Petite confusion sur notre lointain futur. Big Rip, Big Crunch ou entre-deux?

Dans cet article, je vais vous parler de masse, d’énergie, de distances et de temps. Il s’agit de l’Origine et sans doute de la Fin. Il s’agit de l’Histoire qui a commencé il y a très longtemps et qui finira dans encore plus longtemps. Il s’agit enfin de nous puisque nous sommes conscients de ces facteurs et de cette Histoire.

NB: J’ai écrit ces lignes en pensant à mon fidèle lecteur et physicien Christophe de Reyff, grand connaisseur et amateur du sujet traité. J’espère qu’il appréciera.

On sait maintenant que notre Univers a commencé, comme d’autres peut-être et peut-être à l’occasion d’une fluctuation quantique dans un vide qui n’était pas si vide, comme un volume extraordinairement massif et dense évoluant dès l’origine en expansion à partir de l’infiniment petit, il y a 13,8 milliards d’années (13,799 +/-0,021). La lumière ou plutôt les divers signaux « messagers » provenant de ce moment, mettent toujours environ cette durée (car continûment elle s’allonge) pour nous parvenir à la vitesse de…la lumière. Mais si l’on voulait revenir vers notre source (en en ayant bien sûr le temps) à cette même vitesse, constante universelle par définition immuable et intangible, il nous faudrait 42 milliards d’années. L’explication étant que l’espace n’est pas resté inchangé depuis les origines mais qu’il s’est extraordinairement dilaté, dit autrement, qu’il y a eu « expansion » de l’Univers.

Toute la difficulté pour appréhender le sujet de la vitesse de l’expansion donc du futur de l’Univers, vient de son immensité temporelle et spatiale, des variations du coefficient d’expansion qui dépendent de la force de l’impulsion initiale, de la masse qui génère la gravité et de l’énergie qui l’anime, dans le cadre bien sûr de la limitation absolue imposée par la vitesse de la lumière et peut-être de propriétés inconnues du vide.

Si on regarde autour de nous, jusqu’où voit-on ? La bonne nouvelle c’est que compte tenu de la vitesse de la lumière on peut encore voir nos origines (il vaudrait mieux dire « les percevoir » car les « messagers » ne sont pas que lumineux, ils occupent tout le spectre électromagnétique, et ils ne sont pas qu’électromagnétiques puisque les ondes gravitationnelles, les neutrinos et les rayons cosmiques particulaires, sont aussi porteurs d’informations). En effet la distance n’est pas telle que compte tenu de l’expansion nous nous éloignions actuellement des premiers signaux à une vitesse supérieure à celle de la lumière. En fait la limite au-delà de laquelle la vitesse de « fuite » ou mieux de « distanciation », résultant de l’expansion serait supérieure à celle de la lumière et donc au-delà de laquelle aucun signal ne pourrait nous parvenir, est actuellement de 14,45 milliards d’années. Cette limite est l’« horizon des photons », aussi appelé « horizon de Hubble » qui délimite la « surface de Hubble ». Nous pouvons donc encore aujourd’hui voir aussi loin que nécessaire (même théoriquement un peu plus loin) bien que très difficilement en raison du très fort décalage vers le rouge (effet Doppler-Fizeau résultant de la vitesse croissante d’éloignement), les premiers jaillissements de la lumière (visibles sur la « carte » en deux dimensions qu’on appelle le « fond diffus cosmologique » ou la « surface de dernière diffusion » ou le « Cosmic Microwave Background ») qui ont eu lieu il y a 13,8 milliards d’année moins 380.000 ans. Il faut en effet tenir compte de ce qu’après le Big-bang et jusqu’à la « Recombinaison » (association des électrons avec les protons) qui eut lieu à cette époque, il y a donc 13,79962 milliards d’années, la lumière ne s’était pas encore dégagée de la matière. Cette deuxième limite sur laquelle nous buttons est notre « horizon cosmologique ». Mais on pourrait remonter au-delà de la barrière des 380.000 ans, vers le Big-bang, en exploitant les données fournies par les émissions de neutrinos et d’ondes gravitationnelles qui ont pu s’exprimer « avant », ou en étudiant davantage la surface de dernière diffusion dont les irrégularités (« anisotropies ») expriment bien évidemment ce qui s’est passé « avant »

Mais que voit-on ? Il est bien connu et compris que nous ne voyons que dans le passé puisque la vitesse de la lumière ne peut nous transmettre d’information que sur ce qui existait quand elle a été émise. Nous sommes donc de ce point de vue au sommet d’une sphère ou plutôt d’une larme, notre regard (ou plutôt notre regard avec l’aide de nos instruments d’observations) nous permettant de voir tout autour de nous des objets de plus en plus anciens au fur et à mesure qu’ils sont plus lointains. Nous ne pourrons jamais connaître directement notre univers contemporain, c’est frustrant mais c’est ainsi. Nous ne pouvons que le déduire en appliquant et en extrapolant sur les principes d’homogénéité et d’isotropie constatés pour l’univers lointain. Une étoile géante rouge voisine, comme Antarès ou Bételgeuse (situées toutes deux à environ 500 années-lumière), deviendra un jour une supernova mais nous ne le saurons que lorsque nous aurons reçu le rayonnement nous en informant, 500 ans après qu’il ait été émis. Nous sommes donc, forcément au centre de notre univers-observable dans l’espace et à sa pointe extrême dans le temps, constatant tout autour de nous un horizon limité par la surface de dernière diffusion et, plus en profondeur, par certaines sources d’émission de neutrinos et certaines sources d’émission d’ondes gravitationnelles. L’« horizon de l’Univers observable » qui résulte de cette contrainte est différent de notre « horizon-cosmologique » et différent de l’« horizon-des-photons ». Un jour, l’expansion de l’univers se poursuivant, la vitesse d’éloignement de la totalité des astres qui nous entourent aura été accélérée jusqu’à dépasser la vitesse de la lumière et notre Univers-observable sera devenu intégralement noir au-delà de la masse de matière retenue dans notre galaxie par son trou-noir central et des galaxies voisines qui lui sont dépendantes. Notre horizon-des-photons (qui se sera dilaté jusqu’à atteindre 17,41 milliards d’années-lumière) nous empêchera de voir jusqu’à notre horizon-cosmologique (qui se sera dilaté beaucoup plus vite). Mais ce sera dans très, très, longtemps, l’échéance dépendant non seulement de l’expansion mais aussi de l’accélération de l’expansion de notre univers.

On discute beaucoup de ces deux phénomènes. Voyons d’abord l’expansion-aujourd’hui. Elle est donnée par ce qu’on appelle la « constante de Hubble » (« H »), On parle de « constante » (mais on devrait dire « paramètre » comme expliqué plus bas). Ce H est la vitesse d’éloignement des astres qui nous entourent divisée par la distance qui nous sépare; le problème pour l’apprécier étant la définition de la distance (la vitesse donnée par le déplacement vers le rouge par effet Doppler-Fizeau est moins difficile à évaluer). L’expansion-aujourd’hui est nommée H0.

On a obtenu plusieurs résultats pour ce paramètre, en fonction de l’instrument utilisé et des données prises en compte et malheureusement on ne parvient pas à résoudre la différence entre ces résultats.

Une première méthode de calcul (à l’aide du télescope Planck, successeur de COBE puis de WMAP) part du plus lointain. Elle repose sur une extrapolation des variations de températures constatées dans les anisotropies apparaissant à la surface du fonds diffus cosmologique. Une seconde méthode part du plus proche. Elle repose sur l’utilisation de « chandelles cosmiques » (sources de lumière de même intensité en absolu) dans notre voisinage puis de proche en proche, jusqu’aux galaxies voisines. Dans cette méthode, on part des étoiles céphéides (dont la luminosité régulière est depuis longtemps considérée comme en faisant de bonnes indicatrices des distances). La traduction de cette propriété en distances a été faite par l’Université de Carnegie ; je m’y réfère comme « Carnegie 1 ». On passe ensuite via les céphéides aux supernovæ (type SN1a) puis via les précédentes aux pics d’éclat d’étoiles géantes rouges (« Carnegie 2 »). Une variante, conçue et utilisée par la collaboration H0LICOW repose sur l’utilisation des lentilles gravitationnelles de masses moyennes. Le dernier travail en date, le projet SH0ES, a repris les calculs de l’Université de Carnegie.

La méthode Planck donne H0 = 66,93/s/Mpc; celle de Carnegie « 1 », H0 = 74 km/s/Mpc; celle de la collaboration H0LICOW, H0 = 71,9 +/- 2,7 km/s/Mpc; celle de Carnegie « 2 », H0 = 69.8 km/s/Mpc ; celle de SH0ES donne H0 = 73,04 km/s/Mpc. Il y a donc bien une différence entre le résultat obtenu à partir du fond diffus cosmologique et ceux obtenus à partir de l’espace proche. Et on ne comprend pas pourquoi. Comment avancer ?

*Mpc = Mégaparsec = 3,26 millions d’années-lumière

Il faut d’abord insister sur le fait que cette « constante » de Hubble ne l’est qu’à une époque donnée, ce qui fait qu’elle n’est plus vraiment que la valeur actuelle, H0, du « paramètre » H de Hubble.

S’il y a variation du paramètre H c’est qu’il y a eu accélération ou décélération de l’expansion. Qu’en est-il ? On sait déjà que (1) l’expansion n’a pas été constante au tout début de l’univers, bien avant la fin des 380.000 ans mentionnés plus haut, pendant la période dite d’« inflation » (entre 10-35 et 10-32 secondes suivant le Big-bang); (2) après l’inflation, l’expansion a ensuite décéléré comme il résulte de toute explosion non “ré-alimentée” en énergie; (3) puis, il y a 6 ou 7 milliards d’années, elle a recommencé à accélérer. Mais cela va-t-il continuer ?

Pour mieux comprendre la réalité actuelle et envisager une perspective, il faut ouvrir sur un autre niveau, deux autres « tiroirs », c’est-à-dire considérer d’une part l’effet de masse qui freine l’expansion, via le « paramètre de densité », que l’on symbolise par «  » (Oméga), et d’autre part le coefficient qui l’accélère, qu’on appelle « constante cosmologique » et qu’on symbolise par « Λ » (Lambda).

Le premier, , exprime la densité de toute l’énergie (ΩΛ) ou de toute la matière (Ωm) dans l’Univers. Le “m” exprime la totalité de la matière, y compris la fameuse « matière noire » (évaluée grâce aux observations du télescope Planck comme constituant 26,8% des composants de l’univers) qui s’ajoute au 4,7% de matière baryonique (la matière ordinaire) ! Le Λ représente l’énergie sombre (voir ci-dessous). Ωk qui prend en compte masse et énergie, nous donne la courbure de l’espace-temps. Si Ωk >1 la courbure de l’espace est sphérique (elle se referme sur elle-même), on va vers une contraction de l’univers, il est donc fini ; si Ωk <1, la courbure est hyperbolique et on va vers un univers infini. D’après les études actuelles il est très légèrement positif avec Ω =1,11 +/-0,13, ce qui n’est malgré tout pas très concluant puisque les 0,13 mettent la conséquence dans la marge d’erreur.

Le second, Λ, est le coefficient d’accélération. Il compense la force de contraction exprimée par Ωm et ouvre à l’Univers une perspective d’expansion accélérée (en fonction bien sûr de ce que lui permet Ωm). Imaginé par Albert Einstein pour équilibrer ses calculs, il l’avait tout de suite rejeté mais on le reprend aujourd’hui car avec nos moyens d’observations, il « fait sens ». Il est extrêmement faible mais non nul et positif (1,1056 x 10-52 m-2). Les tenants du “modèle-standard” de la cosmologie (ΛCDM, ces trois dernières lettres pour Cold Dark Matter) disent qu’il pourrait exprimer la toujours hypothétique « énergie sombre » (évaluée par Planck à 68,3% des composants de l’univers). En concomitance avec cette accélération, le paramètre de Hubble (H) tend relativement à décroitre. Cependant la conséquence du caractère de constante du coefficient Λ c’est qu’il existe une valeur minimale de H qui donc s’arrêtera un jour de décroître. La sphère de l’univers-observable sera alors égale à la sphère de l’univers-cosmologique (mais la quantité d’objets dans l’univers-observable continuera de décroître puisque petit à petit ils en sortiront du fait qu’ils seront à une distance telle que leur lumière ne pourra plus nous rejoindre).

Savoir si l’accélération continuera toujours reste un mystère tant que l’on ne connaît pas la nature de l’énergie-sombre (ce n’est toujours qu’une hypothèse) ou celle de la matière-noire (une seconde hypothèse) ! L’enjeu est de taille : savoir si la force de dispersion va bien dominer la force de contraction de l’Univers ! Dit autrement, si nous allons vers un Big-Rip ou un Big-Crunch ou si par extraordinaire se manifestera le moment venu, un système d’équilibrage de l’expansion. Mais peut-être, alternativement, le consensus des cosmologues (figé dans le modèle-standard) se trompe-t-il totalement et l’accélération de l’expansion n’est-elle due qu’à l’« invariance d’échelle du vide » comme le propose, en dehors du modèle-standard, André Maeder (astrophysicien, professeur émérite de l’Université de Genève). Selon son modèle, l’accélération de l’expansion de l’Univers serait possible sans que l’énergie sombre ou la matière noire soient nécessaires et avec une « constante-cosmologique » Λ liée uniquement aux propriétés d’invariance du vide spatial, via un facteur d’échelle « λ » de ce vide.

Il faut absolument résoudre le problème posé par la divergence sur la valeur de H0 selon que l’on part du CMB ou que l’on part de notre environnement. Les nouveaux télescopes (comme le JWST) évidemment de plus en plus précis et capables de nous donner une quantité jamais atteinte de données, vont, sinon résoudre le « gap », du moins nous permettre de préciser le problème qui cause ce gap. La solution se trouve soit dans l’imprécision du modèle-standard ou dans son inadéquation. Dans cette seconde hypothèse, André Maeder aurait raison. On ne parlerait plus des fantômes très gênants car insaisissables de la matière-noire et de l’énergie-sombre et ce serait un magnifique couronnement de la carrière de ce grand scientifique.

Illustration de titre :

Hypothèses de notre futur, accélération ou décélération ? Crédit : NASA/CXC/M.Weiss

https://www.symmetrymagazine.org/article/the-9-percent-difference

https://www.futura-sciences.com/sciences/definitions/physique-acceleration-expansion-univers-7988/

https://fr.wikipedia.org/wiki/Param%C3%A8tre_de_densit%C3%A9

https://fr.wikipedia.org/wiki/Courbure_spatiale

Présentation de la théorie d’André Maeder dans ce blog (Nov. 2019) : Une énergie sombre omniprésente domine-t-elle notre Univers?

Je souhaite à tous mes amis Suisses une joyeuse Fête nationale!

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 22 07 16