Le seul vrai problème est d’ordre environnemental. Dans tous les domaines ce sujet est maintenant à prendre en considération puisque les populations en sont devenues conscientes et si elles ne le sont pas spontanément, nul doute que certains savent susciter leur attention et la stimuler. On est passé d’une indifférence totale il y a une trentaine d’années à une opposition de nature quasi allergique aujourd’hui. Raison de plus pour penser à l’espace, lieu immense et libre, pour à l’avenir y développer davantage nos observatoires, avec des groupes de télescopes coordonnés flottant dans le vide, comme celle du projet Darwin, ou avec des installations sur la face cachée de la Lune, à l’abri donc de toute pollution par l’activité terrestre et facilement accessible depuis la Terre ou, bien sûr, des installations à la surface de Mars.

Image de titre : cœur de SKA sur 5 km de diamètre MeerKAT. Vue d’artiste, crédit Wikipedia commons.

Image ci-dessous : vue aérienne des antennes du précurseur ASKAP de SKA. Crédit SKAO. Au premier plan les antennes basses-fréquences.

Photos ci-dessous: le Champ d’antennes paraboliques de MeerkAT, crédit SKAO.

Liens :

https://www.skatelescope.org/

https://switzerland.skatelescope.org/welcome/

https://ska-france.oca.eu/fr/ska/le-projet

http://savethekaroo.com/

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 09 20

Le programme DSA ou la course à l’astronomie des sursauts radio rapides

Les demi-cylindres de CHIME ne sont pas les seuls outils capables de nous permettre d’observer les sursauts radio rapides (« FRB ») provenant du fond de l’espace. Le DSA (Deep Synoptic* Array) est un programme d’observations en ondes radio lancé par la NSF (la National Science Foundation, américaine) en septembre 2018 et qui est réalisé par le CalTech (California Institute of Technology)**. CHIME et le DSA n’ont pas tout à fait les mêmes objectifs et ne reposent pas sur les mêmes concepts. Nous verrons avec le temps quel est le meilleur système. Le résultat sera donné par le nombre d’identifications effectuées et la qualité des informations reçues pour la compréhension du phénomène. On peut s’attendre de toute façon à une complémentarité.

*Pour la compréhension du terme « DSA », je reprends la définition de « synoptique » donnée sur Wikipedia: Un synoptique désigne une présentation, en général graphique, qui permet de saisir d’un simple coup d’œil un ensemble d’informations liées ou un système complexe. L’adjectif synoptique évoque l’idée de « voir en un même ensemble ».

**NB : Je n’oublie pas le projet SKA (Square Kilometer Array) dont je parlerai une autre fois (le début de construction de sa phase 1 est prévu pour 2020, celle de sa phase 2, pour 2030).

Le DSA se déroulera en trois phases. DSA-10 est un « pathfinder », un précurseur. Il sera suivi de DSA-110, un développement, en cours (2019/2020), et de DSA-2000, un aboutissement lointain. NB : Les nombres indiquent les antennes impliquées dans les phases successives. DSA-10 devait montrer qu’il pouvait, à l’aveugle, détecter des FRB ultra-brillants, jusqu’à 51 Jy/ms (le « jansky », « Jy », est l’unité de densité de flux radiatif, la milliseconde, « ms », est l’unité de temps utilisée pour mesurer la durée des FRB) et les localiser avec une précision inférieur à +/- 2,5 secondes d’arc ; il devait indiquer aussi ce que devraient être les équipements à utiliser pour les phases suivantes. Mission remplie!

Les réflecteurs paraboliques des antennes DSA ont 4,5 mètres de diamètre, ce qui dans l’esprit des concepteurs correspondait à une bonne probabilité de collecte de FRB compte tenu (1) de la distribution des densités de flux radiatif attendus, 51 Jy/ms correspondant à deux des FRB les plus puissants déjà observés et (2) de leur fonctionnement en interférométrie, ce qui permet une meilleure résolution et une bonne couverture simultanée de la voûte céleste. Ce dernier point est très important puisqu’il s’agit de capter des événements furtifs, les FRB ne durant que quelques millisecondes et la plupart d’entre eux ne se répétant pas du tout, les autres de façon erratique. Les fréquences choisies vont de 1280 MHz à 1530 MHz (bande passante de 250 MHz), ce qui est peut-être un peu étroit mais tient compte de l’environnement radio du site (les parasites terrestres – « le bruit » – sur ces longueurs d’ondes, sont nombreux !). Heureusement les antennes permettant cette couverture sont assez standards et disponibles (du moins pour le début du programme). Elles sont également montées sur des infrastructures existantes, sur le site très bien équipé de l’OVRO (Owens Valley Radio Observatory) du CalTech (Owens Valley se trouve en Californie, pas très loin de la Death Valley…un endroit « tranquille »!). Le travail de préparation du cadre de fonctionnement est donc simplifié. Cela explique la rapidité avec laquelle DSA-10 est devenu opérationnel et cela a représenté aussi une économie importante (pour la première phase mais aussi pour la suite). Mais bien entendu un tel dispositif ne comprend pas que des antennes. Elles alimentent des instruments de traitement, un corrélateur très puissant, un stockage d’alerte et un système de transmission des données qui lui sont spécifiques. Pour le suivi, la coopération de la communauté astronomique mondiale est évidemment souhaitée et assurée (encore une fois, l’identification de la source est très difficile compte tenu de la brièveté du signal) et toute alerte reçue à l’OVRO est retransmise en urgence via le système de communication « VOEvent » à tous les observatoires susceptibles de l’utiliser. Ce système spécifique à la communauté des astronomes et astrophysiciens, adopté en 2006 par l’IVOA (International Virtual Observatory Alliance) utilise un langage informatique standard (« XML » pour « Extensible Markup Language ») de telle sorte que le message soit immédiatement transmissible par internet et compréhensible aussi bien par la machine que par l’homme. Il répond aussi précisément et brièvement que possible aux questions “who are the authors /what has been observed / how the event has been observed /where-when it has been observed /why the authors think it is of interest”. On voit donc que le DSA s’intègre parfaitement à l’arborescence de la recherche astronomique mondiale en profitant de la technologie actuelle sous ses différents aspects et capacités.

Le « pathfinder » a tout de suite permis de tester positivement la pertinence du projet DSA puisque le 23 mai il a identifié son premier FRB, le « FRB190523 », puis localisé sa source, une galaxie massive, visible dans un redshift (décalage vers le rouge dû à la vitesse d’éloignement résultant de l’expansion de l’Univers) de 0,66 et donc à une distance de quelques 8 milliards d’années-lumière (la vérification de la localisation a été faite visuellement par l’instrument LRIS du télescope Keck 1 joint par VOEevent). La suite (phase « 110 ») est déjà en cours de développement (comme dit ci-dessus, années 2019/2020). Pour ce faire, CalTech continuera à utiliser les installations d’OVRO. Les antennes de cette phase seront un peu plus grandes (4,75 m de diamètre). Une fois réalisée, la DSA-110 offrira une surface de collecte égale à un télescope virtuel de 2,25 km de diamètre. Les équipements d’alimentation aussi bien que de traitement seront améliorés. On s’attend, en trois ans, à ce qu’il identifie plus de 300 FRB (100 par an) localisés avec la même précision (< 3 arc-secondes).

Pour simplifier on peut dire que CHIME a été conçu pour cartographier l’hydrogène de l’espace profond alors que DSA a été conçu pour traquer les FRB. Mais de par sa configuration, CHIME peut aussi percevoir des FRB et cela complétera sa mission portant sur l’hydrogène. Autrement dit CHIME privilégie l’ampleur de la surface couverte d’un seul coup, à la précision, et DSA privilégie la précision, à la surface couverte immédiatement, chaque système s’efforçant de pallier sa « faiblesse ». Maintenant que nous avons pris conscience du phénomène FRB, nous trouvons les moyens de mieux les connaître. L’astronomie basée sur ces phénomènes est bien partie et on en entendra beaucoup parler.

Illustration de titre : quelques-unes des antennes de DSA-10 sur le site de l’OVRO, photo crédit CalTech.

image ci-dessous: signal d’un FRB perçu par le DSA-10. Dans l’image de droite on voit très bien le « sursaut » radio. L’axe des abscisses indique le temps en millisecondes et l’événement s’est « étalé » sur deux millisecondes. L’axe des ordonnées est en jansky et l’on voit clairement que l’intensité de flux radiatifs du FRB a été de l’ordre de trois fois l’intensité des autres radiations reçues pendant la période considérée. Crédit : Caltech / OVRO / V.Ravi.

Liens :

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1836018

https://authors.library.caltech.edu/96602/2/1907.01542.pdf

http://www.astro.caltech.edu/~vikram/bne_talks/ravi.pdf

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 09 10

CHIME, un télescope pour nous renseigner sur l’histoire et le futur de l’univers

CHIME (Canadian Hydrogen Intensity Mapping Experiment) est un nouveau* télescope conçu, construit et installé au Canada (Colombie britannique) par une collaboration canadienne** dont l’objet premier est la « cartographie de l’intensité de l’hydrogène dans l’espace ». Grâce à sa surface de collecte étendue et sa large bande passante, il observera aussi d’autres événements et phénomènes, comme les FRB (sursauts-radio-rapides) ou la « respiration » de certains pulsars (chronométrage), l’ensemble pouvant être complémentaire. Son but ultime est la recherche d’une explication de l’accélération de l’expansion de l’Univers.

*première lumière, septembre 2017 et première collecte scientifique, septembre 2018 ;

**Université de Colombie Britannique, Université McGill, Université de Toronto, Observatoire fédéral de radio-astrophysique.

Dans l’univers primitif tel qu’il naît à la lumière 379.000 ans après le Big-bang, il y avait 75% d’hydrogène et 25% d’hélium. Les « métaux », éléments plus lourds, ne sont apparus qu’après, résultat de la nucléosynthèse dans le cœur des étoiles les plus massives, éléments dispersés ensuite par leur explosion en supernovæ. Pendant les 7 premiers milliards d’années, la force de gravité semble suffisamment forte pour que l’expansion de l’univers décélère. Mais depuis environ 7 milliards d’années l’univers est « passé en mode » expansion accélérée, entraîné par une force non encore identifiée et qu’on appelle, faute de mieux, l’énergie sombre.

L’élément hydrogène est donc capital. En repérant ses zones de concentration, on peut espérer avoir une meilleure approximation de la quantité de matière dans l’univers (baryonique et autres), de l’histoire de l’univers puisque la finitude de la vitesse de la lumière nous donne accès à son passé et, sur ces bases, de nos perspectives. C’est ce qui a motivé la construction du télescope CHIME (on pourrait aussi dire et ce serait plus correct, « observatoire » ou « capteur » puisqu’il n’utilise pas les ondes du spectre lumineux mais les ondes radio mais gardons le mot « télescope » par facilité de langage). Ce télescope donc va rechercher les émissions de longueur d’onde 21 cm, longueur dans laquelle l’hydrogène se révèle, émissions provenant d’avant le passage de la décélération à l’accélération de l’expansion (redshift de 0,8 à 2,5 c’est-à-dire 2,5 à 7 Milliards d’années après le Big-bang). Les données collectées vont pouvoir être rapprochées de celles que l’on a sur la « surface-de-dernière-diffusion »* (avant la création des premières étoiles et des galaxies) imagée par le télescope Planck et aussi sur l’univers environnant (donc « actuel »).

*appelé aussi « fond-diffus-cosmologique » ou « CMB » (« Microwave Background ») parce que les ondes de cette époque ralenties par le Temps, nous parviennent dans cette gamme de longueurs d’ondes.

Les principes de base exploités sont au nombre de cinq :

(1) Les oscillations-acoustiques-des-baryons (« BAO », jolie expression !) circulant dans le plasma primordial (mais pas après), se sont figées dans les anisotropies de la CMB, exprimant les différences de densité alors existantes. (NB: rappelons que les perturbations mécaniques dans un milieu élastique sont associées à des ondes sonores mais évidemment il n’y avait à l’époque aucune oreille pour les entendre!).

(2) Les zones les plus denses ont, à ce « dernier » moment, donné naissance par « découplage » des photons de la matière baryonique, aux « graines » à partir desquelles se sont formées les premières galaxies avec concentration de matière par gravité autour de ces graines, y compris leur environnement gazeux, et avec réémission de photons. Au départ des anisotropies, se formèrent des « coquilles » sphériques dans lesquelles ce découplage s’effectua et ces coquilles s’étendirent à partir de leur centre, jusqu’au découplage effectif puisque la libération photons/matière baryonique ne pouvait intervenir qu’à partir d’une certaine diminution de la densité du plasma primitif (la matière noire, non réactive avec la matière baryonique, restant probablement dans la coquille, « probablement » puisque comme vous le savez, cette matière noire n’a pas été identifiée et n’est connue que par son effet de masse).

(3) Les coquilles doivent avoir toutes les mêmes dimensions puisque leur rayon a été déterminé par l’ « horizon-de-son » des ondes acoustiques partant des derniers BAO, jusqu’à leur disparition (horizon) en raison du découplage résultant d’une même dilution de la densité de la CMB (à l’origine homogène sauf anisotropies déterminées par les BAO).

(4) Ce rayon a dû croître avec l’expansion suivant des vitesses différentes selon la période (décélération puis accélération).

(5) la comparaison des dimensions des rayons selon les périodes doit nous donner les variations des vitesses d’expansion.

Il y aurait une alternative à l’observation simultanée des masses d’hydrogène pour mieux connaître les masses, leur répartition et leur évolution dans l’univers, ce serait de mesurer la position et la distance respectives de chaque galaxie dans un échantillon (donc de les séparer et de les compter), puis d’étendre cet échantillon à l’univers observable. La cartographie avec les données de CHIME sera d’une résolution nettement moins fine mais suffisante pour mesurer l’évolution des BAO. Elle est par ailleurs beaucoup plus rapide et permettra de couvrir plus vite un volume d’espace beaucoup plus grand.

CHIME va aussi permettre, grâce à sa grande surface de collecte, d’observer les FRB et les pulsars. Pour ce qui est des FRB, CHIME non seulement peut apporter une meilleure compréhension du phénomène du fait du nombre d’observations (on espère des douzaines chaque année) mais peut aussi compléter l’observation des nuages d’hydrogène par réception des rayonnements des ondes de 21 cm, en fournissant des données sur la densité des nuages traversés par les FRB, un des éléments évidemment constitutifs de leur masse. Avec les pulsars, dont l’intensité de luminosité peut être évaluée, CHIME va pouvoir disposer de davantage de balises disséminées dans le ciel. Dans le contexte de l’étude de l’accélération de l’expansion de l’univers, ils peuvent être utilisés comme des « standard candles », c’est-à-dire des moyens de mesurer l’éloignement des régions étudiées. Par ailleurs, la cadence élevée des observations fournies par l’instrument permettra d’étudier les propriétés des étoiles à neutrons (source des pulsars) et du gaz ionisé en milieu interstellaire, de vérifier les prévisions de la théorie de la relativité générale ainsi que de percevoir éventuellement des ondes gravitationnelles (décalage dans le temps d’une pulsation à nous parvenir).

Venons-en à l’instrument lui-même.

Il est situé à (en fait il constitue) la DRAO (Dominion Radio Astrophysical Observatory), en Colombie britannique, établissement national pour l’astronomie canadienne, opéré par le Conseil National de Recherche du Canada. L’endroit est isolé (pas très loin du lac Skaha) afin d’éviter les ondes radio parasites provenant de l’activité humaine. Il faut d’abord noter son originalité comme le montre d’ailleurs l’image de titre. Il s’agit de quatre demi-cylindres juxtaposés, de 20 mètres de largeur au total, sur 100 mètres de longueur fonctionnant en interférométrie. Ils sont constitués d’un treillis renvoyant vers un axe focal (la barre dominant le centre des demi-cylindres) comprenant 256 antennes à double polarisation pour chaque demi-cylindres. A noter que contrairement à une antenne « classique » il n’y a aucune pièce mobile mais que l’alignement des antennes permet d’observer un secteur étendu du ciel sans devoir cibler autant le point étudié. Les signaux sont renforcés et clarifiés par des amplificateurs à faible bruit développés pour l’industrie des téléphones portables (excellent exemple d’inter-stimulation des recherches technologiques !). Les 2048 signaux reçus (256 antennes x 2 polarisations x 4 demi-cylindres) sont transmis à un premier moteur (« F-Engine ») qui les retransmet ensuite à un second moteur (« X-Engine »). Les avantages de ce dispositif sont, outre de permettre une très grande couverture simultanée du ciel (200° carrés à tout moment), d’explorer progressivement, du fait de la rotation de la Terre, une bande très large du ciel de l’hémisphère Nord (les demi-cylindres sont orientés Nord-Sud). Dans le même esprit on a choisi une large bande passante.

Le F-Engine, chargé de la collation des données, numérise chaque signal d’entrée analogique, 800 millions de fois par seconde et convertit chaque microseconde de données (2048 prélèvements) en un spectre de fréquences de 1024 éléments allant de 400 à 800 MHz, avec une résolution de 0,39 MHz. Ensuite les données sont réparties par bande de fréquences et transmises au X-Engine. Ce dernier, chargé de la corrélation des signaux dans l’espace, est constitué de nœuds de calculs, chacun traitant 4 des 1024 bandes de fréquence. Les nœuds recueillent les signaux provenant du F-Engine et forment à chaque milliseconde le produit du signal d’entrée de chaque télescope avec celui de tous les autres signaux d’entrée. Ces « matrices de corrélation » sont moyennées sur une durée de quelques secondes et écrites sur un disque avant d’être transformées en carte du ciel.

En dehors de ce dispositif de base, CHIME est comme indiqué plus haut, équipé d’un « outil de recherche de FRB » et d’un « moniteur de chronométrage » de pulsars, tous deux situés en aval du X-Engine. Les 1024 éléments ou faisceaux sont balayés en permanence et chaque faisceau est échantillonné 1000 fois par seconde à 16.000 fréquences différentes par le F-Engine qui les transmets au X-Engine. Après les avoir traitées, Le X-Engine les transmets à l’outil de recherche de FRB, logé sur place. L’équipement comprend 128 nœuds de calcul et chacun sonde huit faisceaux de fréquences. Lorsqu’il est identifié, les données du candidat FRB sont combinées aux informations provenant des 1024 faisceaux pour déterminer sa position, la distance de sa source et ses autres caractéristiques (intensité, puissance…). Une alerte automatique est envoyée à l’équipe CHIME et à la communauté scientifique susceptible d’effectuer un suivi rapide. Comme dit plus haut, CHIME observe aussi des pulsars. Un « instrument de surveillance de pulsars » reçoit dix des faisceaux de suivi du ciel produits par le X-Engine. Ils sont échantillonnés à très haute résolution et transmis du X-Engine au « moniteur de chronométrage de pulsars » qui les traite en temps réel en utilisant dix nœuds de calculs dédiés. L’analyse en est faite par Calcul Canada.

Grâce à nos avancées technologiques et à la finitude de la vitesse de la lumière nous avons la chance de pouvoir étudier l’univers à plusieurs époques de son histoire et ce sur une très grande profondeur. On « attaque » le sujet sous plusieurs angles, l’imagination humaine n’est pas en défaut et heureusement l’ingénierie est « à la hauteur ». Reste les sujets qui fâchent, la matière noire et l’énergie sombre. CHIME nous donnera peut-être une idée de la force réelle de cette dernière…mais de sa nature ? Cela reste à voir.

Image de titre : photo de CHIME. Les demi cylindres fonctionnent par couple, chaque paire de réflecteurs cylindriques renvoyant les données à un F-Engine : crédit collaboration CHIME.

Image ci-dessous :

L’échelle des oscillations acoustiques des baryons représentée par le cercle blanc d’une de leurs « coquilles » à différentes époques : il y a 3,8 milliards d’années, il y a 5,5 milliards d’années et il y a 13,7 milliards d’années (à la surface du CMB, à gauche). Leur volume est de plus en plus important en raison de l’expansion de l’univers. C’est la comparaison dans le temps qui donnera une idée plus précise de l’accélération. Crédit : E.M. Huff, SDSS-III, South Pole Telescope, Z. Rostomian.

Liens:

https://chime-experiment.ca/?ln=fr

https://en.wikipedia.org/wiki/Canadian_Hydrogen_Intensity_Mapping_Experiment

https://en.wikipedia.org/wiki/Baryon_acoustic_oscillations

https://en.wikipedia.org/wiki/Decoupling_(cosmology)

 

J’ai entrepris ce blog il y a quatre ans, le 4 septembre 2015. Pour y (re)trouver un autre article sur un sujet qui vous intéresse parmi les 222 publiés, cliquez sur:

Index L’appel de Mars 19 09 01

Les sursauts-radios-rapides ne nous apportent pas de message des petits-hommes-verts, ils nous ouvrent une nouvelle fenêtre sur l’Univers

Ces dernières semaines une nouvelle concernant l’astronomie a largement circulé dans les médias, celle de la réception par les « grandes oreilles » de nos observatoires, de « sursauts-radio-rapides » ou « FRB » (« Fast Radio Burst »). Comme à l’accoutumé quand une nouvelle concerne l’espace, beaucoup de Terriens restés fortement anthropocentrés, ont voulu y voir des messages que s’échangeraient entre elles d’autres civilisations, évidemment supérieures mais quand même comparables à la nôtre. Il n’en est rien mais ces émissions perçues depuis peu (la première observation, par David Narkevic* date de 2007) et toujours mal expliquées le sont maintenant un peu plus et elles sont fort intéressantes en elles-mêmes et utiles pour comprendre notre Univers. De quoi s’agit-il ?

*David Narkevic était membre de l’équipe dirigée par Duncan Lorimer, professeur de physique et d’astronomie au Centre des ondes gravitationnelles et de cosmologie de l’Université de Virginie Occidentale. Les FRB sont aussi appelés « sursauts Lorimer ».

La petite centaine de FRB répertoriés à ce jour sont des émissions photoniques dans des longueurs d’ondes radio du spectre électromagnétique. Ils ne durent que quelques millisecondes. Il faut bien avoir conscience que les FRB ne sont pas les seuls événements dont l’existence nous est signifiée par un message cosmique très bref. Nous recevons en effet des signaux tout aussi furtifs sous forme d’autres rayonnements qui sont soit dans d’autres longueurs d’ondes du spectre électromagnétique (rayons X, rayons gamma, flash lumineux), soit émis par d’autres « messagers » (neutrinos, ondes gravitationnelles, rayons cosmiques et notamment particules à très haute énergie). Par chance, contrairement à d’autres rayonnements électromagnétiques de longueurs d’ondes plus courtes ou plus longues, ceux qui nous intéressent ici, les SHF (pour « Supra-Haute Fréquence », longueurs d’ondes allant d’environ 0,8 à 10 cm et de fréquences allant d’environ 1 à 30 gigahertz), parviennent jusqu’à la surface de la Terre sans trop de distorsions (mais elles sont très utilisées par l’homme ce qui peut les brouiller !). La durée d’un FRB est probablement fonction de la surface de la source. Celle du premier (FRB121102, observé par David Narkevic), qui a duré 10 millisecondes, indique que la source était toute petite, seulement 3000 km de diamètre, donc très puissante. Ce FRB comme les suivants, était par ailleurs caractérisé par une forte dispersion, c’est-à-dire un fort décalage temporel des diverses fréquences constituant le rayonnement, et une certaine torsion des rayonnements. Une émission n’est en effet évidemment pas constituée d’une seule fréquence et plus faible est la fréquence (longueur d’ondes élevée), plus les ondes porteuses de la fréquence peuvent être ralenties par le milieu spatial s’il y a « quelque chose » dans ce milieu spatial. Or, précisément, le « vide » comprend (entre autres, sans prendre en considération les particules virtuelles ou la matière noire, toujours hypothétique) des électrons libres et des noyaux d’atomes divers, à commencer par des protons, tous éléments ionisés qui se comportent comme un plasma du fait de la vitesse du rayonnement (la densité est accentuée par la quasi simultanéité des « rencontres » du fait de la vitesse et malgré la rareté). La dispersion et la torsion sont donc des indicateurs de la distance et une forte dispersion et torsion, indiquent une origine lointaine. Compte tenu du « redshift » (effet Doppler-Fizeau) du spectre des rayonnements reçus on a pu estimer les sources de FRB identifiées à plusieurs milliards d’années-lumière.

Le fait que nous n’ayons remarqué à ce jour que peu de FRB ne veut pas dire qu’ils ne soient pas fréquents (on les estime à un millier par jour). Il faut plutôt envisager que nous n’avions pas jusqu’à présent les moyens techniques de les percevoir. Il faut en effet disposer d’un récepteur d’ondes radio focalisé sur le point du ciel d’où ils proviennent, précisément au moment où ils arrivent sur Terre (un large champ est évidemment utile pour ne pas « manquer » le signal), et collecter en même temps un autre message (ou avoir collecté suffisamment d’informations lors d’une première observation) de la même source (lumineux si possible) pour croiser l’information. Dans le cas du FRB190523 l’étude a pu être poursuivie par l’instrument LRIS (Low Resolution Imaging Spectrometer) de l’Observatoire Keck. Le récepteur focalisé ce sont les systèmes radio interférométriques comme celui de l’ASKAP en Australie (« Australian Square Kilometer Array Pathfinder »), dispositif comprenant 36 antennes ou le « DSA-10 » d’« OVRO » (« Deep Synoptic Array prototype » de l’« Owen Valley Radio Observatory », en Californie) qui est dédié à cette recherche mais ne dispose actuellement encore que de 10 antennes ou aussi le télescope CHIME, du Canada, très particulier, dont je vous parlerai bientôt. C’est avec le DSA-110 que l’on a perçu tout récemment le dernier FRB (FRB190523, cf revue Nature du 2 Juillet 2019). NB : le prototype, opérationnel depuis juin 2017, sera étendu à un dispositif de 110 antennes (« DSA 110 ») d’ici à deux ans et un jour peut-être à un DSA-2000. Selon Vikram Ravi (Caltech/UC Berkeley) le découvreur de ce dernier FRB, la puissance de résolution doit atteindre l’équivalent d’une antenne physique d’un diamètre de 1609 mètres (un mile) pour être efficace (il faut donc un minimum d’antennes et si on dispose de plus, c’est mieux). Tous ces systèmes interférométriques (y compris ALMA qui est utilisé plutôt dans les longueurs d’ondes millimétriques) sont relativement nouveaux car leur développement suppose une puissance informatique qui émerge actuellement et il faut aussi que les systèmes soient attentifs et immédiatement réactifs à des événements très discrets.

On parvient donc à capter de plus en plus de ces FRB mais on a encore beaucoup de mal à identifier leurs sources (la précision de la position requise est de l’ordre du 1/1000 de degré sur la voûte céleste). En fait on n’a pu le faire que trois fois (pour les FRB121102, FRB 180924 et FRB190523). FRB 121102 est une galaxie petite et active (qualifié de telle pour sa production abondante d’étoiles) située à 3 milliards d’années-lumière ; FRB 180924 est une galaxie « grosse et calme » à 4 milliards d’années-lumière; FRB 190523 une autre galaxie « grosse et calme » située à 7,9 milliards d’années-lumière. Ce qui a justifié l’émoi médiatique récent c’est que précisément on a pu, grâce à l’ASKAP, identifier la source de FRB180924, ce qui a donné lieu à un beau « document de recherche » (« research paper », voir lien ci-dessous) de K.W Bannister et al. (Australie). Il a été suivi une semaine après, par un autre document (voir lien ci-dessous) de Vikram Ravi et al. qui propose également une source pour FRB190523 (observée le 13 mai 2019). Pour comprendre un signal la connaissance et donc d’abord le repérage de la source est essentiel. Ce qui est remarquable et « ouvre des horizons », c’est que FRB180924 et FRB190523 sont des événements uniques (ils ne se sont exprimés qu’une seule fois) alors que le FRB121102 est une multiplicité d’événements provenant d’une même source, c’est-à-dire que la même source a émis plusieurs fois un signal (mais de façon non périodique). Cette différence sous-entend que les causes des FRB pourraient entrer dans des catégories différentes. Les restes extrêmement condensés de supernovæ sont de bons candidats pour les FRB multiples (FRB121102, plus petite que la Voie-Lactée produit plus d’étoiles qu’elle). Pour les FRB uniques, il semble que les galaxies sources soient beaucoup plus massives, et peu actives. Une explication réconciliant les deux, serait dans les deux cas des étoiles à neutrons mais dans des environnements différents : l’effondrement récent d’une étoile massive qui donne un magnétar (éruption de plasma d’une étoile à neutrons jeune et hautement magnétique) ou deux étoiles à neutrons anciennes dans un système binaire quand la distance orbitale entre elles se réduit.

L’intérêt de ces signaux comme le disent K.W Banister et al. c’est aussi (surtout ?) qu’ils peuvent nous permettre du fait de leur dispersion et de leur torsion, d’être informés des milieux qu’ils traversent. Un des grands problèmes de la cosmologie actuelle c’est en effet que la matière baryonique ne constitue que 4% de l’énergie que comprend l’univers et que seulement 10% en est fourni par les gaz froids et les étoiles des galaxies. On cherche le « reste », des atomes de métal mélangés à l’hydrogène et à l’hélium résultat de l’explosion d’étoiles ou de noyaux galactiques actifs. Une partie (30%?), le « CGM », « Circum-Galactic Medium » doit être un plasma diffus autour des galaxies (leur “halo”) et une autre partie (60%?), l’« IGM », « Medium Intergalactique », doit flotter entre les galaxies. Par ailleurs la magnétisation même faible mais sur une très longue durée provoque une torsion (« effet Faraday ») des différentes fréquences du rayonnement et cela aussi est porteur d’informations. Les flashs radios que nous recevons d’un peu partout dans l’univers pourront donc nous renseigner sur la densité et la magnétisation de ce plasma et « rien que » cela apporterait une pièce importante au puzzle que nous essayons d’assembler.

La « science des FRB » est donc une discipline nouvelle. Il faudra pour mieux les connaître disposer de beaucoup plus d’observations (une centaine d’observations dont 3 identifications, ce n’est vraiment pas beaucoup !). Lorsqu’on aura ces observations on pourra mieux connaître les étoiles à neutrons mais on pourra aussi affiner la carte en 3D de la répartition des masses dans l’univers donc approcher de la compréhension de l’ensemble du système. Pour y parvenir, il y a déjà une capacité installée mais elle va s’étendre considérablement: le DSA-10 couvre 150 fois la surface de la Lune vue de la Terre et l’observatoire CHIME couvre un champ de vision instantané de 200° carré de la voûte céleste. Mais bientôt le DSA-110 puis le DSA-2000, tout comme le SKA, (Square Kilometer Array) successeur de l’ASKAP (ou plutôt qui intégrera l’ASKAP dans un ensemble mondial), donneront aux astronomes des capacités fantastiques par rapport à celles qui existent aujourd’hui.

De nos jours, il se passe toujours quelque chose de formidable en astronomie et l’ouverture d’une nouvelle fenêtre d’observations sur l’Univers vaut mieux que le bavardage insipide autour d’improbables petits hommes verts qui restent toujours un fantasme !

Image de titre : crédit Jingchuan Yu, Planétarium de Pékin. Les couleurs représentent le sursaut arrivant à différentes longueurs d’ondes (les plus longues, en rouge, arrivant plusieurs secondes après les plus courtes, bleues) en raison de la « dispersion » résultant de leur voyage au travers du plasma intergalactique. Vous remarquerez également la faible « torsion » (rotation) des rayonnements.

Image ci-dessous : Le prototype du Deep Synoptic Array (DSA-10) recherche les FRB dans une région de la voûte céleste de la taille de 150 fois la Lune (à gauche). Le DSA-10 peut localiser ces FRB avec une très haute résolution, les isolant jusqu’à une seule galaxie (au milieu). La photo à droite montre le profil du FRB, au-dessus de son spectre radio. Crédit : Caltech/OVRO/V.Ravi.

Liens:

https://www.nature.com/articles/d41586-019-02400-2

https://www.nature.com/articles/s41586-019-1389-7

https://public.nrao.edu/news/2015-gbt-frb/#PRimageSelected

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 08 18

La forêt amazonienne brûle et le président Bolsonaro s’en moque. Il faut l’arrêter, par tous les moyens !

Comme mes lecteurs le savent je suis opposé à l’extrémisme écologique et à ses excès mais quand il y a véritable urgence je le dis et je veux ici le crier aux Brésiliens : arrêter d’incendier la forêt tropicale ! Quelles que soient vos motivations, arrêtez-vous, arrêtez-vous tout de suite ! Nous n’avons pas à vous supplier, nous l’exigeons. Et si vous n’arrêtez pas, plus un seul des consommateurs de l’Europe et de l’Amérique du Nord n’achètera de vos produits car non seulement nous vous boycotterons mais nous boycotterons aussi les entreprises qui voudraient continuer à les acheter.

Ce que commet ou laisse commettre (ce qui revient au même) ce gouvernement Bolsonaro que vous avez élu c’est, au-delà d’être un crime contre l’humanité, un crime contre la vie même puisque non seulement l’homme est menacé mais aussi des milliers d’espèces vivantes avec lui. C’est notre planète, notre bien commun, auquel vous portez atteinte et cela est totalement inacceptable.

La forêt amazonienne, pas plus que l’Océan ou les glaces de l’Antarctique, n’appartient à quiconque. Ce n’est pas parce qu’un pape ignorant a décrété en juin 1494 que ce qui est aujourd’hui la terre brésilienne, appartiendrait au Portugal que ce pays ou son successeur le Brésil ont un droit de mort sur la forêt. Alexandre VI Borgia n’avait évidemment aucune notion d’écologie, ni d’ailleurs aucune moralité. Il « ne savait pas ce qu’il faisait » sur le plan de l’environnement mais néanmoins coupable de crime colonialiste (et d’autres), il est aujourd’hui très certainement en enfer (si l’enfer existe). Le président Bolsonaro, lui, sait qu’il laisse commettre un crime écologique d’une ampleur inégalée et il devrait réaliser qu’il prépare un enfer bien réel sur Terre pour tous ses contemporains. Nous refusons d’être les victimes de sa bêtise et de son arrogance.

L’état de fait, reconnu aujourd’hui par la communauté internationale, c’est que le Brésil a juridiction sur la plus grande partie de la forêt amazonienne mais ce n’est qu’un état de fait. L’emprise que le gouvernement brésilien a sur ce territoire, n’est justifiée par rien d’autre que cet état de fait et il n’y a aucune raison qu’elle se perpétue dès lors qu’il n’en a plus la légitimité. Le droit d’abusus n’existe plus depuis très longtemps sur ce type de biens communs. Etant donné le traitement infligé à cette forêt par cette administration, il est du devoir des dirigeants des pays « civilisés » d’intervenir et de remettre ce qu’il en reste entre des mains respectueuses de sa richesse biologique. Ce pourrait être simplement une fédération des tribus indiennes qui l’habitent, sous protection d’une institution internationale dotée des moyens de défense appropriés contre les voisins prédateurs. Cette institution internationale devrait naturellement dépendre des Nations Unies.

Alors, sommes-nous loin de l’exploration spatiale ?

Non, car ce que nous enseigne la connaissance de l’Univers c’est combien notre petit point bleu perdu dans l’immensité est riche de ses particularités probablement extrêmement rares, qu’il est peut-être unique et qu’il est à ce titre infiniment précieux. Nous les êtres humains, infimes produits de cette Terre et du Soleil, portés par l’évolution de la vie pendant des milliards d’années, à partir de rien jusqu’à émerger à la conscience aux termes d’une histoire de complexifications inouïes, impossibles à reproduire, nous avons un devoir, celui d’être dignes de cette histoire unique et de la transmettre à nos descendants pour qu’elle dure sur cette Terre et sur d’autres, aussi longtemps que dureront les étoiles dans le ciel. Nous sommes tous ensemble sur le même bateau et si le capitaine devient fou il n’a plus le droit d’exercer le pouvoir qui lui a été confié. C’est bien sûr aux Brésiliens de se révolter mais à défaut, c’est aux autres peuples du monde, par nécessité vitale, de saisir et mettre à fond de cale de notre vaisseau spatial le criminel qui les dirige.

D’autres gouvernements de pays équatoriaux autour du globe devraient aussi se sentir visés !

Image de titre: Fumées des feux de forêt d’Amazonie vues de l’espace, crédit NASA Worldview, Earth Observing System Data and Information System (EOSDIS).

Image ci-dessous: même phénomène au sol. L’image même de l’injustifiable, de l’horreur et de l’inacceptable!

La sonde Parker de la NASA observe la fournaise solaire à une distance jamais approchée

Le 1er septembre, la sonde Parker (« Parker Solar Probe », «PSP») approchera du Soleil à une distance jamais atteinte* par aucun instrument actif d’observation construit par l’homme. Ce n’est pas seulement un exploit technique, c’est aussi la promesse d’une avancée capitale de nos connaissances dans un domaine scientifique essentiel à notre survie et à notre action dans l’univers.

*voir en fin d’article l’illustration présentant les orbites prévues et l’abaissement progressif du périhélie.

La NASA a lancé la sonde le 12 août 2018, en présence de l’homme dont elle porte le nom, Eugene Parker, astrophysicien, spécialiste du Soleil. C’est la première fois qu’elle donne à une de ses sondes ou satellites le nom d’une personne encore vivante (Eugene Parker est né en 1927). C’est un magnifique hommage à une personne exceptionnelle car Eugene Parker a été un pionnier et, comme souvent, assez mal reçu par ses pairs (il n’a été publié que grâce à l’intervention de Subrahmanyan Chandrasekhar!). La raison de cet hommage est que c’est au milieu des années 1950 qu’Eugene Parker a en effet déduit de ses recherches théoriques, donc dénigrées à l’époque, l’existence d’un « vent solaire », d’une magnétosphère propre à l’astre et de sa forme (devenue « spirale de Parker »). Plus tard, en 1987, il a proposé une explication, acceptée largement aujourd’hui, de l’origine de la couronne solaire, les nano-éruptions (« nanoflares »).

Les objectifs scientifiques de la mission actuelle sont donc, naturellement, de vérifier la théorie et d’aller plus loin. Il s’agit plus précisément de :

-déterminer la structure et l’évolution des champs magnétiques à l’origine de la projection des particules du vent solaire (un plasma constitué de protons c’est-à-dire de noyaux d’hydrogène ionisés, et d’électrons) ;

-tracer les flux d’énergies provenant de la chromosphère pour comprendre le réchauffement de la couronne jusqu’à plusieurs millions de degrés alors que la température de surface évolue entre 4000 et 6000 K

*K = Kelvin, unité de base SI de température thermodynamique. Une variation de 1 K est équivalente à une variation de 1°C mais le point de départ est le zéro absolu (0 K correspond à -273,15°C).

-déterminer le processus à l’origine de l’accélération dans la couronne du transport des particules du vent solaire (NB : il passe dans l’environnement terrestre à une vitesse de 500 km/s) ;

-d’étudier autant que possible une étoile assez banale, relativement peu massive et située au milieu de la séquence principale de Hertzsprung-Russell, le Soleil étant évidemment la seule que l’on puisse approcher d’aussi près.

Pour atteindre ces objectifs, la sonde Parker dont le coordinateur de réalisation, opérateur de mission et utilisateur principal des données est le John Hopkins University Applied Physics Laboratory (responsable scientifique Arik Posner), a embarqué quatre « suites » d’instruments nommées SWEAP, ISIS, WISPR, FIELDS. Voyons leurs fonctions :

SWEAP (Solar Wind Electrons Alphas and Protons Investigation) aura pour but de compter les différents éléments du vent solaire et de mesurer leurs propriétés (vitesse, densité, température). L’instrument est en deux parties, complémentaires, la Solar Probe Cup, « SPC », un collecteur placé dans le cône tronqué derrière le bouclier thermique et le Solar Probe Analyser, « SPAN », placé dans la partie haute du cylindre de la sonde. Il a été développé par l’Université du Michigan avec le concours du Smithonian Astrophysical Observatory (Cambridge, Mass.) et de l’Université de Californie, Berkeley.

ISIS (Integrated Science Investigation of the Sun) observera les électrons, protons et ions lourds accélérés à des énergies élevées (10 KeV à 100 MeV) dans l’atmosphère coronale et les mettra en rapport avec le vent solaire et les structures coronales. L’instrument se trouve dans la partie haute du cylindre de la sonde, avant SWEAP-SPAN. Il a été développé principalement par l’Université Princeton.

WISPR (Wide Field Imagers for Solar Probe) est un groupe de télescopes qui prendront des photos de la couronne solaire et de la naissance de l’héliosphère pour capter tout événement, structure, dépôt, impact à l’approche et au passage de la sonde. L’instrument se trouve dans le bas du cylindre de la sonde, après SWEAP-SPC. Il a été développé par le Naval Research Laboratory.

FIELDS (Fields Experiment) effectuera des mesures directes des champs et ondes électriques et magnétiques, des flux de Poynting (qui indiquent la direction de propagation des ondes électromagnétiques), de la densité du plasma et des fluctuations de densité. L’instrument qui comprend plusieurs types de magnétomètres, se trouve sur la perche dans la queue de la sonde. Il a été développé par l’Université de Berkeley.

Compte tenu de ce qu’elle doit approcher au plus près de la Couronne, la difficulté majeure de la mission est de protéger efficacement la sonde de la chaleur. La Couronne à une forme variable en fonction des changements largement imprévisibles dans la configuration des lignes de champ magnétique. Elle peut s’étendre au-delà d’une dizaine de rayons solaires (Mercure évolue à 88 rayons solaires en moyenne) et sa température peut monter jusqu’à plusieurs millions de degrés (mais attention, la densité du plasma au contact serait très faible et donc l’effet chaleur réduit). Or la sonde Parker prévoit plusieurs passages au périhélie à 9,86 rayons solaires seulement. On a donc prévu une protection thermique extraordinaire, la « TPS » (Thermal Protection System). C’est un bouclier de 11,43cm d’épaisseur et 2,3 mètres de diamètre (permettant d’éviter que les émissions solaires atteignent directement les instruments et les équipements embarqués, sauf lors des prises de données) constitué de mousse de carbone enveloppée dans un composite carbone-carbone et recouvert, côté Soleil, d’une couche d’alumine. La sonde est aussi équipée d’un liquide refroidissant (de l’eau sous pression !). Cela permet de maintenir les instruments et les équipements à l’intérieur de la sonde à une température maximum de seulement 29°C lorsque la face vers le Soleil est portée à 1400 K (1126°C). Ses concepteurs ont prévu que la sonde puisse résister à des températures de 1650°C. Bien sûr il faut espérer éviter qu’elle se trouve prise dans les éjections d’une éruption solaire assez dense (une “CME” pour “Coronal Mass Ejection”) mais une partie de la solution est aussi la réduction du temps de passage dans l’enfer (la durée maximum de « séjour » à moins de 0,3 UA est de 110 heures). Par ailleurs l’architecture de vol est prévue pour que le bouclier fasse constamment face au disque solaire (les variations d’orientation doivent être inférieures à un degré) et en dessous de 0,1 UA (un tiers de la distance de Mercure au Soleil qui est à 88 rayons solaires du Soleil) les organes de prise de données sont exposés au minimum avec possibilité de les abriter à l’intérieur de la sonde lorsqu’ils ne sont pas utilisés. Les deux panneaux solaires, d’une surface totale de 1,55 m2 (la lumière est la source d’énergie de la sonde), sont rétractables et placés dans l’ombre du bouclier à l’approche du Soleil.

La mission a été prévue en fonction de ces exigences d’approche autant que possible et de protection autant que nécessaire. La maturation a été longue comme la plupart des missions spatiales. Elle a été prise en considération dès 1958 par le National Research Council mais elle n’est devenue une priorité forte qu’en 2003, pour être logée dans le programme « Living with a Star » de la NASA (la “star” c’est évidemment notre Soleil!). La première version, « Polar Solar Probe » en 2004 prévoyait de descendre jusqu’à 4 rayons solaires ; elle fut abandonnée car estimée trop chère (devisée à 1,1 milliards de dollars, hors lancement). Outre son ambition concernant l’approche, l’intérêt était d’observer la région des pôles du Soleil, ce qui aurait donné un point de vue utile du champ magnétique. Le nouveau projet, l’actuelle mission PSP, a été étudiée à partir de 2008. Cette fois-ci les chiffres ont été jugés plus acceptables et ils ont été effectivement acceptés, en 2014 : 750 millions plus 530 millions pour les études préliminaires, le lancement et la gestion opérationnelle. A noter, ce qui est rare, que la mission est quasi exclusivement américaine.

Le principe est de faire décrire à la sonde des orbites en ellipses dans le plan de l’écliptique, allant de l’orbite de Vénus à la face opposée du Soleil, en les resserrant progressivement en utilisant la planète Vénus pour la freiner (sept survols) et pour qu’elle puisse ainsi descendre plus profondément vers le Soleil. Au total, entre 2018 et 2025 la sonde doit décrire 24 ellipses tendant vers 88 jours chacune (seuls les dernières, plus courtes) et les 24 périhélies (passage au plus près du Soleil) doivent s’effectuer à moins de 0,17 UA (25 millions de km) de ce dernier dont 3 passages à 0,045 UA soit 9,68 rayons solaires ou 6,16 millions de km seulement. Il fera chaud ! Outre la chaleur un second problème est la vitesse de la sonde qu’il faut combiner avec la force d’attraction solaire. La sonde est arrivée à grande vitesse dans l’environnement de Vénus (nécessaire pour rejoindre la planète). Le second étage du lanceur Delta IV Heavy utilisé à cet effet est particulièrement puissant puisqu’il a donné au vaisseau spatial de 685 kg une vitesse de 12,4 km/s en plus de la vitesse de libération de 11,2 km/s. Le passage au périhélie est moins rapide (195 km/s au lieu de 308 km/s) pour la sonde Parker que pour la  Polar Solar Probe ce qui permet à la première de collecter plus de données (celles-ci sont bien entendu stockées dans la région du périhélie et diffusées vers la Terre – « science data downlink periods » – dès que la sonde se trouve dans un environnement sûr en allant vers son aphélie). Au cours du freinage la sonde devient plus sensible à l’attraction solaire (force de 274 m/s2 contre 9,8 m/s2 pour la Terre) et s’en approche. Le pilotage astronautique est très délicat ! Il s’agit de céder un peu de vitesse mais pas trop. Si l’on ralentissait trop à l’aphélie, la sonde serait capturée par le Soleil au périhélie et disparaîtrait corps et bien dans la fournaise.

Il y aura rapidement une suite ou si l’on préfère, un complément, aux observations de la sonde Parker puisque l’ESA doit lancer en 2020 la sonde Solar Orbiter. Celle-ci aura une orbite polaire mais s’approchera moins du Soleil, seulement à 55 rayons solaires. On déjeune avec le diable avec une très longue cuillère et on avance vers la table avec prudence ! Le passage au périhélie de la sonde Parker le 1er septembre sera le troisième, à 35 rayons solaires. Les 21 autres passages se feront de plus en plus près.

Illustration de titre : la sonde Parker à l’approche du Soleil (vue d’artiste) : crédit NASA/John Hopkins APL/Steve Gribben. Vous remarquerez les panneaux solaires mobiles sur le côté ; les antennes qui partent du bord du bouclier et la perche à l’arrière qui porte un magnétomètre.

illustration ci-dessous: les orbites de la sonde Parker. Vous remarquerez qu’elles se resserrent petit à petit, entre l’orbite de Vénus et le côté opposé du Soleil. Le troisième périhélie (1er septembre 2019) sera comme les deux premiers à 35 rayons solaires, les périhélies 4 et 5 seront à 27 Rs, les 6 et 7 à 20 Rs, les 8 et 9 à 15 Rs, les 10 à 16 à 11 ou 12 Rs, les 17 à 21 à 10 et les trois derniers, en-dessous de 10.

Illustration ci-dessous : orientation de la sonde et évolution du déploiement des panneaux solaires au cours de chaque orbite; crédit NASA /JHUAPL. Vous remarquerez que le bouclier thermique est toujours orienté vers le Soleil:

liens:

JHUAPL: http://parkersolarprobe.jhuapl.edu/index.php#the-mission

NASA (Goddard SFC): https://www.nasa.gov/content/goddard/parker-solar-probe

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 08 13

Le Soleil, source de vie mais père terrible qu’on connaît encore mal!

“Oh Soleil, toi qui depuis toujours nous entraînes dans ta course autour du Centre de la Voie-Lactée, qui nous réchauffes de tes rayons, qui fais chatoyer notre monde dans la multitude des couleurs du spectre lumineux que tu as créé, qui donnes la vie en communiquant ton énergie à tout organisme qui recueille ta lumière, sois ici remercié de tous tes bienfaits !”

Ces paroles propitiatoires prononcées, comme aurait pu le faire Akhénaton s’il avait eu conscience de l’existence de la Voie-Lactée, il faut bien dire que le Soleil est aussi pour la Terre, pour les hommes et pour la vie, une puissance redoutable et fantasque. Voyons les chiffres et tout d’abord celui de la masse qui comme vous le savez, gouverne tout en ce monde : 1989,1*1024 tonnes (1,9 milliards de milliards de milliards de tonnes) pour le Soleil, comparé à la Terre 0,006*1024 tonnes (6000 milliards de milliards de tonnes) et à Jupiter 1,9*1024 tonnes. Vue autrement, la masse du Soleil représente 98,854% de la masse totale du système solaire, ce qui en laisse très peu pour tout le reste y compris les géantes Jupiter, Saturne et Uranus sans parler des poussières que sont les planètes telluriques dont la Terre. Du fait des lois de la gravité, la masse détermine la pression et la chaleur interne. C’est cela qui a allumé le « réacteur à fusion nucléaire » du Soleil qui fonctionne depuis 4,5682 milliards d’années (avec 4,543 milliards d’années la Terre est juste un peu plus jeune, ce qui est normal puisqu’elle résulte de la contraction du nuage protoplanétaire au centre duquel le Soleil s’est formé). Par la pression et la chaleur, le réacteur convertit l’hydrogène qui constitue à 74% notre étoile, en hélium qui aujourd’hui en représente déjà 24% (les 2% restant étant faits de toute la gamme des autres éléments chimiques). Chaque seconde, 627 millions de tonnes d’hydrogène sont ainsi convertis en 622,7 millions de tonnes d’hélium ionisé (« particules alpha »), la différence de 4,3 millions de tonnes étant rayonnée sous forme d’énergie (photons lumineux et d’autres longueurs d’onde du spectre électromagnétique) à l’extérieur de l’astre et donc en partie vers nous. C’est dans le cœur que se passent les réactions (toujours pression + chaleur) et c’est de là que proviennent ces 4,3 millions de tonnes/s. Pour le moment les « réserves » d’hydrogène sont telles que le Soleil est en équilibre hydrostatique, on dit qu’il est en « phase linéaire », mais du fait des dissipations de masse, le cœur se contracte petit à petit, de ce fait les réactions deviennent plus intenses et la luminosité croît (7% par milliard d’années). C’est ainsi depuis 4 milliards d’années mais cela ne va pas durer « toujours », quoique nous ayons quand même un peu de temps devant nous. Ce n’est que dans un peu plus de 5 milliards d’années (le Soleil aura alors 9 milliards d’années) que les ressources en hydrogène du cœur s’étant épuisées, l’équilibre hydrostatique ne sera plus assuré et la phase linéaire prendra fin. Le milliard d’années suivant sera très éprouvant pour l’humanité si elle subsiste sous une forme quelconque sur notre planète (c’est peu probable mais on peut rêver !). En effet le cœur du Soleil s’étant totalement converti en hélium et de ce fait, très sensiblement contracté, la pression interne aura considérablement augmenté et le processus de conversion s’étendra aux couches moins profondes d’hydrogène. Au-dessus, les couches superficielles moins « tenues » par la pression, se dilateront toujours davantage sous l’effet de la chaleur et le soleil enflera lentement pendant environ 500 millions d’années puis de plus en plus vite pendant les 500 millions d’années suivantes. Il sera alors devenu une géante rouge, d’un diamètre cent fois supérieur au diamètre actuel et d’une luminosité 2000 fois supérieure. A cette époque son enveloppe externe aura avalé corps et bien Mercure et Vénus et notre pauvre planète sera depuis longtemps totalement desséchée et grillée. Mais pour tout vous dire, déjà dans moins d’un seul milliard d’années la Terre sera probablement devenue inhabitable à cause d’une part de la hausse de la température moyenne et d’autre part de la fixation du gaz carbonique atmosphérique dans le sol. Le Soleil aura ainsi repris tout ce qu’il nous aura donné, quelles que soient les prières que nous lui aurons adressées.

Pour le moment, en phase linéaire, quelle est la structure du Soleil ? En remontant du centre vers l’espace (le rayon du Soleil, « Rs », fait 696.000 km contre 6.370 pour la Terre), on distingue six régions : (1) le noyau (0,25 Rs) où Vulcain active la fusion dans sa forge (15 millions de degrés Kelvin ou Celsius) ; (2) la zone radiative (0.25 à 0.7 Rs) où s’expriment les photons libérés par la fusion (la température passe de 7.000.000 à 2.000.000°C); (3) la tachocline (0.7 à 0.8 Rs), zone tampon fluide, transition entre la zone à rotation uniforme et zone à rotation différenciée selon la latitude, source probable du champs magnétique ; (4) la zone convective (de 0.8 Rs à la surface), d’une température allant de 2.000.000 à 6400°C, parcourue par des vagues de convection allant des pôles vers l’équateur et de la profondeur vers la surface. Elle génère sous la surface, des « supergranulations » (30.000 km de diamètre environ) qui évacuent la chaleur vers les granulations de surface et les « racines » des « spicules » (jets de matière de 500 km de diamètre allant jusqu’à 10.000 km d’altitude) guidées par les flux magnétiques. D’après les observations de la sonde SoHO (ESA), les « CME » (éjections de masse coronale) proviendraient aussi de la surface de cette région (donc de dessous la photosphère); (5) la  photosphère (500 km d’épaisseur), la température, en moyenne de 6000°C y décroit inversement à la profondeur. C’est la surface à laquelle nos instruments d’observations peuvent accéder (à distance!) et l’on y voit les granules mentionnées plus haut, d’une taille de 1000 à 3000 km, surface des supergranulations, entre ces granules, des tubes de flux magnétiques et à l’occasion une « facule » (zone brillante) ou une « tâche solaire » (zone sombre et « froide », à moins de 4000°C) qui peut mesurer de quelques milliers à plusieurs centaines de milliers de km et durer de quelques heures à quelques semaines; enfin (6) l’atmosphère que l’on subdivise en trois zones : la chromosphère, la couronne et l’héliosphère. Curieusement la chromosphère (quelques 1500 km d’épaisseur, de 500 à 2000 km d’altitude) que l’on aperçoit comme un anneau rougeâtre très fin lors des éclipses totales, commence par des températures relativement peu chaudes (4100°C) mais elle monte ensuite jusqu’aux environs de 20.000°C. Examinée avec un filtre, on peut y voir des « plages » (zones chaudes) contrepartie des facules photosphériques, des « fibrilles et « filaments, résultat d’une activité magnétique intense. Ensuite, dans une « zone de transition » assez chaotique d’environ 200 km vers la couronne, la température monte très rapidement jusqu’au million de degrés. La couronne est beaucoup plus chaude que la zone de transition, de 1 à 2 millions °C en moyenne jusqu’à 8 à 20 millions °C. Visuellement c’est la magnifique chevelure de l’astre, que l’on voit ébouriffée et énorme, lors des éclipses totales. C’est le lieu d’ouvertures des lignes de champ magnétique vers l’espace déterminant la magnétosphère solaire, et le lieu des projections d’énergie et de matière. Les lignes de champ entraînent en effet l’hydrogène de la surface solaire qu’elles ionisent en protons et électrons (1 millions de tonnes par seconde). C’est le point de départ de ce qu’on appelle le vent solaire. La couronne peut s’étendre jusqu’à une vingtaine de rayons solaires (0,1 unités astronomiques) mais elle fluctue beaucoup. Elle se poursuit par l’héliosphère, domaine du vent solaire, qui s’étend jusqu’aux confins de notre système solaire, à l’héliopause, onde de choc devançant sa course autour de la galaxie, à 230 km/s, déterminée par la confrontation de la vitesse du vent solaire protégé par la magnétosphère, avec le milieu interstellaire. Seuls les photons (et Voyager 1!) passent (a passé) l’héliopause et ce sont eux qui sont nos messagers auprès des autres étoiles.

Au-delà de sa structure, pour le moment stable, il faut voir le Soleil et son environnement dans son fonctionnement, comme un milieu dynamique. Il y a des règles ou des lois mais dans leur cadre, tout est mouvement et tout évolue! Outre son attraction par force de gravité dont le rayon s’étend bien au-delà de Pluton puisqu’elle commande à la Ceinture de Kuiper et aux Nuages de Oort, l’activité du Soleil fondée sur la fusion nucléaire se manifeste comme on l’a vu par ses lignes de champs magnétiques et ses émissions de flux photoniques (résultant de la conversion des 4,3 millions de tonnes/s mentionnées ci-dessus) et de matière (le million de tonnes/s également déjà mentionné), l’ensemble étant en interaction. Les photons ce sont les rayonnements lumineux, les ultra-violets et le rayonnement infra-rouge, la matière ce sont les particules, (« SeP », Solar energetic Particle), qui constituent le vent solaire. Les émissions solaires constituent un fond continu. Les flux de photons (irradiance) montrent une très faible variation (moyenne 1360 W/m2 au niveau de l’orbite terrestre) mais les flux de particules sont aussi rythmés par des cycles, le plus court et le plus connu étant de onze ans (en 2019 nous sommes en bas de cycle). Les projections violentes, à la périphérie des tâches solaires, s’annoncent par la floraison de ces dernières. On a ensuite des accès qui peuvent donner des tempêtes solaires s’ils sont suffisamment forts et parfois des éjections de masse coronale (CME, voir plus haut). A l’intérieur de l’héliosphère, les particules ionisées sont projetées hors du Soleil radialement à partir de sa surface mais la rotation du Soleil sur lui-même (la moyenne de celle des différentes bandes, fonction des latitudes, est de 27 jours) provoque une torsade en spirale du champ magnétique. Cette forme curieuse (voir illustration de titre) est appelée, « nappe de courant héliosphérique » ou « spirale de Parker » du nom de l’astrophysicien américain Eugène Parker qui l’avait prédite dans les années 1950. Elle s’étend jusqu’aux environs de l’orbite de Jupiter. Donc si on peut dire que les émissions sont directionnelles (elles suivent les lignes de force du champ magnétique), leur trajectoire est difficile à prévoir, ce qui aggrave leur danger pour les voyages interplanétaires. De plus si ces éruptions se manifestent autour du pic d’activité de onze ans, ce n’est pas toujours le cas ! A noter enfin que plus le Soleil est actif, plus les rayonnements et les particules qu’il éjecte font écran aux rayonnements galactiques (GCR) dont certains éléments sont extrêmement énergétiques (2% sont des noyaux d’atomes lourds – HZE – très accélérés). Quand on se promènera dans l’espace profond, il faudra donc choisir entre moins de risque de tempête solaire mais une dose de radiations GCR élevée et une dose plus faible de GCR mais un plus grand risque de tempête solaire. Pas facile !

Beaucoup de questions se posent. Les variations de températures s’expliquent mal, notamment leur remontée très forte dans la chromosphère. Et puis on voudrait mieux connaître le fonctionnement des cycles solaires qui présentent des irrégularités sensibles d’intensité. C’est important non seulement pour les voyages interplanétaires mais aussi pour les activités terrestres (l’éruption solaire de 1989 a causé de sérieux dégâts et à l’époque moderne on n’en a pas encore vécu d’aussi grave que celle de 1859 où il n’y avait ni satellites ni beaucoup de télécommunications, à part le télégraphe). On observe à distance le Soleil compte tenu de sa température et de sa force de gravité (plus on s’approche, plus la satellisation suppose une vitesse élevée pour ne pas chuter dans le Soleil puisque sa vitesse de libération est de 617 km/s contre 11,2 pour la Terre). On a envoyé quelques sondes, l’avant dernière SoHO (en activité jusqu’en 2020) orbite en halo autour du point de Lagrange L1, entre la Terre et le Soleil, la dernière Parker (NASA), lancée en 2018, doit s’approcher beaucoup plus près, jusqu’à presque “toucher” la Couronne. Elle a été équipée de dispositifs de protection remarquables. Je vous en parlerai la semaine prochaine.

Illustration de titre: spirale de Parker (domaine public). La planète la plus extérieure est Jupiter.

image ci-dessous: une tache solaire. On y voit bien la tache proprement dite, les bords très actifs sur le plan magnétique et les granules ordinaires de la surface solaire:

image ci-dessous, paysage solaire, à la surface de la photosphère:

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 08 08

Horizons lointains. Variations sur le thème des dimensions de l’Univers

Le regard tourné vers la voûte céleste, l’homme s’est toujours émerveillé et interrogé. Attiré mais aussi effrayé ou frustré par ce qu’il pressentait être, bien plus que l’Océan, la véritable immensité, il a plusieurs fois donné ses réponses sans accepter son incapacité à comprendre, en peuplant de divinités cet espace surhumain. Quelques philosophes grecs comme Aristarque de Samos ou Aristote ont cependant tenté des explications rationnelles. Certaines étaient plutôt bonnes, d’autres franchement mauvaises mais comme par manque de données d’observation il n’y avait pas d’arbitrage possible, ce sont les plus timides et les moins imaginatifs de ces penseurs qui imposèrent leurs vues. Je pense évidemment à Aristote et à tout le mal qu’il a fait à la science astronomique au travers de l’Eglise jusqu’après Galilée. Depuis quelques siècles l’esprit scientifique fondé solidement sur l’observation, l’esprit critique et la démonstration, s’est heureusement affermi et, assisté par un développement technologique extraordinaire, il apporte des éléments de plus en plus sérieux pour comprendre. Cependant si nous savons toujours plus nous ignorons encore beaucoup !

Faisons l’état des lieux, sans prétendre être exhaustif (ce serait difficile sur un tel sujet et dans un article de blog) !

NB : J’ai voulu dans cet article reprendre et prolonger les commentaires de Christophe de Reyff, physicien, ancien responsable de l’énergie à l’Office Fédéral de l’Energie (OFEN), à propos de mon article sur le projet LISA (ondes gravitationnelles).

Dès la première approche, les dimensions de l’Univers posent problème. On sait maintenant qu’il a commencé comme d’autres peut-être et peut-être à l’occasion d’une fluctuation quantique dans un vide qui n’était pas si vide, comme un volume extraordinairement massif et dense, évoluant dès l’origine en expansion à partir de l’infiniment petit, il y a 13,8 milliards d’années (13,799 +/-0,021). La lumière ou plutôt les divers signaux « messagers » provenant de ce moment ont mis cette durée à nous parvenir à la vitesse de…la lumière. Mais si l’on voulait revenir vers notre source (en en ayant bien sûr le temps) à cette même vitesse, constante universelle par définition immuable et intangible, il nous faudrait 42 milliards d’années*. L’explication étant que l’espace n’est pas resté inchangé depuis les origines mais qu’il s’est dilaté, dit autrement, qu’il y a eu « expansion ».

Toute la difficulté pour appréhender le sujet vient de cette immensité, de la limitation imposée par la vitesse de la lumière, du coefficient d’expansion et de la stabilité ou des variations de ce coefficient (accélération).

Alors si on regarde autour de nous, jusqu’où voit-on ? La bonne nouvelle c’est que compte tenu de la vitesse de la lumière on peut encore voir ou entendre nos origines (il vaudrait mieux dire « les percevoir » car les « messagers » ne sont pas que lumineux, ils occupent tout le spectre électromagnétique, et ils ne sont pas qu’électromagnétiques puisque les ondes gravitationnelles, les neutrinos et les rayons cosmiques particulaires sont aussi porteurs d’informations). En effet la distance n’est pas telle que compte tenu de l’expansion nous nous éloignions actuellement des premiers signaux à une vitesse supérieure à celle de la lumière. En fait la limite au-delà de laquelle la fuite d’expansion serait supérieure à celle de la lumière et donc au-delà de laquelle aucun signal ne pourrait nous parvenir est actuellement de 14,45 milliards d’années, l’« horizon des photons » qui délimite la « surface de Hubble ». Nous pouvons donc encore voir aussi loin que nécessaire (même théoriquement plus loin) bien que très difficilement en raison du très fort décalage vers le rouge (effet Doppler-Fizeau résultant de la vitesse croissante d’éloignement en fonction de la distance) les premiers jaillissements de la lumière (visibles sur la « carte » qu’on appelle le fond diffus cosmologique ou la « surface de dernière diffusion » ou le « Cosmic Microwave Background ») qui ont eu lieu il y a 13,8 milliards d’année moins 380.000 ans. Il faut en effet tenir compte de ce que suivant le Big-bang et jusqu’à la « recombinaison » (association des électrons avec les protons) qui eut lieu à cette époque, la lumière ne s’était pas encore dégagée de la matière. Mais on pourrait aller au-delà de cette barrière de 380.000 ans, vers le Big-bang, en exploitant les données fournies par les émissions de neutrinos et d’ondes gravitationnelles qui ont pu s’exprimer avant, ou en étudiant davantage la surface de dernière diffusion dont les irrégularités (« anisotropies ») expriment bien évidemment ce qui s’est passé « avant ».

Mais que voit-on ? Il est bien connu et compris que nous ne voyons que dans le passé puisque la vitesse de la lumière ne peut nous transmettre d’information que sur ce qui existait quand elle a été émise. Nous sommes donc de ce point de vue au sommet d’une sphère*, notre regard (ou plutôt notre regard avec l’aide de nos instruments d’observations) nous permettant de voir tout autour de nous des objets de plus en plus anciens au fur et à mesure qu’ils sont plus lointains. Nous ne pourrons jamais connaître directement notre univers contemporain, c’est frustrant mais c’est ainsi. Nous ne pouvons que le déduire en appliquant et en extrapolant sur les principes d’homogénéité et d’isotropie constatés pour l’univers lointain. Une étoile géante rouge voisine comme Antarès ou Bételgeuse (situées toutes deux à environ 500 années-lumière) deviendra un jour une supernova mais nous ne le saurons que lorsque nous aurons reçu le rayonnement nous en informant, 500 ans après qu’il ait été émis. Nous sommes donc forcément au centre de notre univers observable, constatant tout autour de nous un horizon limité par la surface de dernière diffusion et, plus en profondeur, par certaines sources d’émission de neutrinos et certaines sources d’émission d’ondes gravitationnelles. Cet horizon est différent de notre « horizon cosmologique » qui est la limite, « buttant » sur le Big-bang il y a 13,8 milliards d’années-lumière, au-delà de laquelle aucun signal ne pourrait être reçu et différent de l’« horizon de Hubble » (également appelé « horizon des photons ») qui est la distance à laquelle la vitesse des photons qui nous atteignent aujourd’hui venant de ces sources dépasserait la vitesse de la lumière, soit 14,45 milliards d’années-lumière. Un jour, l’expansion de l’univers se poursuivant, la vitesse d’éloignement de la totalité des astres qui nous entourent aura été accélérée jusqu’à dépasser la vitesse de la lumière et notre horizon sera devenu intégralement noir au-delà de la masse de matière retenue dans notre galaxie par son trou noir central et des galaxies voisines qui lui sont dépendantes. Notre horizon des photons (qui se sera dilaté jusqu’à atteindre 17,41 milliards d’années-lumière) nous empêchera de voir jusqu’à notre horizon cosmologique (qui se sera dilaté beaucoup plus vite). Mais ce sera dans très, très, longtemps, l’échéance dépendant non seulement de l’expansion mais aussi de l’accélération de l’expansion de notre univers.

On discute beaucoup de ces deux phénomènes. Voyons d’abord l’expansion. On parle de la « constante » (et on a tort) de Hubble (« H ») qui est la vitesse d’éloignement des astres qui nous entourent divisée par la distance qui nous sépare, le problème pour l’apprécier étant la définition de la distance (la vitesse donnée par le déplacement vers le rouge par effet Doppler-Fizeau est moins difficile à évaluer). On a obtenu plusieurs résultats pour ce paramètre, en fonction de l’instrument utilisé et des données prises en compte mais on approche sans doute d’un bon chiffre. Une méthode de calcul (à l’aide du télescope Planck, successeur de COBE puis de WMAP) repose sur une extrapolation des variations de températures constatées dans les anisotropies apparaissant à la surface du fonds diffus cosmologique. Une deuxième, présentée par l’Université Carnegie, utilise les Céphéides (dont la luminosité régulière est depuis longtemps considérée comme un bon indicateur des distances). Une troisième, imaginée et mise en œuvre par la collaboration H0LICOW en 2017, utilise les lentilles gravitationnelles. Une quatrième présentée tout récemment (2019) par la même université Carnegie, utilise les pics d’éclat des étoiles géantes rouges comme des standards de luminosité en combinant ces données avec celles de la luminosité de certaines supernovæ (type SN1a). La méthode Planck donne 66,93 +/- 0,62 km/s/Mpc, celle de Carnegie « 1 », 74 km/s/Mpc, celle de la collaboration H0LICOW 71,9 +/- 2,7 km/s/Mpc et celle de Carnegie « 2 », 69.8 km/s/Mpc. LISA qui doit collecter les ondes gravitationnelles dans les années 2030 devrait apporter sa contribution avec une grande précision. On affine donc et on finira sans doute par se mettre d’accord…mais la vraie difficulté vient de ce que cette « constante » ne l’est qu’à une époque donnée, ce qui fait qu’elle n’est plus une constante comme on le pensait mais qu’elle n’est que la valeur actuelle, H0, du « paramètre » H de Hubble.

S’il y a variation de la « constante » c’est qu’il y a eu accélération ou décélération de l’expansion. Qu’en est-il ? On sait déjà que l’expansion n’a pas été constante au tout début de l’univers, bien avant les 380.000 ans mentionnés plus haut, pendant la période dite d’« inflation » (entre 10-35 et 10-32 secondes suivant le Big-bang). Pour la suite, il semble qu’elle ait commencé à accélérer il y a 6 ou 7 milliards d’années et que cela va continuer. Pour mieux comprendre cette réalité actuelle et cette perspective, il faut ouvrir un autre « tiroir » c’est-à-dire considérer d’une part l’effet de masse qui freine l’expansion, via le « paramètre de densité », que l’on symbolise par «  » (Oméga), et d’autre part le coefficient qui l’accélère, qu’on appelle « constante cosmologique » et qu’on symbolise par « Λ » (Lambda).

Le premier, Ω, exprime la totalité de la matière dans l’univers, toute la matière y compris la fameuse « matière noire » (évaluée grâce aux observations du télescope Planck comme constituant 25,8% des composants de l’univers)! Il nous donne la courbure de l’espace-temps (certains comme le Professeur Luminet, disent que c’est cette courbure qui lui donne son dynamisme). Si Ω >1 la courbure de l’espace est sphérique (elle se referme sur elle-même), on va vers une contraction de l’univers, il est donc fini ; si Ω <1 la courbure est hyperbolique et on va vers un univers infini. D’après les études actuelles il est très légèrement positif avec Ω =1,11 +/-0,13, ce qui n’est malgré tout pas très concluant puisque les 0,13 mettent la conséquence dans la marge d’erreur.

Le second, Λ, coefficient d’accélération (“constante cosmologique“), compense cette force de contraction, on pourrait dire qu’il ouvre l’univers vers une expansion accélérée. Imaginé par Albert Einstein pour équilibrer ses calculs, il l’avait tout de suite rejeté mais on le reprend aujourd’hui car avec nos moyens d’observations, il « fait sens ». Il est extrêmement faible mais non nul et positif (1,1056 x 10-52 m-2). Certains disent qu’il pourrait exprimer la toujours hypothétique « énergie sombre » (évaluée par Planck à 72,8% des composants de l’univers). Le résultat de cette accélération entretenue par la constante cosmologique est que le paramètre de Hubble (H) décroit. Cependant la conséquence du caractère de constante du coefficient Λ c’est qu’il existe une valeur minimale à H qui donc s’arrêtera de décroître. La sphère de l’univers observable sera alors égale à la sphère de l’univers cosmologique (mais la quantité d’objets dans l’univers observable continuera de décroître puisque petit à petit ils en sortiront du fait qu’ils seront à une distance telle que leur lumière ne pourra plus nous rejoindre). Savoir si l’accélération continuera toujours reste un mystère tant que l’on ne connaît pas la nature de l’énergie sombre (ce n’est toujours qu’une hypothèse).

Comme notre possibilité de voir est limitée par la vitesse de la lumière, il est très difficile de savoir quelle forme a l’univers. Autrement dit, il est très difficile d’apprécier jusqu’à quel point notre perception est altérée par la structure de l’espace-temps. Dans notre environnement (on pourrait dire « à l’intérieur ») on se le représente assez bien comme une sorte d’éponge très mousseuse, les fibres de matières s’agglomérant autour de sortes de nodosités qui sont les régions où la matière est la plus dense et la force de gravité, la plus puissante, s’étirant autour de vastes cellules « vides » ou vidées par la force d’attraction des concentrations de matière voisines (« cosmic voids »). A plus grande échelle on en est encore aux supputations. Ce qu’on sait, c’est que l’univers est fini ne serait-ce que parce qu’il a eu un début et aussi parce qu’ Ω semble >1! Mais s’il est fini il est peut-être sans bord (« illimité ») ce que l’on sait possible depuis le développement des géométries non-euclidiennes. C’est la théorie de Jean-Pierre Luminet (voir lien vers sa conférence, ci-dessous). Comme volume, il privilégie l’espace sphérique dodécaédrique de Poincaré, figure compliquée qui introduit marginalement la possibilité de mirage topologique qui nous présenterait des images fantômes de la réalité (l’univers physique, jusqu’à l’« horizon des particules » d’aujourd’hui – 42 milliards d’années-lumière* – étant légèrement plus petit que l’univers observable contemporanéisé -53 milliards d’années-lumière). Reste à le démontrer en trouvant des images différentes d’une même source. Difficile à obtenir compte tenu de ce que les rayonnements qui nous parviendraient de cette même source par deux ou plusieurs chemins différents, auraient des âges différents et présenteraient donc des images différentes de cette même source ! On fait cependant de grands progrès en ce sens en y travaillant sur le CMB (voir article de l’Observatoire de Paris – obspm – ci-dessous).

Liens :

https://carnegiescience.edu/news/new-measurement-universes-expansion-rate-stuck-middle

https://www.youtube.com/watch?v=pjWSZWtr1Lw

https://www.obspm.fr/l-espace-dodecaedrique-de.html

https://fr.wikipedia.org/wiki/Surface_de_derni%C3%A8re_diffusion

https://arxiv.org/abs/astro-ph/0310253

Image de titre : Représentation de l’Univers en expansion accélérée. Crédit NASA/WMAP

Image ci-dessous: représentation de la structure de l’univers d’après les données collectées par le télescope Planck. Les distances ont été corrigées en appliquant le paramètre H0. Crédit: Max Planck Institute for Astrophysics, Millennium Simulation Project:

image ci-dessous: carte du CMB (Cosmic Microwave Background) c’est à dire de la “Surface de Dernière Diffusion” ou “Fonds Diffus Cosmologique”. Crédit: NASA/WMAP Science Team.

Image ci-dessous : visualisation de l’espace dans la topologie PDS (Poincaré Dodecaedric Space): crédit Observatoire de Paris. On voit clairement que cela “brouille les pistes”. Notez bien qu’au niveau du fond diffus cosmologique les mirages topologiques ne seraient quand même que marginaux.

Paradoxe:

Lorsque nous regardons à partir de notre situation aujourd’hui vers le lointain le plus éloigné possible nous parvenons jusqu’au CMB (13,8-0,38 G al) que l’on peut assimiler à un point (40 millions d’années-lumière de diamètre). Lorsque nous pivotons de 180° pour regarder aussi loin que possible dans la direction opposée, notre perception parvient jusqu’au même point, le CMB, du fait de la courbure de l’espace imposée par le temps via la vitesse de la lumière. Notre univers d’observation est donc strictement contraint par ce volume en forme de cône surmonté d’une demi-sphère (pour simplifier!). La droite allant jusqu’au CMB est le rayon d’une sphère mais le second rayon qui en serait la prolongation pour constituer un diamètre, est du point de vue observationnel replié sur le premier.

Si nous considérons l’espace contemporain qui nous savons existe mais que nous ne pouvons voir du fait de la finitude de la vitesse de la lumière, sachant que la distance au CMB est aujourd’hui de 42 G al du fait de l’accélération de l’expansion de l’univers, nous pouvons maintenant considérer la réalité d’une surface (volume mis à plat) dont 42 G al serait le rayon et qui aurait un diamètre de 84 G al.

NB: Cet article a été soumis à la relecture du Professeur Luminet.  Il en a approuvé le contenu en précisant que ce blog “contribue à une diffusion de la culture scientifique de qualité”.

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 08 01 

Le rêve de Titan

Le 27 juin la NASA a annoncé qu’elle allait explorer Titan avec un hélicoptère. La sonde porteuse partira en 2026 et atterrira en 2034. J’aurai alors 90 ans ! Que faire sinon déplorer le temps qui passe, rêver et espérer quand même pouvoir contempler émerveillé ces cieux lointains et apprendre encore ?!

Titan n’est pas un « objet » ordinaire. Nous en connaissons assez bien les caractères généraux grâce à la sonde Cassini de la NASA qui pendant 13 ans a permis d’étudier le système de Saturne, dont il fait partie, avant d’être précipitée dans l’enveloppe gazeuse de cette dernière le 15 septembre 2017.

C’est d’abord l’un des deux plus gros satellites des planètes (plus gros que certaines planètes elles-mêmes) du système solaire, 5150 km de diamètre, plus que la Lune (3474 km) ou que Mercure (4875 km) mais moins que Mars (6779 km) et bien sûr que la Terre (12742 km) et légèrement moins que Ganymède (5268 km) le plus gros des satellites de Jupiter. C’est aussi avec la Terre, le seul astre rocheux de notre système, doté d’une atmosphère épaisse (pression au sol 1.47 bars), beaucoup plus que celle de Mars (0,010 bar), mais pas trop (comme celle de Vénus, 93 bars !). C’est encore un astre étrange où les rochers sont en glace d’eau et où dans les fleuves coulent des hydrocarbures qui s’évaporent lentement dans de grands lacs tout au long d’une année de trente ans (29,46), marqué comme la Terre par des saisons puisque l’axe de rotation de Saturne par rapport au plan de l’écliptique est incliné de 26,73° (Terre 23,26°). A noter que c’est cette inclinaison et non celle de Titan sur son orbite qui détermine les saisons puisque la source de chaleur est le Soleil et non Saturne et que l’inclinaison de l’axe de rotation de Titan est seulement de 0,28° sur le plan orbital de Saturne*. Observons le un peu plus en détails :

*cf commentaire du professeur Daniel Pfenniger (UniGe).

Tout d’abord, nous devons prendre en compte la caractéristique structurelle primordiale de tout corps céleste, sa masse. Elle est très faible, 134,5 contre 639 pour Mars, 5972 pour la Terre et 56830 pour Saturne (en milliards de milliards de tonnes – 1,345 à la puissance 23 !) mais quand même le double de celle de la Lune (73,6). Ce rapport entre la taille et la masse de l’astre détermine sa densité et résulte de sa composition particulière, fonction de sa localisation dans le système solaire et dans le sous-système saturnien. Compte tenu de sa formation bien au-delà de la Ligne-de-glace, qui passe au milieu de la Ceinture-d’astéroïdes (entre Mars et Jupiter), il est constitué d’un cœur de silicates hydratés (pas de métal !) enrobé dans de la glace d’eau mêlée d’hydrocarbures mais comme la pression et la chaleur interne jouent, cette glace perpétuellement solide à l’extérieur (sauf éventuel volcanisme) est liquéfiée à l’intérieur au point qu’on pense que grâce à la présence d’ammoniaque (NH40H – qui abaisse le point de congélation), elle a pu constituer un véritable océan planétaire souterrain. Par ailleurs la faible masse a pour conséquence une faible gravité en surface, légèrement inférieure à celle de la Lune (0,135g contre 0,16g). Combinée à la densité de l’atmosphère cela crée la condition idéale pour l’exploration robotique aéroportée (comme nous le verrons plus tard).

Un autre caractère planétologique important est la composition de l’atmosphère. Elle est constituée de 95% à 98,4% d’Azote (Terre 78,09%) et de 5 % à 1,6% d’hydrocarbures dont principalement du méthane (CH4) et un peu moins d’éthane (C2H6); l’hydrogène suit avec 0,1 % et, en plus faibles quantités (« traces »), de toutes sortes de composés: acétylène, propane, mais aussi de CO2 . A la température ambiante, le méthane se trouve aux alentours de son point triple. Il y a donc, en instabilité selon les variations de températures, du méthane gazeux dans l’atmosphère et liquide en surface. Une grande partie du « charme » de titan repose sur le cycle des liquides et des gaz. Il y a, surtout dans la région des pôles, ces lacs de méthane mentionnés plus haut. Ils sont soumis à une forte évaporation qui alimentent l’atmosphère en nuages. Compte tenu de la rotation lente de l’astre sur son axe (15,95 jours) et des faibles changements de températures résultant de l’exposition au Soleil cette atmosphère est en mouvement, parcourue par de faibles vents. Avec l’évolution des nuages, il pleut et il neige sur Titan en grosses gouttes ou en gros flocons qui tombent lentement (gravité et densité de l’atmosphère!) sur un sol déjà enrichi et complexifié au cours des éons ; et des orages se déclenchent, avec de la foudre, donc des éclairs et du tonnerre qui gronde d’autant plus que l’atmosphère dense en transmet bien le bruit. Outre ces décharges électriques, les radiations solaires (Uv) et galactiques (le satellite ne jouit pas de la protection d’une magnétosphère), ajoutent aux facteurs dissociatifs et associatifs des molécules complexes en suspension dans l’air et déjà accumulées au sol.

En dehors des lacs et des pics les plus acérés, le sol est en effet, en raison de ces processus qui durent depuis des milliards d’années, recouvert de matières hétéropolymères, les « tholines », substances visqueuses et collantes, proches de nos goudrons. Elles ressemblent aussi beaucoup aux « résidus récalcitrants » (selon Carl Sagan) obtenus par Miller et Urey au bout de leurs recherches en laboratoire visant à synthétiser les composants de base de la vie par décharges électriques dans une supposée atmosphère terrestre primitive. A noter et c’est important, qu’il s’est avérée plus tard que la composition de cette atmosphère reposait sur des hypothèses inexactes, l’atmosphère primitive terrestre contenant probablement beaucoup moins d’hydrogène, beaucoup plus de gaz carbonique et du souffre.

Un phénomène intrigue, l’intermittence de certains lacs. Cela indique évidemment une faible profondeur, une forte évaporation mais aussi peut-être une porosité du sol et quand on rapproche cette possibilité de la présence d’un océan souterrain, on peut envisager des communications entre la surface et l’Océan et donc encore plus de possibilités « biotiques » car l’environnement océanique pourrait permettre aux polymères organiques formés en surface de contourner l’obstacle du très grand froid pour continuer à évoluer dans des conditions plus favorables.

Enfin, comme la Lune, Titan est un satellite en évolution synchrone avec sa planète. C’est-à-dire que tout en tournant sur elle-même, elle lui présente toujours la même face. En effet Saturne verrouille l’exposition de son satellite par force de marée puisqu’elle n’en est distante que de seulement 10 diamètres saturniens (1,22 millions de km) et que sa masse est beaucoup plus importante que celle de Titan. Ceci veut dire que l’autre face n’est jamais exposée vers Saturne. Cela a-t-il des conséquences sur le climat ou les différents flux dans l’atmosphère, dans le sol, dans la structure interne de la planète ? Cela ajoute-t-il à la richesse des processus d’échanges biochimiques en cours ? Le sujet sera probablement étudié un jour.

Son atmosphère et la présence de liquide en surface conduisent certains à dire que Titan ressemble à une Terre primitive. C’est peut-être extrapoler sur des éléments insuffisamment analogues (la composition de l’atmosphère) et ignorer d’autres aspects très différents (la température). Le système de Saturne est froid, très froid car il se trouve loin du Soleil, entre 1349 et 1505 millions de km (10 Unités Astronomiques, « UA »), soit entre 9 et 11 UA de la Terre (qui se trouve par définition à une UA du Soleil). Compte tenu de l’éloignement du Soleil, l’irradiance au niveau du système saturnien est très faible (14,9 W/m2 soit 1/100ème de celle de la Terre et 1/50ème de celle de Mars). La luminosité en surface est donc très faible, d’autant qu’il y a des nuages, et la température moyenne est très basse (-180°C) et elle varie très peu. Mais il faut reconnaître que c’est un monde complexe et actif, certainement un incubateur qui a dû pousser la complexification des processus chimiques plus loin que la plupart des autres astres du système solaire.

L’exploration de Titan n’est pas facile, à cause de la distance et du temps nécessaire pour l’atteindre et ensuite pour commander les manœuvres des robots (les signaux mettent en moyenne 1h20 dans un seul sens) et à cause de la température, des orages et des étendues liquides (il vaut mieux éviter d’y couler, avant de s’y noyer!). La NASA a choisi la bonne solution puisque l’atmosphère est porteuse : l’hélicoptère, en l’occurrence un quadricoptère ou « quadcopter » comme disent les Américains, dotés de quatre couples de deux rotors (deux couples de chaque côté). L’idée a été lancée en l’an 2000 par le spécialiste de Titan, Ralph Lorenz (« planetary Scientist » au John Hopkins University Applied Physics Laboratory –JHUAPL)…le temps passe et les projets d’exploration mettent toujours longtemps à éclore…quand ils éclosent ! Curieusement le projet est devenu une affaire de famille car si Ralph Lorenz est le Project Scientist (responsable scientifique) de la mission, c’est son épouse Elizabeth Turtle, de la même université, qui en a été nommée la « Principal Investigator » (responsable générale). La mission nommée « Dragonfly » (libellule) sera effectuée dans le cadre du programme « New-Frontier » de la NASA, comme New-Horizons dont la sonde vient de passer à proximité d’Ultima-Thule, le premier objet de la Ceinture de Kuiper observé en détail, Juno qui orbite aujourd’hui autour de Jupiter ou comme Osiris-Rex qui étudie actuellement l’astéroïde Bennu. L’objet de Dragonfly est d’étudier la géologie de surface, la météorologie et leurs interactions (exactement ce qu’on pouvait demander !). Le budget est « raisonnable » (comme doivent l’être ceux des projets « New-Frontier »), un milliard de dollars seulement (hors lancement qui coûtera probablement une centaine de millions de dollars).

Dès le début de la mission le quadcopter mettra à profit la densité de l’atmosphère. Il ne sera pas déposé au sol mais libéré avant l’atterrissage, dans la basse atmosphère (à 1,2 km d’altitude) après une descente freinée par bouclier thermique puis par deux parachutes successifs. Ceci lui permettra la reconnaissance du meilleur site pour se poser et aussi une première observation.  Ensuite l’engin rechargera ses batteries pour pouvoir faire un nouveau vol (il passera plus de temps au sol que dans les airs car outre ce rechargement, il fera des observations du sol et enverra les données collectées vers la Terre). En plus des caméras, il y aura à bord des spectromètres, des capteurs météo, un sismomètre . Des forets fixés sous les patins d’atterrissage permettront de prélever des échantillons qui seront analysés sur place. Une innovation intéressante sera l’installation d’un dispositif de réalité augmentée qui permettra de contrôler périodiquement en trois dimensions l’appareil et son environnement immédiat dans d’excellentes conditions, « comme si on y était ».

Le premier atterrissage aura lieu sur l’équateur (il est toujours plus facile de s’y poser car c’est au-dessus de cette zone qu’arrive naturellement un vaisseau spatial attiré par la force de gravité de l’astre et il n’est pas nécessaire de dépenser d’énergie supplémentaire pour monter en latitude), dans la région de Shangri-La (c’est un champ de dunes comme il y en a beaucoup dans cette région). Ensuite Dragonfly fera de petits vols jusqu’à 8 km de distance et 500 mètres d’altitude ; sur les deux ans et demi que durera la mission il devrait parcourir 175 km. Cela le mènera jusqu’au cratère Selk intéressant par la variété de ses roches notamment parce que l’impact qui l’a généré a permis la libération, et l’action en surface, d’eau liquide. Bien entendu l’énergie utilisée sera nucléaire, sans doute un RTG (radioisotope thermoelectric generator) fonctionnant au plutonium 238 (convertissant en électricité la chaleur résultant de la désintégration radioactive du métal) ou peut-être un réacteur de type Kilopower fonctionnant à l’uranium 235, car à cette distance utiliser l’énergie solaire est impensable, l’irradiance étant beaucoup trop basse.

Alors verrai-je les films que Dragonfly prendra de ce monde étrange ? Quoi qu’il en soit de mon destin, vous les plus jeunes ne manquez pas de vous en rassasiez ! Ce seront des photos crépusculaires comme les rives que j’aborderai ou que j’aurai déjà franchies. Vous contemplerez dans une atmosphère ocre-dorée tirant vers l’orange et sombre, la lueur de Saturne réfléchissant la lumière du Soleil lointain. L’image beigée de la planète géante entourée de ses anneaux évoluera comme sur Terre celle de la Lune en fonction de ses phases. Énorme et immobile dans le ciel, elle dominera les montagnes de glace et se reflétera comme dans nos plans d’eau terrestres, dans quelque plan d’éthane liquide, noir et lisse. « Vous » ne serez pas encore dans vos scaphandres chauffés, les pieds dans vos bottes fourrées pataugeant dans la boue de tholines de ce monde glacial mais si nous sommes déjà parvenus sur Mars, nul doute que vos descendants y accéderont un jour avant d’aller encore plus loin. Ce sera splendide!

Image à la Une: Dragonfly en mouvement au-dessus du sol de Titan. Illustration crédit: John Hopkins APL.

Image ci-dessous: Dragonfly au sol. Le cylindre à l’arrière est le RTG. Crédit: John Hopkins APL.

liens:

https://www.nasa.gov/press-release/nasas-dragonfly-will-fly-around-titan-looking-for-origins-signs-of-life

http://dragonfly.jhuapl.edu/

https://spectrum.ieee.org/automaton/robotics/space-robots/how-to-conquer-titan-with-a-quad-octocopter

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 07 28