Les Sursauts Gamma, l’une des raisons possibles de notre isolement dans l’Univers

Les sursauts gamma proviennent d’événements d’une extrême violence, l’explosion d’étoiles massives ou la fusion d’étoiles à neutrons. Leurs conséquences pour les planètes éventuellement habitées de systèmes stellaires qui leurs sont voisins, peuvent être cataclysmiques. De tels événements ne sont pas rares dans notre univers surtout si l’on écarte le champ du temps et de l’espace où ils ont le moins de probabilités de se produire. C’est l’une des raisons qui peut expliquer pourquoi la vie évoluée est si rare sinon unique et donc pourquoi nous n’avons toujours pas reçu de preuve d’existence de civilisation extraterrestre (paradoxe de Fermi).

Certaines étoiles massives, les étoiles de Wolf Rayet, à partir de 15 à 20 masses solaires et jusqu’à 100 ou exceptionnellement encore plus, sont comme beaucoup de phénomènes, la meilleure et la pire des choses pour la vie. La meilleure car c’est en leur cœur que se complexifie la matière par fission nucléaire, le plus vite et le plus loin, sous forme d’atomes de plus en plus lourds, conduisant l’Univers à une « métallicité », comme on dit, de plus en plus élevée. La pire car leur implosion en fin de combustion de l’hydrogène dont elles sont essentiellement constituées, est extrêmement violente puisqu’à partir d’une quinzaine de masses solaires la plus grande partie de leur matière peut s’effondrer en étoile à neutrons et à partir d’une vingtaine de masses solaires (selon le degré de métallicité) en trou noir. Le reste, en périphérie, est expulsé dans l’espace à des vitesses relativistes de plus en plus rapides (jusqu’à 99,995% de la vitesse de la lumière) par couches successives, dans une explosion de type « supernova ». dans le cadre de cette explosion, lorsqu’une salve de matière rencontre la précédente, il en résulte une onde de choc qui génère des rayons gammas. Ces rayons sont ceux qui ont la plus petite longueur d’onde du spectre électromagnétique. Ils sont donc les plus pénétrants de ce spectre et ils sont aussi extrêmement énergétiques puisque leurs photons peuvent aller jusqu’à plusieurs centaines de GeV. Le phénomène du « sursaut » (« GRB » pour « Gamma Ray Burst ») peut durer plusieurs minutes. En fait il est d’autant plus énergétique qu’il est plus court (l’évolution en étoile à neutrons génère, elle, un sursaut « long », jusqu’à une vingtaine de minutes). A noter que la fusion de deux étoiles à neutrons binaires, qui évolue forcément en trou noir, peut aussi générer un GRB.

La très grande vitesse et la très grande énergie de ces photons gamma, en font des rayonnements « de destruction massive ». Ils vont en effet briser les molécules et ioniser les atomes et ceci d’autant plus qu’ils sont émis de moins loin et dans la « bonne » direction. Sur une distance de 200 années-lumière (AL), tout sera désintégré et sur plusieurs milliers d’AL il y aura ionisation totale des atmosphères pénétrées. En particulier, la couche d’ozone de la Terre n’y résisterait pas et laisserait la « porte ouverte » jusqu’au sol, aux rayonnements les plus agressifs du Soleil (UVc), tuant toute vie exposée. Heureusement l’essentiel des projections et de l’énergie se concentre dans des « faisceaux » ou jets émanant des deux pôles du fait de la rotation de l’astre en implosion. Le plus grand danger est donc de se trouver dans l’axe de ces monstres ou de se trouver trop près de l’étoile. En effet l’explosion ne produit pas que des rayons gamma (les plus dangereux) mais aussi toutes sortes d’autres rayonnements « cosmiques » (du visuel aux rayons X) et de projections de matière (électrons et protons ou même atomes neutres, UHECR) qui peuvent provenir de l’ensemble de sa masse aussi bien que du jet lui-même en accompagnement des rayons gamma, sans oublier les ondes gravitationnelles et les neutrinos. A noter que le jet, extrêmement dense à sa source, se diffuse au fur et à mesure qu’il s’en éloigne tout en gardant sa cohésion sur plusieurs milliers d’années-lumière. Ceci pour dire que pour un sursaut gamma provenant de quelques 500 AL, ce serait probablement l’entièreté du système solaire qui serait pris dans le diamètre du jet et « brûlé ». Tout de même, un sursaut gamma provoquerait des dégât importants (appauvrissement de la couche d’ozone, pluies acides, refroidissement climatique) dans l’atmosphère d’une planète habitable, jusqu’à 6000 à 7000 AL.

Pour qu’une vie complexe comme la nôtre puisse se développer sur une planète, il faut donc que pendant une période longue (il a fallu quatre milliards d’années pour que des métazoaires/animaux apparaissent sur Terre) dans un environnement relativement proche, il ne survienne pas de tels événements qui puissent nous saisir dans leur rayonnement de mort. On dit que l’extinction de la fin de l’Ordovicien, il y a 445 millions d’années, au cours de laquelle 27% des taxons et plus de 85% des espèces vivantes disparurent, serait due à un tel phénomène.

Or, dans le temps et l’espace un tel danger est inégalement présent. Les supernovæ sont plus fréquentes dans les petites galaxies que les grosses (comme la Voie Lactée) et plus fréquentes (du fait de la densité d’étoiles) dans le cœur des grosses galaxies spirales que dans leur disque. Par ailleurs, dans la périphérie des grosses galaxies, leurs conséquences se manifestent plus fréquemment dans celles qui ont de nombreuses petites galaxies satellites, du fait du plus grand nombre de supernovæ dans ces dernières. Il est enfin à noter sur ce point, que les grosses galaxies spirales de type Voie Lactée entourées de très peu de satellites proches, sont relativement rares (les nuages de Magellan sont trop éloignés pour que nous en subissions les éventuels sursauts gamma).

De ce point de vue, le système solaire est bien placé puisque, logé dans une galaxie sans satellites proches, il est situé à quelques 26.000 années-lumière du centre galactique et autant de la périphérie du disque. Nous sommes donc dans une région relativement calme mais pas non plus dans un désert total ce qui a permis au Soleil de bénéficier d’une métallicité certaine, suffisante pour permettre à la vie de se développer.

Ceci dit nous ne sommes pas pour autant à l’abri de toute catastrophe. Là où nous sommes situés, la probabilité d’une supernova avec jet de radiations gamma dans notre environnement et dans notre direction, détruisant la totalité de notre zone d’ozone protectrice, est estimée à 50% par période de 500 millions d’années. Comme nous avons eu l’extinction ordovicienne il y a 445 millions d’années, nous allons donc être bientôt à nouveau « éligibles ». Il faut toutefois introduire un bémol et un dièse. Le bémol c’est que 55 millions d’années est quand même une durée longue par rapport à l’histoire de la vie animale sur Terre puisque cela nous fait remonter presque à la destruction des dinosaures. Le dièse c’est que les 500 millions sont une durée statistique et qu’il n’y a nulle impossibilité à ce que deux événements successifs soient davantage rapprochés l’un de l’autre.

Alors sommes-nous actuellement en danger ? Il semble que non, pas tout de suite, car aucune étoile massive située à moins de 200 AL n’est susceptible de « tourner » prochainement en supernova. Nous ne savons pas si Eta Carinae, à plus de 8000 AL, n’est pas devenue supernova il y a 7900 années et si Bételgeuse, à 640 AL, n’a pas évolué de même il y a quelques centaines d’années, ce qui serait sans doute non mortel mais « ennuyeux ». Par contre, ce danger et sa probabilité d’occurrence sont une des raisons pour limiter encore plus la probabilité d’une vie développée ailleurs que sur Terre si on la cumule aux autres facteurs contraignants : métallicité minimum, ce qui exclut pratiquement un Univers sensiblement plus jeune que le nôtre ; étoiles de vie suffisamment longue mais d’une masse suffisante pour que sa zone habitable soit suffisamment éloignée de ses tempêtes radiatives et que sa rotation ne soit pas bloquée par force de marée ; étoile solitaire plutôt qu’en couple pour permettre le développement d’un système planétaire complet ; présence d’une géante gazeuse évoluant dans sa zone d’accrétion et n’ayant pas décroché vers son étoile pour devenir un jupiter chaud en détruisant tout sur son passage, et ne pouvant servir d’écran protecteur aux pluies de comètes ; sans compter une évolution biologique difficilement reproductible compte tenu des différents accidents qui l’auront marquée et qui sont impossibles à reproduire dans le même calendrier ; sans compter l’histoire des progrès scientifiques depuis que l’homme est conscient et dont la reproduction n’est sans doute pas non plus automatique. N’oublions pas que l’entropie ne peut aller qu’en s’accroissant.

Ceci dit les extinctions massives par sursauts gamma peuvent aussi avoir leur utilité dans l’apparition d’une vie intelligente. Ce qui ne nous tue pas, nous renforce. Une catastrophe cosmique peut aussi opérer une sélection. Si elle ne détruit pas tout comme ce fut le cas de l’extinction ordovicienne, du moins elle « élague » l’arbre de vie et, plus ou moins aveuglément, elle choisit ceux qui vont survivre et avoir une descendance (cf. aussi l’extinction résultant de la chute du météore de Chicxulub qui permit aux mammifères de disposer d’une fenêtre d’évolution qui leur serait restée fermée tant que les dinosaures dominaient la planète).

Les Sursauts gamma sont une raison supplémentaire pour dire que la vie complexe est fragile et rare et que nous avons, nous, êtres humains, une chance extraordinaire de pouvoir en jouir. Ne gâchons ni celle des autres ni la nôtre et, pour ceux qui ont la foi, rendons grâce à Dieu !

Illustration de titre : vue d’artiste d’un sursaut gamma, crédit NASA/Swift/Mary Pat Hrybryk-Keith and John Jones

références:

https://arxiv.org/pdf/1508.01034.pdf

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.081301

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.231102

file:///D:/Blog/gamma%20sursauts/5b30b76e8fe56f05de7fb837.pdf

https://www.cambridge.org/core/journals/international-journal-of-astrobiology/article/abs/did-a-gammaray-burst-initiate-the-late-ordovician-mass-extinction/F37A58C811EB82496CEF6CF989159807

https://www.esa.int/Space_in_Member_States/Belgium_-_Francais/Sommes-nous_a_l_abri_des_sursauts_gamma#:~:text=Le%20sursaut%20gamma%20survient%20lorsque,explosion%20initiale%20de%20l’%C3%A9toile.

https://fr.wikipedia.org/wiki/Sursaut_gamma#:~:text=Un%20sursaut%20gamma%20ou%20sursaut,mani%C3%A8re%20al%C3%A9atoire%20dans%20le%20ciel.

https://www.isdc.unige.ch/~paltani/Courses/GP_highenergy.pdf

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 01 02

Comet Interceptor, la mission de l’ESA qui pour la première fois va nous permettre de (presque) chevaucher une comète de longue-période

Un des projets priorisés par l’ESA dans sa dernière réunion interministérielle est la visite d’une comète de longue-période, parcelle infime de notre disque protoplanétaire, en espérant que ce soit sa première descente vers le centre de notre système et que donc nous puissions l’observer avant qu’elle ait été altérée par les rayonnements provenant de notre Soleil. La préparation de la mission à l’étude pour remplir cet objectif, « Comet Interceptor », première de catégorie « F » (pour Fast), proposée et sélectionnée en 2019, a été confirmée fin 2022 et va donc être poursuivie afin de pouvoir être lancée avec la mission ARIEL (étude de l’atmosphère des exoplanètes de taille moyenne) en 2029. On profitera de cette occasion de « chasse à la comète » pour observer alternativement un astéroïde extragalactique comme Borisov ou l’étrange ‘Oumuamua, au cas où il s’en présenterait. La position d’attente de l’« intercepteur » sera le point de Lagrange Terre-Soleil L2 (localisé hors du puits gravitationnel terrestre et relativement stable), à 1,5 millions de km de la Terre.

Architecture d’une interception, vue d’artiste, crédit K. Yoshioka.

Rappelons que les comètes sont des petits corps riches en eau glacée, qui proviennent d’au-delà de la « Limite-de-glace » (distance du Soleil à partir de laquelle l’eau ne peut se trouver qu’en phase solide). Cette limite est située au milieu de la « Ceinture d’astéroïdes » qui orbite le Soleil entre Mars et Jupiter. Les trois principaux « réservoirs » de comètes sont, en s’éloignant de plus en plus du Soleil, cette Ceinture d’Astéroïdes, la Ceinture de Kuiper et les nuages de Oort. La Ceinture d’Astéroïdes et la Ceinture de Kuiper sont des tores qui orbitent le Soleil dans le plan de l’écliptique. La première « Ceinture » a été fortement « chamboulée » et appauvrie par les géantes gazeuses Jupiter et Saturne lorsqu’elles sont descendues vers le Soleil au début de la formation de nos planètes (il y a plus de 4,5 milliards d’années). Elle constitue encore une masse égale à 0,6% de celle de la Terre. La Ceinture de Kuiper orbite le Soleil au-delà de Neptune, entre 30 et 100 UA (Unités Astronomiques, 1UA = 150 millions de km) du Soleil. Elle aussi a souffert sur sa marge intérieure de l’intrusion de Neptune (après le retour de Jupiter et de Saturne un peu plus loin que leur lieu primitif d’accrétion). Elle contient une masse d’environ 10% de celle de la Terre (y compris des planètes-naines comme Sedna). Les Nuages de Oort (appelés aussi Nuage de Öpik-Oort pour rendre hommage au premier scientifique, estonien, qui les a théorisées en 1932) forment une coque constituée d’une myriade de petits astres glacés qui enveloppe complètement le système solaire ; la différence de forme de leur volume avec celle de la Ceinture de Kuiper étant explicable par la moins forte attraction gravitationnelle du Soleil car elle s’étend bien au-delà de la Ceinture de Kuiper, jusqu’à au moins 100.000 UA. L’ensemble de la masse de ces « nuages » est peut-être égal à une quarantaine de masses terrestres.

Dans cet environnement lointain (Oort encore plus que Kuiper), presque rien n’a changé depuis que les gaz et les poussières de notre disque protoplanétaires se sont concentrés par suite d’une perturbation extérieure quelconque (une supernova probablement), cette concentration aboutissant à la formation en son centre de notre Soleil puis en périphérie, de nos planètes et, beaucoup plus loin, des astéroïdes (y compris les comètes).  L’effet du Soleil a été et reste d’autant plus faible qu’on s’éloigne de lui, aussi bien au point de vue thermique (et autres radiations) que gravitationnel. C’est pour cela que les poussières et particules de glace ne se sont accrétées qu’en masses d’autant plus petites qu’on était loin du Soleil. Au point que, à la différence de ce qu’on observe dans la Ceinture de Kuiper, il n’y a très probablement aucune planète ou planète-naine dans l’environnement des Nuages de Oort.

Les comètes proviennent donc de ces trois réservoirs mais les plus nombreuses viennent de loin, aussi bien des Nuages de Oort que de la Ceinture de Kuiper compte tenu de la masse et de l’étendue de ces deux régions. On en a répertorié quelques 3000 depuis qu’on les observe, contre seulement 800 qui proviennent de notre environnement proche, les SPC (Short Period Comet) que l’on appelle aussi JPC (Jupiter Family Comet)…même si elles ne proviennent pas de Jupiter, car elles sont souvent déviées par Jupiter. Les premières sont des comètes à longue-période (LPC), les secondes, les SPC, des comètes à courte-période (5 à 20 ans). On fait la différence, bien entendu parce qu’on connaît la trajectoire des SPC mais aussi (et surtout) parce que la vitesse des LPC est beaucoup plus grande et que donc l’arc d’ellipse que décrit leur trajectoire observée est beaucoup moins courbé. Par ailleurs le plan de l’ellipse d’une LPC peut être complètement en dehors de celui de l’écliptique puisque les Nuages de Oort forme une sphère autour du Soleil.

Les distances entre ces corps glacés sur orbite sont très grandes, aussi bien dans les deux Ceintures que dans les Nuages de Oort (des millions de km). Mais plus on est éloigné du Soleil, plus leur vitesse sur orbite autour du Soleil est faible et moins leur déstabilisation requiert d’énergie. Malgré le temps passé depuis la formation du système solaire et les pluies de comètes qui ont eu lieu à l’origine du fait de la plus grande densité, des plus grandes différences de vitesse et des tiraillements gravitationnels, la stabilité aujourd’hui n’est toujours pas parfaite. Il reste des différences de densité, de masse, de réflectivité aux rayonnements, de vitesse. Et de temps en temps, un de ces corps en heurte un autre ou bien simplement sa vitesse diminue légèrement pour une raison quelconque et il décroche de son orbite en tombant en comète vers le centre de notre système suivant une ellipse de période plus ou moins longue en fonction de son origine plus ou moins lointaine.

Observer une comète LPC, c’est donc observer un morceau de notre système solaire dans son état presque originel qui du fait de la force de gravité omniprésente, se rapproche de nous. On voit tout de suite l’intérêt de profiter de ce « service à domicile ». Et il vaut mieux se servir du plat qui nous est présenté quand il entre pour la première fois (ou l’une des premières fois !) dans le four de l’environnement solaire que lorsqu’il y a déjà séjourné de nombreuses fois. Les comètes que l’on voit venir et revenir, les JFC, sont des plats réchauffés qui ont perdu beaucoup de leurs caractères primitifs. Et elles sont d’autant moins intéressantes que nous en avons déjà observées plusieurs de très près (missions Giotto ou Rosetta). NB : elles pourront toutefois servir de référence. La magnifique comète C/2022 E3 (ZTF) qui nous rend visite depuis ce 12 janvier (elle sera au plus près de la Terre, 42 millions de km, le 1er février, avec une magnitude apparente de 5,5*) est une LPC dont l’aphélie se trouve à 39.300 UA donc bel et bien dans le nuage de Oort intérieur. On ne sait pas si elle est déjà descendue dans notre région, c’est-à-dire si elle est une LPC de type « DNC » (Dynamically New Comets), ce qui aurait évidemment été préférable…si le Comet Interceptor avait été prêt !

*La magnitude-apparente limite pour l’œil nu est de 6.

La difficulté pour l’observation d’une comète LPC c’est (1) que par principe on ne les a jamais vues, que donc on ne connaît pas leur trajectoire et que donc on ne sait pas où et quand elles pénétreront dans notre espace observable ; (2) que lorsqu’on les a détectées il faut intervenir aussitôt c’est-à-dire aussi loin que possible du Soleil (pour que ce dernier ne puisse les avoir sensiblement altérées) donc, en fait, lorsque elles franchissent la Limite de glace ; (3) qu’avant que le Soleil décongèle leurs gaz, elles sont visuellement petites comme des astéroïdes « secs ». Il faut donc disposer (1) d’un instrument d’observation capable de les détecter aussi loin que possible (on les identifiera en fonction de leur vitesse ou de leur direction) et (2) d’un vaisseau en veille, prêt à partir vers elle sur le champ. Les astéroïdes extragalactiques semblent encore plus rares et leur vitesse est plus rapide (c’est d’ailleurs en partie à cela qu’on les reconnaît) ce qui ne facilitera pas leur interception.

Nous disposons déjà de plusieurs observatoires pour la détection (programme Pan-STARRS et ATLAS). Mais, surtout, nous aurons bientôt (en principe en 2024) le « LSST » (« Large Synoptic Survey Telescope ») maintenant nommé « Vera C. Rubin Observatory ». Avec cet instrument construit au Chili, sur le Cerro Pachón, au Nord de Santiago sous leadership américain (Université de Tucson) et qui couvrira le ciel austral en trois jours, l’on pourra voir au-delà de la magnitude-apparente 24 (Pluton est à 13,7, Hubble peut voir jusqu’à 31). Parce qu’il a ces capacités et parce qu’il est optimisé pour détecter les phénomènes transitoires, il est particulièrement bien adapté pour travailler de concert avec le Comet Interceptor. Avec lui on pourra repérer les comètes un peu avant qu’elles atteignent l’orbite d’Uranus, ce qui nous donnerait le temps de nous préparer. C’est un peu parce que Vera Rubin était en cours de réalisation que l’on a décidé en juin 2019 de lancer cette mission Comet Interceptor. C’est une coopération ESA/JAXA (Agence spatiale japonaise). Elle entre bien dans la définition de « mission Fast » car elle a une durée de développement courte (9 ans au lieu de 8 à l’origine) et une masse de seulement 600 kg (donc à l’intérieur des 1000 kg posés comme limite pour cette catégorie).

La mission couvrira deux domaines : (1) celui de la science du noyau cométaire (« Comet Nucleus Science ») pour répondre aux questions sur la composition, la forme, la morphologie et la structure de l’objet cible ; (2) celui de la science de l’environnement cométaire (« Comet Environment Science ») pour répondre aux questions sur la composition de la chevelure, son lien avec le noyau (activité) et la nature de son interaction avec le vent solaire.

L’intercepteur sera composé de trois éléments qui resteront solidaires jusqu’à l’approche de l’objectif : une plateforme (ESA) et deux sous-satellites, B1 (JAXA) et B2 (ESA), équipés d’instruments différents et bien sûr complémentaires. L’énergie sera fournie par des panneaux solaires. La plateforme commune comprendra un bloc télécom pour les relations avec la Terre, une caméra « CoCa » (Comet Camera) pour obtenir des images à haute résolution du noyau de la comète dans plusieurs longueurs d’onde, un spectromètre de masse MANiaC (Mass Analyser for Neutrals in a Coma) pour analyser les gaz émis par la comète, un spectromètre, MIRMIS (Multispectral InfraRed Molecular and Ices Sensor) pour mesurer la chaleur libérée du noyau et étudier la composition moléculaire du gaz de la chevelure, un instrument DFP (Dust, Field, Plasma) pour mesurer les gaz ionisés, les atomes neutres énergisés, les champs magnétiques et la poussière entourant la comète. Le sous-satellite B1 portera une caméra UV pour observer le nuage d’hydrogène entourant la comète ; un instrument PS ayant un peu le rôle de l’instrument DFP ; une caméra grand angle pour voir la comète lors de son survol rapproché. Le sous-satellite B2 portera une caméra pour cartographier en lumière visible et infrarouge la tête et la chevelure ; un spectromètre de masse pour analyser les gaz s’échappant de la comète ; une caméra pour étudier la jonction entre la tête de la comète et sa chevelure ; un autre instrument DFP fonctionnant en liaison avec le premier.

La vitesse de la sonde sera réduite du fait de ses faibles moyens de propulsion mais évidemment suffisant pour l’observation rapprochée dans un vaste secteur. A noter qu’on peut difficilement faire autrement pour un véhicule en attente lancé en 2029 et qui pourrait n’être activé qu’en 2035. Par ailleurs il n’est pas nécessaire de disposer de beaucoup d’énergie puisqu’on n’aura pas à s’extraire d’un puits de gravité avant de se déplacer et qu’on disposera de temps entre l’observation et l’arrivée sur site. Le déplacement vers la cible pourrait durer quelques mois mais s’étendre jusqu’à 3 ou 4 ans. La plateforme ne s’approchera pas à plus de 1000 km pour éviter les éjectas mais les sous-satellites pourront s’approcher beaucoup plus près, quitte à être détruits. Le sous-satellite B1 explorera le noyau et la chevelure jusqu’à 850 km, le sous-satellite B2 qui survolera la comète au plus près, jusqu’à 400 km, explorera particulièrement l’intérieur de la chevelure. La rencontre pourrait se faire à une vitesse de 40 à 70 km/s. Le plan d’interception est présenté ci-dessous.

 Schéma de l’« interception », crédit ESA/Comet Interceptor science study team.

Le « Comet Interceptor Science study team » est composé de cinq personnes dont Geraint Jones (UCL, UK) et Hideyo Kawakita (Kyoto Sangyo University), complété par dix « Comet Interceptor Lead Scientists » dont Martin Rubin de l’Université de Bern, pour le spectromètre de masse MANiaC et Nick Thomas, également de l’Université de Bern, pour la caméra CoCa. L’ESA suit le projet avec un ESA Study Team de 10 personnes avec coordination par l’ESTEC. L’ensemble est entouré de plus de 300 contributeurs scientifiques.

Le lancement de la sonde sera fait par une Ariane 62…dont on attend confirmation des capacités !

https://space-travel.blog/opik-oort-comet-interceptor-opic-e309e0de2bff

https://www.cometinterceptor.space/

https://fr.wikipedia.org/wiki/Comet_Interceptor

https://www.scinexx.de/news/kosmos/komet-im-anflug/

https://www.cosmos.esa.int/web/comet-interceptor/documentation

http://psp.gp.tohoku.ac.jp/hisaki/lib/exe/fetch.php?media=text_reading:hisaki2_reading_yoshioka_201021.pdf

https://www.cosmos.esa.int/documents/3760686/3760706/Comet+Interceptor+Red+Book.pdf/dfa9634f-b15b-e918-17b5-5a8523149ea7?t=1664524062069

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 01 02

Tous mes souhaits de bonheur à mes amis Coréens en ce jour d’ouverture du Seollal / 설날 !

…et Gongxi fa cai! pour cette année sous le signe du Lapin d’eau, à mes amis de Singapour!

ARIEL, une mission ambitieuse de l’ESA pour mieux comprendre le contexte atmosphérique des (grosses) exoplanètes.

Ariel est l’une des cinq missions que la réunion interministérielle de l’ESA a mis en exergue en Novembre 2022, lors de l’approbation de son budget 2023 – 2025. Son acronyme est celui d’Atmospheric Remote-sensing Infrared Exoplanet Large-survey. Le nom développé comprend les mots essentiels d’« atmosphère », d’« infrarouge » et insiste sur le fait que l’étude sera de « grande ampleur ». C’est la mission de taille moyenne « M4 » du programme Cosmic Vision de l’ESA et elle fonctionnera à partir d’une plateforme spatiale au point de Lagrange L2. Les autres missions « privilégiées » lors de la réunion interministérielle sont JUICE (L1), EUCLID (M2), PLATO (M3) et Comet Interceptor (F1). Je vous ai déjà parlé de JUICE, EUCLID, PLATO et je vais aujourd’hui développer le sujet d’ARIEL (M4).

Le choix d’ARIEL en 2022 est une confirmation. En effet l’étude a commencé bien avant (en 2009 !), puisque la mission a été sélectionnée en 2018 sur un dossier déjà précis constitué en 2014 (avec lancement prévu en 2025) suite à l’échec du projet DARWIN en 2007 (flotte de télescopes spatiaux opérant en interférométrie). Elle est passée de la phase d’étude à celle de mise en œuvre en Novembre 2020, avec l’objectif de terminer le « design » en 2025 (suivant la dernière « payload design review » qui a eu lieu juste avant l’interministérielle).  « De fil en aiguille », malheureusement, aujourd’hui le lancement n’est prévu qu’en 2029 (après encore une « flight acceptance review » en début de la même année). Je rappelle ces dates car leur succession illustre bien, me semble-t-il, la difficulté de faire sortir puis aboutir un projet. Cette difficulté n’est pas simplement un problème d’obtention de financement ou de mise au point technologique, c’est aussi un problème de temps sous-tendu par beaucoup de travail de nombreux scientifiques et d’ingénieurs de haut niveau…et par beaucoup de conciliabules et de réunions.

Comme l’écrit la NASA, ARIEL est la première mission axée sur la mesure de la composition chimique de l’atmosphère des exoplanètes et de leur lien avec l’environnement de leur étoile-hôte dans lequel elles se sont formées. Cette mission va combler une lacune importante dans ce domaine. Une responsable du projet nous dit : « avant nous collectionnions des timbres pour leur nombre, maintenant nous allons regarder ce qu’il y a dessus ». La mission va également nous aider à mieux comprendre comment le type d’étoile hôte influence les aspects physiques et chimiques de l’évolution de la planète.

Son principal objectif est l’analyse de l’atmosphère de planètes d’une taille comprise entre celle de Neptune et celle des super-Terres. Je souligne cette limite pour insister sur le fait qu’il ne s’agit pas encore de nouvelles-Terres. Il est en effet moins difficile d’observer de grosses planètes que des petites puisque l’effet qu’elles ont sur leur étoile, que ce soit visuellement du fait de leur transit atténuant leur luminosité (transit) ou du fait du déplacement qu’elles causent (vitesse radiale), est plus marqué du fait de la masse. Dès 2009, les scientifiques de l’ESA et de l’Exoplanetary Community réunis à Barcelone pour discuter du projet avaient convenus qu’il fallait une mission intermédiaire avant de pouvoir envisager analyser la composition chimique de l’atmosphère des planètes de type terrestre. De ce point de vue l’objectif est décevant. Mais on est obligé d’aller pas à pas, au rythme de ce que permet l’évolution de nos progrès technologiques.

L’étude portera sur un échantillon de cinq cent à mille planètes (500 au moins pour la période nominale qui pourra être étendue au-delà de 4 ans), ce qui permettra de déduire toutes sortes de comparaisons de statistiques et d’inférences. Les planètes étudiées seront bien entendu des planètes de systèmes proches de la Terre (ceux qui sont les plus accessibles à l’observation) et on positionnera le télescope au point de Lagrange L2 (système Terre-Soleil, à 1,5 millions de km, en opposition au Soleil), comme on le fait souvent maintenant. L’avantage de ce positionnement est qu’il évite l’interférence des rayonnements provenant de la Terre.

Le principe consistera à prendre un spectrogramme de la planète observée lorsqu’elle passera en transit devant et derrière l’étoile et la nouveauté sera la précision inégalée de ce spectrogramme. Le pointage pourra se faire avec la précision d’une seconde d’arc avec une stabilité de 200 millisecondes d’arc sur 90 secondes et de 100 millisecondes d’arc sur 10 heures (pour référence le diamètre de la Lune ou du Soleil vu de la Terre est de 1800 secondes d’arc). A noter que les observations d’une même cible pourront se faire même au-delà de 10 heures, jusqu’à trois jours (ce qui pourra nécessiter une adaptation du pointage). Lors du passage devant l’étoile l’atténuation de la lumière pourra être mesurée avec une précision de 10 à 100 parties par million (selon l’éloignement). Lors du passage derrière l’étoile (juste avant l’occultation*), lorsque nous pourrons observer la face éclairée de la planète, le spectrographe sera capable de distinguer dans l’atmosphère des composés tels que l’eau (vapeur), le dioxyde de carbone, le monoxyde de carbone, le méthane, l’ammoniac, le cyanure d’hydrogène, l’hydrogène sulfuré, l’acétylène, la phosphine. Il pourra aussi détecter d’autres éléments présents dans le système tels que des composés métalliques. Le passage des longueurs d’onde en visible aux longueurs d’onde en infrarouge sur la même cible permettra d’apprécier les caractéristiques des aérosols. Pour les planètes les plus proches et les plus grosses, ARIEL pourra même étudier le système nuageux et les variations atmosphériques saisonnières et quotidiennes.

*Pendant le transit, on pourra aussi déduire la teneur en certains gaz de l’atmosphère en fonction du rayon perçu de la planète selon les longueurs d’onde spécifiques d’absorption correspondant aux signatures spectrales de ces gaz.

Vue d’artiste de l’observatoire ARIEL. Le module de service est en blanc, les panneaux solaires sont en dessous (sous le premier bouclier thermique protecteur). Entre le télescope et le module de service on voit trois ailettes en « v » qui sont d’autres boucliers thermiques indispensables pour atteindre des températures extrêmement basses. L’axe du télescope est parallèle au module et aux panneaux. Cette configuration doit donner une plus grande stabilité au télescope car elle réduit le moment de force généré par la distance entre le centre de masse du vaisseau et le centre de pression du rayonnement photonique. Crédit ESA.

L’observatoire comprendra un télescope et son module de service. Le télescope, de type Cassegrain, a un miroir primaire parabolique elliptique (1100 mm x 730 mm) de 0,67m2 et un miroir secondaire, hyperbolique. Le rayonnement collecté est dirigé via deux autres miroirs, vers deux ensembles de détecteurs : 1) un spectromètre à basse résolution analysant les longueurs d’onde comprises entre 1,2 et 1,95 micron (proche infrarouge) ; 2) le spectromètre spécifique AIRS (« ARIEL InfraRed Spectrometer ») à moyenne résolution collectant les rayonnements infrarouges entre 0,5 et 7,8 microns (visible et proche infrarouge). Le télescope et les détecteurs (« PLM ») ne pèsent que 450 kg, 1,2 tonnes avec le module de service « SVM » (masse sèche) qui comprend les équipements nécessaires au contrôle d’attitude, les réservoirs d’ergols, le système de télécommunications, les panneaux solaires, ainsi que l’électronique de la charge utile.

Les capteurs sont cryogéniques puisqu’ils doivent discerner les ondes reçues dans l’infrarouge, ce qui suppose que la chaleur du Soleil comme celle résultant du fonctionnement du vaisseau, ne crée pas un bruit empêchant d’identifier le rayonnement reçu de l’astre observé. Le spectromètre à basse résolution doit être maintenu à 70 K, le spectromètre AIRS, à < 42 K ! L’architecture du télescope sera suffisante pour maintenir la première jusqu’à environ 55K mais pour obtenir le froid nécessaire pour AIRS, on utilisera un refroidisseur au néon en circuit fermé utilisant l’effet Joule-Thomson (« Ne JT-cooler ») qui peut permettre de descendre la température jusqu’à 32 K. Par ailleurs, le télescope aura besoin d’ergols (en l’occurrence, de l’hydrazine) pour désaturer les roues de réaction permettant la stabilité de l’instrument et aussi quelques corrections d’orbite (le positionnement en L2 est instable). La mission est donc limitée dans le temps : en principe 4 ans (pour la mission « nominale »). L’énergie électrique nécessaire au fonctionnement du télescope et à la transmission des données (environ 236 Gbit par semaine) par une antenne parabolique à grand gain, sera fournie par des cellules solaires (puissance environ 1kW) tapissant la paroi inférieure du module de service tournée en permanence vers le Soleil.

Le lancement devrait avoir lieu entre 2026 et 2029 (mais il y a hélas peu de chances que ce soit avant 2029). Il sera effectué par une Ariane 6 à partir de Kourou. Attention cependant, Ariane 6 dont le premier lancement doit être tenté en 2023, n’a pas encore fait ses preuves. Comme la masse de l’ensemble n’est que de 1,5 tonnes (dont 1,2 tonnes à sec), la fusée devrait pouvoir embarquer une autre charge utile. Ce sera « Comet Interceptor », la première mission de catégorie « F » (« F1 ») pour « Fast », de l’ESA.

L’équipe en charge de la mission, (« Ariel Mission Consortium ») est comme toujours, multinationale (17 pays regroupant 50 institutions y compris le JPL Américain). Le Consortium est dirigé par l’UCL (University College London) et son « PI » (« Principal Investigator » i.e. chef scientifique de la mission, est la professeure Giovanna Tinetti de l’UCL). C’est Airbus Defense and Space avec Thales Alenia Space qui vont construire le satellite et les différents participants apporteront chacun leur contribution. La Suisse n’est pas « en pointe » sur ce projet mais y participe quand même, notamment via Ruag.

Au-delà de cette mission une autre se profile, HWO (Habitable World Observatory) de la NASA qui remplace les projets HabEx (Habitable Exoplanet Observatory) et LOUVOIR. Derrière elles, une troisième n’arrête pas de disparaître avant de réapparaitre peut-être un jour, DARWIN, qui consistait en une flotte de télescope spatiaux, observant de concert et collectant les données en interférométrie. Le projet fut abandonné en 2007, comme dit ci-dessus, par crainte d’un manque de possibilité de précision dans la coordination des télescopes. On y reviendra peut-être un jour puisque c’est le seul moyen d’obtenir des surfaces de collectes vraiment grandes et qu’on en a besoin pour observer des détails de plus en plus infimes. Dans la mythologie biblique Ariel est l’archange qui reprend la Lumière après que Lucifer l’ait laissée choir mais Ariel n’est qu’un relai pour d’autres. Nul doute que dans notre cas la lumière de la science sera reprise après ARIEL et qu’elle nous permettra de voir jusqu’aux différentes variétés de molécules qui composent l’atmosphère de planètes comme la nôtre. Le chemin est tracé !

Illustration de titre : vue d’artiste d’une planète chaude de grande taille en transit devant son étoile : crédit ESA/ATG medialab, CC BY-SA 3.0 IGO

Liens :

https://fr.wikipedia.org/wiki/Atmospheric_Remote-Sensing_Infrared_Exoplanet_Large-survey

https://www.esa.int/Space_in_Member_States/France/La_mission_Ariel_en_voie_de_concretisation

https://arielmission.space/

https://www.cosmos.esa.int/documents/1783156/3267291/Ariel_RedBook_Nov2020.pdf/30a9501c-8b63-227b-bcaf-b7f544c3628e?t=1604684048651

https://www.ralspace.stfc.ac.uk/Pages/ASC2020_Martin%20Crook_%20JT%20Cooler%20Developments%20at%20STFC%20-%202K-30K%20coolers%20in%20support%20of%20space.pdf

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 01 02

400ème! JUICE, mission majeure de l’ESA, va être lancée ce mois d’avril vers les lunes de Jupiter

L’événement astronautique pour l’Europe cette année sera le lancement par l’ESA entre le 14 et le 30 Avril, de la mission JUICE (JUpiter ICy moons Explorer). Son objet est de chercher à savoir jusqu’à quel niveau de complexification vers la vie ont pu mener les « astres-océan » que sont Europa, Ganymède et Callisto, les plus grosses lunes de Jupiter. La mission sur place durera quatre ans, le vaisseau passant de l’orbite de l’une à l’orbite de l’autre. Mais il lui faudra malheureusement cheminer huit années pour parvenir dans l’environnement jovien qui n’est pourtant qu’à 778,6 millions de km du Soleil.

Cet article est le 400ème que j’ai publié dans ce blog. Je vous en dis deux mots à la fin de cette présentation de JUICE.

C’est en 2004 que tout a commencé, quand l’ESA a entrepris de consulter la communauté scientifique des pays membres pour choisir l’orientation de son futur programme « Cosmic Vision 2015-2025 ». Il a été décidé dans ce cadre de répondre à quatre questions (qui épuisent d’ailleurs le sujet de l’exploration spatiale) : « Quelles sont les conditions qui entourent l’émergence de la vie et la formation des planètes ? Comment le Système solaire fonctionne-t-il ? Quelles sont les lois fondamentales qui régissent l’Univers ? Comment l’Univers est-il né et de quoi est-il constitué ? ». L’ESA a ensuite, en 2007, lancé un « appel à missions » pour déterminer quelle devrait être la mission majeure (de classe « L ») de ce programme. En 2012, trois propositions ont été retenues pour étude plus approfondie (phase de « définition ») : JUICE, NGO et ATHENA. Finalement JUICE a été choisie et les deux autres ont été reportées. ATHENA (Advanced Telescope for High Energy Astrophysics) qui doit étudier avec un capteur à rayon X l’accumulation de la matière dans les galaxies ainsi que la formation et l’évolution des trous noirs, pourrait faire l’objet d’une seconde mission « L » mais, telle que prévue, elle coûte trop cher et elle a été remise à l’étude en 2022. NGO (New Gravitational wave Observatory), dédiée à l’étude des ondes gravitationnelles (adaptation de LISA) reste « en suspens ». On peut voir là (et regretter) la sévérité des choix imposés par les limitations budgétaires (et s’étonner que l’« encore-riche » Europe ne consacre pas à sa recherche scientifique dans l’espace, proportionnellement au moins autant de ressources que les Etats-Unis).

Ceci dit l’étude des mondes de Jupiter n’est pas inintéressante (euphémisme) et elle est tout à fait faisable sur le plan astronautique et sur le plan scientifique en raison des équipements d’observation embarqués.

Sur le plan astronautique, ce sera une fusée Ariane 5-ECA, qui effectuera le lancement. La version « ECA » est la plus récente et la plus puissante de la gamme des Arianes. Elle permet de placer 21 tonnes en orbite basse terrestre et 10,5 tonnes en orbite géostationnaire. Sur trajectoire interplanétaire c’est environ moitié moins. En l’occurrence la masse à injecter sur cette dernière sera de 5,1 tonnes dont 285 kg d’instruments scientifiques. C’est cette version d’Ariane qui a lancé le télescope JWST vers le point de Lagrange L2 le 25 décembre 2021. Avec JUICE, ce sera son 84ème lancement ; il y a donc de fortes chances qu’il soit réussi. Le problème, comme évoqué en introduction, c’est la durée (pour ceux qui attendent avec impatience les données). Galileo, lancé par la navette-spatiale de la NASA, arriva dans l’environnement de Jupiter en 6 ans ; Cassini, lancé par un Titan-IVB de Martin Marietta arriva autour de Jupiter en 3ans (et de Saturne en 6 ans) ; Juno, lancé par un Atlas V 551 de Lockheed Martin arriva près de Jupiter en 3 ans. 8 ans pour JUICE c’est donc beaucoup. Force est de constater que les Etats-Unis se déplacent en Tesla tandis que les Européens utilisent encore la 2CV Citroën.

Dans tous les cas, on utilise la force de gravité des planètes en plus de la propulsion par expulsion d’ergols après combustion de la fusée (« propulsion chimique »). En effet la durée d’un voyage dans l’espace est aussi une affaire de navigation où la gravité joue le rôle du vent ou des courants, en utilisant celle générée par les astres dont on s’approche. On appelle cette force, l’« assistance gravitationnelle » ou, quand elle est positive, « l’effet de fronde ». Avec JUICE, pour s’éloigner plus vite du Soleil, on peut jouer avec l’effet de fronde en approchant certaines planètes sans oublier qu’on doit surcompenser le freinage qu’exerce le Soleil sur tout corps qui cherche à s’en éloigner. Dans le cas de cette mission, cette assistance gravitationnelle sera « EVEE ». Cela veut dire que la propulsion chimique sera complétée par des impulsions gravitationnelles successives de la Terre (E), de Vénus (V) puis deux fois de la Terre (EE). Cette assistance gravitationnelle va un peu compenser la faiblesse de propulsion chimique qui a été calculée pour réduire au minimum le delta V (somme des différences de vitesses) résultant de cette propulsion afin de garder un maximum d’ergols pour la réalisation de la totalité de la mission dans le monde de Jupiter, qui implique de multiples changements d’orbites, donc de consommation d’ergols. Nous pourrions néanmoins aller plus vite en dépensant plus d’ergols dans une fusée à propulsion chimique plus puissante (comme l’Atlas V de Lockheed Martin) ou en utilisant la propulsion nucléaire (mais, hélas, elle n’est pas encore disponible !).

Quoi qu’il en soit les objectifs sont passionnants. Il s’agit d’abord d’étudier les zones habitables de Ganymède (comme « objet planétaire et habitat potentiel »), Europa (en insistant sur les zones les plus récemment actives) et Callisto (comme témoin du système le plus ancien de Jupiter), les trois lunes abritant un océan sous une carapace de glace. Il est notable que le fond de ces océans soit constitué de roches, ce qui doit permettre des imprégnations, des enrichissements, des évolutions). On veut en même temps explorer le système de Jupiter comme archétype de planète géante gazeuse (son atmosphère, sa magnétosphère et son système de satellites et d’anneaux). Ce sera en fait la suite de la mission JUNO de la NASA (2016-2021-2025).

Ganymède va être étudié par de nombreux survols à basse altitude. C’est un satellite particulièrement intéressant du fait non seulement de son océan sous surface mais aussi de sa magnétosphère, le seul satellite du système solaire à en générer une, et de sa taille puisque c’est le plus gros des satellites du système, avec un diamètre de 5.268 km (plus que Titan, D = 5.149 km ; mais nettement moins que Mars, D = 6.779 et beaucoup plus que notre Lune, D = 3.475). JUICE devrait terminer sa course en s’écrasant sur Ganymède (et donc en transmettant un supplément d’informations). L’altitude minimum des survols sera de 500 km (pour référence, L’ISS orbite la Terre à environ 400 km).

Europa, bien connue pour sa surface de glace blanche (mais un peu sale) et réfléchissante, va être scrutée dans les régions où les rejets d’eau et de matière souterraines apparaissent les plus récents et l’on va essayer de déterminer la composition chimique des matériaux autres que la glace apparaissant dans les nombreuses fissures, tout en analysant aussi précisément que possible les processus de remontée de ces matériaux en surface. L’altitude minimum sera de 400 km.

Callisto est une lune particulière en ce qu’elle est la plus éloignée de Jupiter (elle est aussi très grosse, D = 4820 km) et de beaucoup, puisque son orbite est à 1.882.700 km de Jupiter (notre Lune est à 385.000 km de la Terre) alors que la deuxième, Ganymède, évolue à 1.070.000 km. Elle a donc été beaucoup moins transformée par Jupiter que les autres par force de marée (ou marquée par ses radiations), comme en témoigne d’ailleurs sa surface extrêmement cratérisée (qui est aussi une indication sur l’épaisseur de la croûte recouvrant son océan interne). Elle peut donner de ce fait des informations sur la période la plus ancienne du système jovien et servir de référence pour comparaison avec Ganymède.  Le survol le plus bas sera effectué à seulement 200 km !

Pour exploiter ces différents passages à basse altitude, la sonde sera équipée d’un grand nombre d’équipements, pertinents et à la pointe de ce que l’on sait faire aujourd’hui : Imaging system (JANUS), Visible-IR Imaging spectrometer (MAJIS), UV Spectrograph (UVS), Sub Millimeter Wave Instrument (SWI), JUICE Magnetometer (J-MAG), Radio and Plasma Wave Instrument (RPWI), Particle Environmental Package (PEP), Laser Altimeter (GALA), Ice Penetrating Radar (RIME), Radio Science Experiment (3GM), VLBI Experiment (PRIDE). Je les évoque l’un après l’autre :

Janus va nous fournir des cartes géologiques détaillées à haute résolution et imagées avec les altitudes (DTM) et donner le contexte des autres données observées. Il opérera dans les longueurs d’ondes du spectre visible et du proche infra-rouge. Il bénéficie du know-how des caméras Bepi-Colombo, Dawn, Rosetta et de Mars Express. MAJIS va ajouter une dimension spectrométrique à l’image avec une précision jamais atteinte (1280 bandes spectrales dans le segment 0,4 µm à 5,7 µm, soit de l’IR moyen à l’IR profond). Mais de l’autre côté du visible, surtout pour analyser les différentes atmosphères et leurs interactions avec l’espace, JUICE sera aussi équipée d’un spectromètre, UVS, opérant dans l’ultraviolet (55 à 210 nm, UV lointain et UV extrême). Dans l’atmosphère de Jupiter, SWI mesurera et dressera la carte des températures et des vents Doppler (mouvements verticaux) ; il identifiera les molécules CO, CS, HCN, H2O, présentes dans la stratosphère de cette planète géante. Il caractérisera aussi les atmosphères ténues des lunes galiléennes. Il mesurera également les propriétés thermophysiques et électriques des surfaces et sous-sol de ces mêmes astres et les corrèlera avec les propriétés atmosphériques et les traits géographiques. Le magnétomètre J-MAG permettra de mieux comprendre la formation des satellites galiléens, de caractériser leurs océans souterrains (profondeur, étendue, conductivité), et donnera un éclairage sur le comportement d’un astre magnétisé en rotation rapide, comme l’est Jupiter, et sur la façon dont il accélère ses particules émises. Il permettra aussi de caractériser la petite magnétosphère de Ganymède. En surface d’Europa, il pourra détecter et caractériser les éventuels dégazages. RPWI disposera de sondes de Langmuir qui lui permettront de mesurer la température, la densité électronique et le potentiel du plasma circulant entre Jupiter et ses lunes et en particulier de mesurer comment les océans des satellites et les ionosphères réagissent aux variations très fortes de la magnétosphère de Jupiter. Le PEP permettra la mesure et l’imagerie des densités et des mouvements des particules énergétiques neutres (ENA) et du plasma dans l’environnement de Jupiter et de ses satellites (NB : les particules peuvent atteindre une énergie se mesurant en plusieurs MeV). GALA est spécifique à Ganymède. Il va mesurer l’effet de marée exercé par Jupiter sur cette dernière et déduira des déformations de la croûte, l’épaisseur de celle-ci et l’importance du volume de l’océan sous-jacent. Le rôle de RIME (Ice Penetrating Radar) s’explique de lui-même. Il concerne au premier chef Europa. Compte tenu de ses caractéristiques visibles et de sa position dans le système de Jupiter (chaleur interne par effet de marée), c’est la meilleure candidate pour disposer d’un océan capable de faire évoluer les molécules organiques au plus loin vers la vie. RIME est la continuation des radars MARSIS et SHARAD opérant en orbite autour de Mars. Le radar aura une pénétration allant jusqu’à 9 km. C’est nettement moins que l’épaisseur de la banquise d’Europa qui peut faire entre 80 et 170 km mais cela donnera une vision en 3D de cette banquise. 3GM étudiera tous les effets que peut avoir la gravité dans le système de Jupiter : effet de Jupiter sur ses lunes, effets des lunes entre elles. PRIDE étudiera tout ce qui peut être mesuré par effet Doppler à l’intérieur du système de Jupiter et de ce système vers les autres astres du système solaire par la mesure précise des positions et déplacements du vaisseau spatial sur le cadre de référence ICRF (International Celestial Reference Frame). Enfin les organisateurs de la mission ont insisté pour la coordination et la synergie des différents instruments embarqués (“Synergistic payload capabilities”) ce qui est à la fois judicieux pour un ensemble aussi riche mais montre aussi un haut souci d’efficacité.

Vous voyez que cette « instrumentation » absolument magnifique (on peut en effet comparer ces instruments scientifiques embarqués à des instruments de musique joués en orchestre, du fait de la coordination et de la synergie sur lesquelles les concepteurs de JUICE insistent beaucoup) doit nous permettre d’avancer considérablement dans la compréhension du système de Jupiter. On se rend bien compte que ce système, animé par un cœur violent, la redoutable Jupiter elle-même, est un milieu très hostile de par son environnement radiatif. Mais « la nature est bien faite » ; la vie, si elle existait dans les océans souterrains, bénéficierait d’une protection contre ces forces destructrices du fait de la présence d’une carapace de glace et d’ailleurs ces océans n’existent que du fait de ces carapaces et de la chaleur interne des lunes stimulée par les forces de marée générées par la masse de Jupiter. On peut toujours espérer.

Au-delà, en m’éloignant de la science jusqu’aux rives de la science-fiction, je ne peux m’empêcher de penser que c’est dans ce cadre grandiose qu’évoluait l’un des monolithes-relais de l’épopée 2001 Odyssée de l’Espace conçue par l’esprit fertile d’Arthur Clarke et merveilleusement mis en images et en musique par le génial Stanley Kubrick. JUICE rencontrera-t-elle un Monolithe ? Ce serait bien sûr une révolution pour nous, l’ouverture d’une porte splendide vers l’infini et vers la vie ailleurs. On peut toujours rêver.

Les participants scientifiques (« JUICE Science Working Team ») à cette mission sont évidemment très nombreux. Ils sont ressortissants de plusieurs pays membres de l’ESA : l’Allemagne, l’Italie, de la France, la Grande Bretagne, la Suède, la Suisse, les Pays-Bas, mais aussi des Etats-Unis et d’Israël. NB: Peter Wurz de l’Université de Bern est co-PI pour l’instrument PEP.

Le moment le plus délicat de la mission, après le décollage, sera l’insertion en orbite de Jupiter mais malheureusement nous n’en sommes pas encore là.

Illustration de titre : Vue d’artiste du vaisseau Juice dans le système de Jupiter. Crédit ESA/AOES.

https://sci.esa.int/documents/33960/35865/1567260128466-JUICE_Red_Book_i1.0.pdf

https://www.esa.int/Space_in_Member_States/Belgium_-_Francais/JUICE_prochaine_grande_mission_scientifique_de_l_Europe

https://www.esa.int/Science_Exploration/Space_Science/Juice

https://www.cosmos.esa.int/web/juice

https://saf-astronomie.fr/la_mission_juice_esa/

https://www.youtube.com/watch?v=r-k3t3DsPrg

https://sci.esa.int/documents/33960/35865/1567260193381-ESA_SPC%282012%2920_rev.-1_JUICE_SMP.pdf

https://fr.wikipedia.org/wiki/Jupiter_Icy_Moons_Explorer

https://fr.wikipedia.org/wiki/Juno_(sonde_spatiale)

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 23 01 02

Cet article est le 400ème paru dans ce blog “Exploration spatiale” dont j’ai entrepris l’écriture début Septembre 2015. J’invite ceux qui l’apprécient à relire mon premier article qui était une invitation au grand voyage et un engagement à vous le faire vivre ici bas. J’espère qu’ils considéreront que je l’ai tenu.

J’ai toujours voulu exprimer et partager ma passion pour l’espace, l’infini et les grandes questions qui se posent à nous sur cette Terre quand nous regardons le ciel ou simplement nous y pensons, et le faire avec toute l’honnêteté possible.

Pour moi tenir ce blog a été un très grand plaisir, non seulement pour la recherche, l’étude, la réflexion et l’écriture mais aussi pour les rencontres qu’il a suscitées.

NB: L’index ne comporte que 396 titres car il n’était pas pertinent d’insérer les 4 autres dans le corpus de ce que je nomme “L’appel de Mars”.