Les pesticides dans nos ménages

Le 7 octobre 2019 un rapport de l’ANSES* sur l’utilisation des pesticides dans les ménages est sorti sans vraiment être relayé du côté suisse.

Pourtant ce rapport est extrêmement intéressant à plus d’un titre.

L’étude, appelée Pesti’home, a été réalisée en 2014 sur un échantillon représentatif de quelques 1500 ménages français. Elle visait à comprendre l’usage des pesticides dans le quotidien des Français.

Il en ressort que plus de 75% des ménages ont utilisé au moins un pesticide dans l’année précédent le sondage.

Dans 84% des cas, il s’agit d’insecticides contre les insectes volants ou rampants, contre les puces/tiques pour les animaux domestiques ou contre les poux. La moitié des sondés en utilisent au moins 3 fois par an.

Environ 20% des foyers utilisent des herbicides et fongicides dans les espaces extérieurs (jardins, balcon) et ceci plus de 2 fois par an.

Enfin les répulsifs anti-moustiques sont utilisés 6 fois par an par la moitié des ménages et plus de 25 fois par un quart des ménages français.

Ce qui m’a particulièrement interpellée, c’est que l’ANSES relève que les précautions d’emploi lié à l’utilisation de ces substances toxiques ne sont pas assez connues et suivies.

Par exemple “environ un tiers des ménages ne lit jamais les indications des emballages des anti-acariens et anti-rongeurs et un quart d’entre eux ne les lit jamais pour les produits contre les insectes volants et rampants“**.

Tout aussi problématique, l’enquête montre que la majorité des utilisateurs ne savait pas comment se débarrasser des pesticides. “60% des ménages jettent leurs produits inutilisés à la poubelle et seulement 31% les déposent à la déchetterie“.

Et plus grave, “plus d’un quart des ménages avaient dans leur stock au moins un produit de protection des plantes interdit à la vente.”

Je ne pense pas que ce constat serait très différent en Suisse, comme le montrait un reportage du TJ en mai 2019.

Moins de la moitié des personnes interrogées dans ce reportage savaient que l’application des pesticides était interdite en Suisse sur les terrasses, les parkings ou les toitures.

Et pourtant, l’utilisation de pesticides dans les ménages n’est pas inoffensive. Ni pour notre santé, ni pour l’environnement.

Prenons le cas des insecticides que l’on utilise pour les plantes d’intérieur. Certains contiennent de la cypermethrine, un insecticide qui agit sur le système nerveux des insectes. Bien que moins toxiques pour l’homme que leur prédécesseurs les organophosphates, les pyrethrinoïdes n’en restent pas moins des substances pesticides auxquelles notre exposition devrait être limitée.

De plus, la cypermethrine est très toxique pour les microcrustacés et les amphibiens. Verser le reste de son récipient dans l’évier peut avoir des conséquences désastreuses sur le milieu aquatique. Et au bout de la chaîne sur l’eau potable.

D’autre produits pour plantes d’ornements contiennent des néonicotinoïdes comme l’acétamipride. Cette famille de substances est actuellement controversée pour leur effets sur les pollinisateurs. Et l’acétamipride est interdit en France depuis 2018. Mais pas en Suisse…

Spayer ses plantes d’appartement contre les cochenilles ou autres araignées n’est donc pas anodin!

Or ces produits insecticides sont en vente libre. Et aucune formation n’est demandée au quidam qui veut les utiliser.

Au vu des risques pour la santé et l’environnement, je trouve ça grave!

Pour le jardinage également, ces produits sont en vente libre. Or qui n’a pas envie de récolter de beaux fruits et légumes après avoir passé tant de temps à les bichonner.

Une étude que nous avions menée avec des étudiants en 2006 dans différents jardins communaux nous avait inquiétée. Nombre de personnes interrogées ne savait pas ce qu’elles utilisaient comme pesticides, et surtout, ne lisaient pas les mode d’emploi.

Or, il est très facile de surdoser un produit. Ceux-ci doivent souvent être dilués avant emploi, mais la dilution elle-même nécessite le matériel adéquat et quelques efforts de calculs.

Cette surdose peut empoisonner les sols, les eaux (en milieu urbain, les eaux de pluies rejoignent vite les rivières) ou même sa propre santé. En effet, on s’y expose lorsqu’on les applique (souvent sans masque et sans gants) et lorsque on mange ses fruits et légumes.

Je pense pour ma part que les pesticides ne sont ni nécessaires sur nos plantes d’intérieur, ni dans nos potagers. Certes, ils peuvent permettre un meilleur rendement, mais au prix de la pollution de l’air que nous respirons à l’intérieur comme à l’extérieur, de la pollution de nos eaux ou de nos sols.

Un mot encore sur les anti-moustiques***. La plupart contiennent du DEET, une substance qui agit comme répulsif et non comme insecticide. Pour l’instant, elle ne semble pas très toxique pour la santé et l’environnement, mais on a très peu de données à disposition. Il est cependant recommandé de l’éviter sur les enfants.

Il existe également des anti-moustiques avec de réels insecticides. C’est le cas de certains diffuseurs qui contiennent des pyrethrinoïdes dont j’ai mentionné les effets plus haut. Sachant qu’ils diffusent toute la nuit, il faut bien réfléchir avant de les utiliser.

 

 

* ANSES: Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail en France

** Toutes les citations sont issues de l’actualité du 07.10.19 publié par l’ANSES.

*** Voir l’article de Que Choisir: Antimoustiques

Changement climatique…et pollution

Ce n’est pas un article très gai pour ce début octobre, si tant est que les autres aient pu l’être.

Aujourd’hui, personne ne peut prétendre ignorer que notre civilisation va au devant de grands changements, même si des mesures sont prises rapidement.

Le rapport du GIEC du 25 septembre sur les océans et la cryosphère est sans appel: “Approuvé le 24 septembre 2019 par les 195 Gouvernements membres du GIEC, le Rapport spécial du GIEC sur l’océan et la cryosphère dans le contexte du changement climatique…présente de nouvelles preuves soulignant les avantages qu’il y a à faire en sorte que le réchauffement planétaire soit aussi faible que possible, conformément à l’objectif que les gouvernements se sont fixés dans l’Accord de Paris en 2015. En réduisant de toute urgence les émissions de gaz à effet de serre, il est possible de limiter l’ampleur des changements auxquels sont confrontés l’océan et la cryosphère. Les écosystèmes et les moyens d’existence qui en dépendent peuvent être préservés.”

Même les banques commencent à réaliser les risques que représentent ces changements à l’instar du rapport publié par Golman Sachs cette semaine.

Cependant, si les changements climatiques ont un impact important et mesurable sur les écosystèmes, ce ne sont pas les seuls pressions anthropiques que ces derniers subissent. Les substances chimiques, dont je vous parle depuis 2 ans, ont également un impact non-négligeable sur l’environnement.

Or il y a très peu d’études scientifiques qui se penchent sur les effets conjoints des modifications du climat et de la pollution chimique.

En cherchant pour mes étudiants, j’ai trouvé un article de 2009 qui fait le point sur la question. Il s’intitule: la toxicologie du changement climatique: les contaminants de l’environnement dans un monde plus chaud.

Et autant vous le dire tout de suite, le constat est alarmant. Donc si vous ne voulez pas entendre de mauvaises nouvelles, arrêtez votre lecture ici.

D’abord les changements climatiques auront un effet sur le transport et le devenir des substances chimiques dans l’environnement.

Une bonne nouvelle cependant, il est possible que des températures plus élevées augmentent la dégradation des substances chimiques dans l’environnement. Ceci peut en partie s’expliquer par de plus longues périodes “chaudes” pendant lesquelles les microorganismes qui dégradent les substances fonctionnent bien.

En revanche, des températures plus chaudes vont augmenter la pollution de l’air (par “évaporation” de substances depuis les eaux et les sols ), avec des risques pour la santé humaine et les écosystèmes.

Le manque de pluie va également contribuer à cette pollution de l’air, car l’atmosphère sera plus rarement “lavée” par l’eau. L’air sera pollué plus durablement.

A l’opposé, les évènements de pluie extrêmes prévus par les différents scénarios vont entraînés les substances chimiques vers les eaux avec un risque d’augmenter significativement les concentrations dans le milieu aquatique. Et donc le risque pour les espèces aquatiques.

Au niveau de la toxicité, l’étude relève que les changements climatiques vont augmenter les effets des substances chimiques. Pour résumer les organismes vont être soumis à un double stress. Ils devront s’adapter à des changements de leur milieu (en terme de température, humidité, nourriture disponible) et en même temps faire face aux polluants toxiques.

Prenons le cas d’un poisson dans une rivière. Les été chauds et secs contribuent à réduire l’eau présente dans sa rivière en été. Cette eau est également plus chaude. Notre poisson doit donc faire face à un milieu de vie moins confortable.

A côté de cela, les pesticides et autres médicaments se déversent toujours dans la rivière. Mais comme il y a moins d’eau, ils sont moins dilués et leur concentrations sont plus élevées. Donc ils sont plus toxiques

Je pense que vous êtes arrivés à la même conclusion que moi: la “sur”vie de ce poisson va être compliquée.

Je vous avais prévenu, ce post n’est pas très gai.

Ces conclusions montrent qu’il y a urgence, urgence d’agir sur les gaz à effets de serre comme le souligne le GIEC, mais également sur l’utilisation et les rejets des substances chimiques.

Malheureusement, actuellement ces problématiques sont encore traitées séparément. Il est donc facile aux industriels de faire recours contre l’interdiction d’une substance comme c’est le cas pour le chlorpyriphos et ses cousins en Suisse. On peut discuter pendant des années du risque que présente une molécule, voir un groupe de substances. On connaît la controverse autour du glyphosate.

On n’en est malheureusement plus là. Les espèces vivantes ne sommes pas exposées à une substance, mais à des centaines de milliers. Dans un environnement qui va beaucoup changer.

Je me répète certainement, mais nous pouvons diminuer les substances chimiques que nous utilisons, au quotidien. Ensemble, elles ont un impact sur notre santé et sur notre environnement. Au niveau de l’alimentation, des cosmétiques, des détergents. Il y a des choses à faire.

Et au delà de nos actions de consommateurs, nous avons également le droit de vote. Et pour éviter tout malentendu, je ne préconise pas ici de voter pour un parti donné. J’ai eu l’occasion de collaborer avec des personnes de différents partis et ce fût souvent enrichissant.

Mais il s’agit bien ici de donner son avis, en fonction de ses convictions, au moment où on nous le demande, que ce soit pour les votations communales, cantonales ou fédérales, ou sur des initiatives.

 

Référence:

Noyes et al. 2009. The toxicology of climate change: Environmental contaminants in a warming world. Environment International 35: 971-986.

On ne trouve que ce que l’on cherche

Régulièrement, de nouvelles problématiques liées aux substances chimiques apparaissent. C’est le cas du chlorothalonil, un fongicide appliqué sur les champs de céréales et qui a défrayé la chronique au début de l’été. Son autorisation n’a pas été renouvellée en 2019 par l’Union européenne, mais il est encore autorisé en Suisse.

Dans le cas de ce fongicide, le problème vient surtout de ses produits de dégradation. En effet, le chlorothalonil est classé comme cancérigène potentiel. Mais ce sont ses métabolites que l’on trouve dans des concentrations dépassant la norme de 0.1 ug/l dans les eaux souterraines. Or comme la substance parente est cancérigène potentielle et que la preuve n’est pas faite que ses métabolites ne le sont pas, elles sont considérées comme problématiques (vous suivez?).

Suite à cette nouvelle classification, des eaux souterraines sont devenues impropres à la production d’eau potable. Pourtant le chlorothalonil est utilisé depuis 50 ans, alors pourquoi maintenant?

En premier lieu, cela s’explique par l’évolution des méthodes d’analyses chimiques.

Si vous devez surveiller la qualité des eaux, vous allez prélever un échantillon d’eau (si possible représentatif) et y rechercher les substances d’intérêt. Or il n’est pas possible de faire une recherche “au hasard”. Vous devez choisir un certain nombre de substances connues, pour lesquelles les méthodes d’analyse existent, que vous pourrez comparer avec ce qui est présent dans votre échantillon. Donc au final vous ne pourrez trouver que ce que vous cherchez.

Je vous donne deux exemples.

Prenons le cas du glyphosate. La méthode d’analyse au laboratoire est assez complexe et cette molécule ne pouvait pendant longtemps pas être analysées en même temps que d’autres pesticides. Peu de laboratoires étaient donc capables de le rechercher. Malgré le fait qu’il était l’herbicide le plus vendu en Suisse, on ne le trouvait pas dans les eaux de surface car il était absent des programmes de surveillance. Or lorsqu’il a été inclus dans ces mêmes programmes, au milieu des années 2000, il s’est avéré qu’on le trouvait aussi bien dans les eaux de surface que dans les eaux souterraines.

Un autre exemple est donné par les médicaments dans les eaux. Il y a entre 2000 et 3000 substances médicamenteuses sur le marché en Suisse. Or depuis le début des années 2000, nous en cherchons entre 50 et 100. Soit maximum 5%. C’est peu. Ce pourquoi les laboratoires cherchent à toujours plus étayer leurs analyses. C’est donc un peu par hasard que la metformine, un anti-diabétique, a été rajoutée à la liste des substances cherchées à la fin des années 2000. Et qu’on s’est rendu compte qu’on la trouvait partout. Presque 20 tonnes dans le Léman par exemple.

Tout cela pourrait laisser penser que les recherches se font “au petit bonheur la chance”. Or ce n’est pas le cas. Les organismes de surveillance et les chercheurs travaillent de concert pour dresser des listes de substances “à rechercher”. Par exemple, en cherchant à connaître celles qui sont le plus utilisées.

Mais la tâche est colossale. D’une part parce qu’il y a plus 100’000 substances sur le marché en Europe, et 10 à 20 fois plus si on compte les produits de dégradation. Mais surtout parce que nous n’avons pas accès aux données de composition des produits, ni aux quantités vendues. Donc, dans la plupart des cas, impossible de faire des pronostics sur les substances à rechercher.

Il y a donc fort à parier que dans le futur, il y aura de plus en plus d’actualité sur des pollutions qui ne seront nouvelles que par leur mise en évidence.

Mais revenons au chlorothalonil et au problème qu’il pose actuellement alors que ce n’était pas le cas il y a encore une année.

La deuxième explication est liée à l’évolution des données sur la toxicité humaine et environnementale.

Reprenons le cas des métabolites du chlorothalonil. La question des produits de dégradation est très complexe, mais cependant très importante. En effet, la structure d’une substance chimique, dans l’environnement, va changer sous l’action du soleil, des bactéries, etc…. Généralement cette évolution est plutôt positive car la toxicité de la substance va diminuer. Mais ce n’est pas toujours le cas. C’est un phénomène d’ailleurs bien connu pour les médicaments. Certains d’entre eux sont plus actifs une fois transformés par le foie chez l’être humain. Comme exemple, le tamoxifen, un anti-cancéreux utilisé dans le traitement des cancers du sein. Dans son cas, c’est l’endoxifen, sa métabolite, qui est 100 fois plus active contre le cancer.

Dans le cas du chlorothalonil, 6 métabolites ont été déclarées comme pertinentes (à risque) et 3 comme non-pertinente dans un rapport de l’Office Fédérale de l’Agriculture du 6 août 2019. Avant cette date, le chlorothalonil ne posait pas vraiment de problèmes. Notons que dans le rapport cité ci-dessus, 19 métabolites sont déclarées comme pertinentes, alors qu’elles ne font de loin pas toutes, pour l’instant, l’objet de recherche dans les eaux.

Ici également il y a fort à parier que le nombre d’études augmentant, le nombre de substances devenant à risque va augmenter aussi.

Un bon exemple de changement d’interprétation de la qualité de l’environnement est donné par les PCBs. Cette famille de composés chlorés a été largement utilisée jusque dans les années 80 et même s’ils sont maintenant interdits, ils sont encore présents dans l’air et relargués par certains matériaux de construction comme les joints ou encore par les décharges.

Jusqu’au début des années 2000, on mesurait les quantité de PCBs sur la base des 6 congénères que l’on trouve en majorité dans les eaux. Ces valeurs étaient en dessous des normes et tout allait bien.

Mais soudain, des chercheurs mettent en évidence que certains membres de la familles sont beaucoup plus toxiques que prévus. On les appelle dioxines-like car aussi toxiques que les dioxines. De nouvelles normes entrent en vigueur et la Suisse découvre ses eaux beaucoup plus polluées que précédemment, entrainant la fermeture de la pêche dans certaines rivières telle la Sarine.

On le voit, la surveillance de la qualité de l’eau est complexe. De nouvelles méthodes d’analyses, de nouvelles données de toxicité ou d’écotoxicité font régulièrement leur apparition et mettent en lumière de nouveaux problèmes.

Il paraît donc important de prendre des mesures non pas seulement lorsque le problème est détecté, mais également pro-activement, pour réduire de manière générale les substances chimiques qui entrent dans les eaux. A titre d’exemple, l’amélioration des traitements des effluents des stations d’épuration voulu en Suisse, ceci pour réduire les substances chimiques rejetées, va dans ce sens.

 

 

Des métaux dans le fonds du lac

Je vous avais parlé, dans un blog précédent, du cuivre que l’on trouvait dans les sédiments des cours d’eau, ceci dû à son utilisation en agriculture, mais également à son utilisation dans la construction.

Ce cuivre, accroché sur les particules et transporté par les eaux de pluies, se dépose dans le fonds des rivières et des lacs.

Un de mes étudiants de master, Sabesan Sabaratnam, s’est penché sur la pollution en cuivre, mais également en autres métaux, des sédiments d’un lac. Il a choisi la Baie de Vidy, dans le lac Léman, car les eaux de ruissellement de Lausanne, ainsi que les eaux de la station d’épuration de Vidy, s’y déversent (Figure 1).

C’était un excellent exemple pour évaluer la pollution par les métaux qu’une ville de 200’000 habitants peut engendrer dans un lac.

Figure 1: Localisation de la Baie de Vidy, (Sabaratnam 2019)

Depuis un bateau (Figure 2), M. Sabaratnam a collecté des échantillons de sédiments, dans le fonds de la Baie, en 54 points, répartis de manière homogène (Figure 3). Certains points se trouvaient proches du rejet de la station d’épuration de Vidy, d’autres plus proches de la Chamberonne, une rivière qui va entraîner les eaux de pluie de l’ouest lausannois dans le lac.

 

Figure 2: Bateau pour l’échantillonnage (Sabaratnam 2019).

 

Figure 3: Sites de prélèvements. Le site de rejets de la station d’épuration de Vidy est noté en noir (Sabaratnam 2019).

M. Sabaratnam est ensuite parti au laboratoire pour analyser 11 métaux: l’aluminium, le cadmium, le chrome, le cuivre, le fer, le manganèse, le nickel, le plomb, le titane et le zinc. Le mercure a également été mesuré à l’Université de Genève car la méthode est complexe.

Figure 4: Préparation des échantillons au laboratoire ((Sabaratnam 2019).

Qu’a-t-il trouvé?

Tout d’abord, comme on s’y attendait, les sédiments contiennent plus de matière organique proche du rejet de la station d’épuration (Figure 5).

Figure 5: Carbone organique total dans les sédiments. La hauteur des barres montre les quantités (Sabaratnam 2019).

Ce n’est pas étonnant sachant que nos eaux usées, véhiculant nos excréments, sont très chargées en matière organique. Mais si une grande partie est traitée à la station d’épuration, des rejets surviennent lors des pluies et amènent cette matière organique vers les eaux de surface.

Pourquoi je vous en parle? Parce que la matière organique joue un grand rôle dans la disponibilité, et donc la toxicité, des métaux pour les organismes vivants.

Mais parlons de la pollution par les métaux.

Pour le cuivre, on voit un grosse tache noire (correspondant aux concentrations les plus élevées, soit 160 mg/kg) au milieu de la Baie (Figure 6). De nouveau cela correspond au rejet de la station d’épuration. La tache sombre plus bas à droite correspond également à une zone fortement polluée. Cette pollution peut être due aux rejets par temps pluie, dont la conduite principale se trouve à droite de la station d’épuration, ou à des courants qui déplacent les sédiments.

Figure 6: Concentrations en cuivre dans les sédiments. Les concentrations les plus élevées sont les plus foncées (Sabaratnam 2019).

Le cadmium, le chrome, le plomb, le mercure, le nickel, le fer et le zinc présentent le même pattern et donc la même source de pollution dans le lac.

Par contre, la situation est différente pour le manganèse, l’aluminium et le titane (Figure 7). Les concentrations maximales sont en bordure de la zone. Il semble donc que la source d’apport soit le lac. Non que celui-ci soit fortement pollué. Mais les valeurs trouvées correspondent aux valeurs “naturellement” présentent dans les sédiments et donc sont plutôt influencées par les courant lacustres.

 

Figure 7: Concentrations en manganèse dans les sédiments. Les concentrations les plus élevées sont les plus foncées (Sabaratnam 2019).

Tout ceci est bien joli, mais ces concentrations sont-elles problématiques?

M. Sabaratnam les a comparées avec des valeurs seuils d’effets sur les espèces vivant dans les sédiments. Le cas du cuivre est le plus clair, les concentrations moyennes et maximales sont en dessus du seuil d’effets. Idem pour la nickel. Les concentrations présentent donc un risque non négligeables pour l’écosystème.

Pour les autres métaux, les concentrations maximales sont en dessous de ces seuils, mais au dessus du seuil d’effet potentiel. Ils présentent donc un risque faibles à modérés.

Pourquoi cette pollution par le cuivre et le nickel? Nous avons déjà parlé des toitures en cuivre et du trafic comme source importante de cuivre dans l’environnement. Pour le nickel, c’est également le trafic et le mobilier urbain qui contribue à cette pollution. Avec certainement des sources industrielles.

Que faire?

La pollution se fait surtout par temps pluie, pour le cuivre et le nickel. Ces eaux ne sont pas traitées et rejoignent le milieu naturel directement.

Il existe des solutions comme le nettoyage des routes, qui se fait déjà, et qui peut limiter les particules se rejetant dans les eaux de surface. Des systèmes de filtration existent aussi pour retenir cette pollution au niveau des bâtiments ou des grilles d’égouts. Des solutions qui peuvent être mises en place, mais avec un certain coût.

Mais j’aimerais souligner un point qui me semble important. Ces résultats sont pour les métaux. Cependant des considérations semblables s’appliquent pour d’autres substances. Même si nous ne les avons pas mesurés, on s’attend à ce que d’autres polluants qui s’adsorbent sur les particules, comme certains biocides ou pesticides, se répartissent de la même manière.

La pollution par les eaux de pluie n’est donc pas négligeable et une attention particulière devrait lui être accordée!

En se souvenant aussi que ce qui part dans une grille d’égout finit souvent directement dans une rivière ou dans un lac.

 

Référence:

Sabaratnam S. 2019. Spatial distribution of trace metals and major elements
in surficial sediments from the Vidy Bay. Travail de Master. FGSE. Université de Lausanne.

 

 

 

 

L’échec des législations sur les substances chimiques

On me demande souvent pourquoi on ne connaît pas la toxicité de telle ou telle substance. Prenons l’exemple d’un cosmétique. On lira “methylpropanediol” dans la composition, mais taper son nom dans son moteur de recherche n’amènera, au mieux, que des informations contradictoires sur le risque que cette molécule présente.

Il faut dire que jusqu’aux années 2000, seuls les pesticides et les médicaments étaient soumis à une législation spécifique visant à évaluer le risque qu’ils pourraient présenter. Pour l’homme et l’environnement (ou pour l’homme seulement dans le cas des médicaments).

Or il y avait au début du 21ème siècle près de 150’000 substances sur le marché en Europe. Pour lesquelles ce risque était donc inconnu!

Fort de ce constat, les députés européens ont adopté le 13 décembre 2006 une loi visant à enregistrer et évaluer les substances chimiques présentes sur le marché en Europe, la directive REACH.

Cette directive inversait le fardeau de la preuve, c’est-à-dire que, comme pour les pesticides, les industries devaient montrer qu’une substance ne présentait pas de risque pour pouvoir la mettre sur le marché. Ce n’était plus à nous, scientifiques, et aux administrations, de devoir démontrer ce risque pour qu’elle soit retirée du marché.

L’accouchement de cette directive fût difficile. Un intense lobbying, autant du milieu industriel que des ONG, a eu lieu à Bruxelles.

Au final, c’est seulement 30’000 substances sur les 150’000 qui devaient être évaluées, soit celles produites à plus de 1 tonne par an.

Mais l’adoption de cette directive nous a réjouis, toxicologues et écotoxicologues. Nous allions enfin en savoir plus et pouvoir évaluer le risque environnemental des molécules qui nous entouraient. Je me souviens d’en avoir parlé avec enthousiasme aux volées d’étudiants qui suivaient mes cours.

En 2019, maintenant que les dernières données ont été reçues par l’agence européenne des produits chimiques à Helsinki, force est de constaté que le soufflé est retombé.

En mai dernier, des documents de l’association environnementale allemande Bund, cités par Le Monde, montraient que plus de 654 entreprises allemandes ne respectaient pas la directive REACH. Ils parlent même de “dieselgate” de l’industrie chimique.

En effet, pour 940 substances, dont 41 utilisées entre 12 et 121 millions de tonnes par an, les données sont non conformes ou insuffisantes concernant le danger toxicologique et écotoxicologique. Ainsi le phtalate de dibutyle, un plastifiant soupçonné d’être un perturbateur endocrinien, est encore largement utilisé dans les jouets.

Récemment, des collègues se sont également penchés sur les valeurs d’écotoxicité à disposition dans la base de données REACH. Sur les 305’068 données trouvées, seules 54’353 étaient utilisables. C’est-à-dire que 82% des valeurs à disposition ne pouvaient pas être utilisées pour évaluer le risque environnemental d’une substance!

Pourquoi un pourcentage si élevé de données non utilisables?

Ces collègues posent plusieurs hypothèses comme des erreurs lors de la saisie des données. Mais pas seulement. Parfois les conditions de tests ne sont pas précisées. Ou encore il est mentionné que la toxicité est inférieure à une certaine valeur, mais cette valeur n’est pas donnée.

C’est un énorme gâchis. Énormément d’argent a été investi pour créer des données inutilisables. Et au final, cette réglementation sensée mieux nous protéger ne le fait pas.

Mais il y a encore pire à mon sens. Dans son excellent livre: “Toxiques légaux”, Henri Boullier montre que même pour des substances dont la toxicité est reconnue, “des députés, des avocats, des hauts fonctionnaires, des représentants d’entreprise et des chefs d’Etat ont progressivement inscrit dans le droit l’impossibilité d’interdire les molécules chimiques, si toxiques soient-elles”.

S’inscrit dans la loi notamment le fameux “principe d’exception” lorsqu’une substance est utilisée dans un usage contrôlé.

Je m’explique. Une substance dangereuse peut par exemple être utilisée sur un lieu de travail si les conditions de travail sont contrôlées et donc que la santé du travailleur n’est pas mise en danger. Sont ainsi établise cartes de risques et mesures de protection. Mais souvent dans la pratique, comme le montre Henri Boullier, ces mesures ne sont pas appliquées correctement.

C’est donc un constat bien amer. Malgré la volonté affichée en Europe de mieux contrôler les substances chimiques, l’échec est flagrant.

Donc je continuerai certainement encore longtemps de répondre “je ne sais pas” lorsque l’on me posera la question de la toxicité d’une substance chimique découverte dans la composition de son shampoing préféré.

 

Références:

Boulier H. 2019. Toxiques légaux. Comment les firmes chimiques ont mis la main sur le contrôle de leurs produits. Editions la découverte.

Saouter et al. 2019. Using REACH for the EU Environmental Footprint: building a usable ecotoxicity database (part I). Environmental Chemistry and Toxicology. Article sous presse.

Image: Fotolia_64542047_Subscription_L, copyright

 

Une bonne décision prise tardivement

Il y a deux jours, l’Office Fédéral de l’Agriculture annonçait le retrait du marché de deux insecticides, le chlorpyriphos et le chlorpyriphos-ethyl. C’est une décision intelligente. Ces deux substances sont toxiques pour le système nerveux et ceci à petite dose déjà. Or on les utilise largement depuis la révolution verte des années 50.

Cependant, on peut se demander pourquoi avoir attendu aussi longtemps.

Ces deux substances font partie de la grande famille des organophosphates, des composés connus pour être neurotoxiques depuis les années 20. En effet, et c’est un cas d’école, un organophosphate, le tricresyl phosphate, a fait des ravages dans la population noire et pauvre lors de la prohibition aux Etats-Unis.

Comme la commercialisation de l’alcool était interdite, les populations pauvres consommaient les remèdes faits à base d’alcool. Notamment le Ginger Jake, un médicament jamaïcain. Les autorités américaines ont donc décidé d’augmenter le gingembre pour en augmenter l’amertume et donc diminuer la consommation.

Comme le contrôle du taux de gingembre se faisait au poids sec (après évaporation du liquide), des petits malins ont trouvé la solution de remplacer le gingembre, très cher, par du tricresyl phosphate, lui très bon marché.

Ce sont des médecins qui ont alerté les autorités. Ils recevaient un nombre croissant de patients pauvres avec des difficultés pour marcher et bouger, signe d’une atteinte neurologique.

Après quelques temps, le pot-aux-roses a été trouvé. Mais cet épisode a laissé de nombreux malades et une séries de chansons de blues sur le “Jake Walk Blues“.

Mais c’est pendant la deuxième guerre mondiale que la famille des organophosphates a été développée, avec notamment le gaz sarin qui refait parler de lui actuellement en Syrie.

Dans les années 50, après la guerre, il fallait trouver une utilité à ces substances chimiques. Elles ont donc été reconverties en insecticides (heureusement pas le gaz sarin), pendant ce que l’on a appelé la révolution verte.

Donc cela fait plus de 60 ans que ces substances sont sur le marché, utilisées dans notre agriculture. Pourquoi avoir attendu si longtemps avant de les interdire?

Je n’ai pas la réponse.

Autre questions, quelles sont les substances chimiques qui vont les remplacer?

Actuellement, dans certaines cultures, on utilise la lutte par confusion. C’est-à-dire que l’on diffuse des phéromones femelles qui vont empêcher les mâles de retrouver les vraies femelles et donc de se reproduire.

Mais dans beaucoup d’autres cas, ce sont d’autres insecticides qui vont être utilisés. Notamment des pyrethrinoïdes comme la permethrine ou encore des néonicotïnoides. Les pyrethrinoïdes sont moins toxiques pour les animaux à sang chaud, comme l’humain, car ils se lient à des récepteurs spécifiques aux insectes. Cependant, pour les insectes non cibles comme les abeilles ou les microcrustacés des cours d’eau, cela ne fait pas une grande différence de remplacer le chlorpyriphos par de la permethrine. Les deux sont très toxiques.

Quant aux néonicotinoides, ils font régulièrement la une des médias pour leur mise en cause dans le déclin des colonies d’abeilles.

Donc oui, cette interdiction est certainement une avancée car le chlorpyriphos et le chlorpyriphos-ethyl auraient dû être retirés du marché depuis longtemps. Et en ce sens, la Suisse ne fait que suivre le mouvement puisque le Danemark, la Finlande, l’Allemagne, l’Irlande, la Lettonie, la Lituanie, la Slovénie et la Suède ont déjà interdit ces substances.

Mais est-ce une réelle avancée pour la protection de l’environnement? A voir si l’idée est de réduire l’utilisation d’insecticides, ou juste de substituer deux “vieilles” substances par des nouvelles, aussi puissantes, et souvent plus rentables pour l’industrie chimique.

 

 

Du plastique, du plastique, toujours du plastique

La thématique du plastique est à la mode. Il faut dire que les images de tortues ou de baleines étouffées par des sacs plastiques ne laissent pas indifférents.

Certes, l’état de nos lacs et rivières ne ressemblent pas (encore ?) aux canaux de certaines villes asiatiques où les déchets plastiques couvrent la surface de l’eau. Mais il suffit de se promener sur les plages le nez par terre pour voir que la Suisse n’est pas « propre en ordre ». L’Association pour la Sauvegarde du Léman organise chaque année un nettoyage des bords du Léman (NetLeman). En 2018, les bénévoles ont récolté près de 5 tonnes de déchets, dont quelques 10%, soit pas moins de 500kg, sont des déchets plastiques.

Mais au delà de ces déchets visibles, une partie de la pollution est constituée de microplastiques. Il s’agit de minuscules particules, plus petites que 5 mm, qui peuvent être le résultat de la dégradation des déchets plastiques (bouts de bouteille en PET, de ballon, etc.). Mais ils peuvent également être émis dans l’environnement tels quels. C’est le cas de microbilles de plastique utilisées dans les cosmétiques (exfoliants ou dentifrices), ou encore dans certains détergents (avec eux plus besoin de frotter).

Or ces microplastiques se comportent différemment dans l’environnement que les sacs ou autres bouteilles en PET. S’ils sont très petits, ils peuvent rester en suspension dans l’eau et servir de support aux bactéries ou aux microalgues. Plus gros, ils vont souvent sédimenter dans les fonds des systèmes aquatiques. Et ils peuvent bien sûr être absorbés par les espèces qui vivent dans les eaux.

Des études menées par l’EPFL entre 2012 et 2017 montrent que l’on détecte des quantités non négligeables de microplastiques dans les eaux et les sédiments des lacs suisses (voir références plus bas).

Une de nos étudiantes de master, Sandrine Froidevaux, s’est donc posée la question de la présence de microplastiques dans les poissons de lac, plus précisément du Léman.

Pour ce faire, elle est allée collecter des estomacs de poissons chez différents pêcheurs autour du Léman, en sélectionnant différentes espèces comme le gardon et la perche.

Echantillonnage de poissons chez les pêcheurs autour du Léman. Source: S. Froidevaux. 2019. Master Unil.

Elle a ensuite dû « détruire » les estomacs au laboratoire pour éliminer la matière organique et ne garder que les résidus plastiques. Ces résidus ont ensuite été observés sous la loupe binoculaire.

Un test très simple a permis de déterminer si il s’agissait vraiment de plastique. Une aiguille chauffée à été mise en contact avec le fragment. Si celui-ci fondait et collait à l’aiguille, il était compté comme du plastique.

Observation des particules sous binoculaire.
Source: S. Froidevaux. 2019. Master Unil.
Particules de plastique détectées dans les estomacs de poisson. Taille entre 50 et 300 micromètres.
S.Froidevaux. 2019. Master Unil.

En a-t-elle détectés beaucoup au final, de ces bouts de plastiques dans les poissons ? Et bien, beaucoup moins qu’attendus au vu des concentrations dans les eaux.

Des microplastiques ont été trouvés dans moins de 6% des échantillons. Ceci correspond d’ailleurs à d’autres études menées en Suisse et en Europe.

Ce constat est plutôt rassurant.

Mais comment cela s’explique-t-il ?

On peut faire l’hypothèse que les microplastiques transitent par le système digestif des poissons mais ne s’y accumulent pas.

Par contre, il semble que tous les poissons ne soient pas égaux face à cette pollution. Sandrine Froidevaux souligne ainsi que les perches semblent manger plus de plastique que les autres espèces. Elles sont connues pour être plus voraces et plus opportunistes que les autres.

Si les consommateurs des poissons de lacs peuvent être rassurés (il y a peu de microplastique dans les estomacs de poissons et les filets ne devraient pas en contenir), reste la question de l’effet de cette pollution sur les poissons eux-mêmes.

Sur ce point, la recherche est encore en cours…

 

Références:

Froidevaux S. 2019. Microplastiques dans les poissons du Lac Léman ?
Prospection sur le Gardon (Rutilus rutilus) et la Perche (Perca fluviatilis). Master. Université de Lausanne.

Faure F, Corbaz M, Baecher H, De Alencastro LF. 2012. Pollution due to plastics and microplastics in lake Geneva and in the Mediterranean sea. Archives des Sciences , 65(1-2) :157–164, 2012.

Faure F, Demars C, Wieser O, Kunz M, De Alencastro LF. 2015. Plastic pollution in Swiss surface waters : Nature and concentrations, interaction with pollutants. Environmental Chemistry :12(5) : 582–591.

Faure F, De Alencastro LF. 2016. Microplastiques – Situation dans les eaux de surface en Suisse. Aqua & Gas n°4 , pages 72–77.

Anti-puces familial

J’ai toujours eu des chats. Pas que je n’aime pas les chiens, mais en ville, c’est plus compliqué pour eux qui ont besoin d’espace.

Lors de notre premier rendez-vous chez le vétérinaire avec notre petite chatte québécoise, celui-ci nous a conseillé de lui appliquer un anti-puces tous les mois.

Ayant grandi à la campagne, et ayant toujours vu les chats de ferme se débrouiller sans cela, je n’ai pas donné suite.

Cela a changé avec notre deuxième chatte. Très vite, il s’est avéré qu’elle était allergique aux piqûres de puces. Elle a développé une dermatite et perdait ses poils sur les pattes. Il fallait alors lui faire des piqures d’antibiotiques.

Je me suis donc résolue à lui appliquer les pipettes vendues chez les vétérinaires, ce qu’elle détestait pas ailleurs cordialement.

C’est l’arrivée de notre fils qui m’a fait réfléchir un peu plus loin sur ce que je mettais dans notre appartement. En effet, le produit appliqué est censé être entrainé depuis l’endroit d’application sur tout le corps du chat et il y reste 1 mois. Or toute personne qui a déjà eu un chat sait que celui-ci se frotte constamment aux meubles, coins de portes et autres, pour marquer son territoire. Il semble donc assez logique que le produit en question soit aussi distribué dans tout l’appartement.

Mais qu’est-ce donc que ce produit? Il s’agit souvent d’un insecticide, le fipronil. Bien que neurotoxique, il est surtout actif contre les insectes, mais semble moins toxique pour les animaux à sang chaud.

Il reste que c’est un pesticide, qui est aussi utilisé dans l’agriculture, notamment pour la protection des semences. Il a également été mis en cause, au côté des néonicotinoïdes, dans la disparition des abeilles.

En cherchant dans la littérature, je n’ai pas trouvé beaucoup d’études sur la toxicité et l’écotoxicité du fipronil. Ce n’est malheureusement pas une substance à la mode comme le glyphosate.

Il a cependant fait l’objet d’un scandale sanitaire en Europe en 2017: “les oeufs au fipronil“. En effet, des poules pondeuses avaient été traitées illégalement contre le pou rouge aux Pays-Bas et en Belgique avec du fipronil. Des dizaines de millier d’oeufs furent contaminés et ont dû être éliminé. Mais le message des gouvernements, à l’époque, furent plutôt rassurants. Reste que ce produit a passé des plumes de la poule à l’intérieur de l’oeuf…ce qui n’est guère rassurant.

Le fipronil n’est pas le seul pesticide utilisé dans les anti-puces, on y trouve aussi de la perméthrine, très toxique pour les insectes et pour les amphibiens.

A part les chiens et les chats, les autres animaux peuvent aussi être traités. Le DEET, un répulsif développé pour la guerre du Vietnam, est communément utilisé dans les écuries et les étables. Il repousse les mouches et les taons. On le détecte d’ailleurs dans des concentrations assez élevées dans les cours d’eau suisse. De nouveau, il existe très peu d’études sur sa toxicité et son écotoxicité, ce qui fait que le DEET n’est pas un problème pour l’instant.

Mais revenons à notre anti-puces. Ayant regardé plus en détail la composition de la pipette en question, je l’ai bannie de notre appartement. Pour un bébé, qui passe son temps par terre, le risque lié à cette exposition continue me semblait déraisonnable. Mais je n’ai aucune étude pour le prouver…

Et notre chatte? Elle se porte très bien merci. Après avoir essayé des traitements alternatifs aux huiles essentielles (peu efficaces dans son cas), je lui ai donné un remède homéopatique que je donne aussi à mon fils lors d’épisodes de poux à l’école. Depuis plus rien. Mais c’est peut-être psychologique…

Reste la question suivante: pourquoi proposer de traiter systématiquement les animaux domestiques avec des anti-puces? Certes aucune étude n’a montré qu’ils étaient vraiment problématiques, même si des chats et des chiens sont déjà morts après l’application. D’ailleurs en 2016, un article dans Science et Avenir posait la question de la toxicité de ces produits pour les animaux et les enfants.

Ne serait-il donc pas judicieux de garder les anti-puces pour des cas problématiques, par exemple les allergies aux piqûres de puces citées plus haut? Et de laisser nos animaux se débrouiller dans les autres cas? Notre exposition aux pesticides en serait certainement allégée.

 

 

Les hôpitaux comme source de pollution par les médicaments ?

Des traces de médicaments sont détectables dans la plupart des eaux de surface, et même des eaux souterraines. La source principale de pollution est notre consommation de produits pharmaceutiques comme déjà discuté dans le post « Des médicaments et des hommes ».

On peut donc se demander si les espaces de soins, comme les hôpitaux, représentent une source ponctuelle importante, et donc s’il serait nécessaire d’envisager un traitement spécifique pour ces structures.

Entre 2010 et 2013, nous nous sommes donc intéressés au Centre Hospitalier Universitaire Vaudois (CHUV) afin d’estimer quelle était sa participation, par rapport à la ville, dans les rejets en médicaments à Lausanne. Cet établissement d’environ 700 lits représente le plus grand hôpital de la région lausannoise.

Première constatation, dans les grands hôpitaux, il est difficile de mesurer des concentrations « à la sortie du tuyau ». En effet, chaque bâtiment a sa propre sortie d’eaux usées et elles ne rejoignent pas forcément le même collecteur. Difficile donc d’avoir une idée de la pollution globale du CHUV.

Deuxième constatation, l’estimation des substances pharmaceutiques consommées est extrêmement fastidieuse à effectuer. En effet, les données fournies par la pharmacie de l’hôpital sont les quantités de produits médicamenteux distribués. Il faut donc les transformer en substance active afin d’estimer ce qui va être rejeté.

De plus, les médicaments non consommés, et parfois jetés, ne sont pas comptabilisés. Il y a donc un biais dans les calculs.

Malgré ces soucis de mesures et de calculs, on constate rapidement que pour la majorité des médicaments, l’hôpital n’est pas la source principale de pollution. La part d’un centre de soin comme le CHUV représente moins de 10% de la pollution médicamenteuse à l’entrée de la station d’épuration de Vidy à Lausanne.

Ce résultat nous a surpris. Pourquoi une structure avec autant de patients traités ne représente-t-elle pas une plus grande part ?

Parce que les traitements actuels se font de plus en plus souvent en ambulatoire. Le patient prend le médicament au CHUV, mais l’excrétion de celui-ci se fait dans ses toilettes, à la maison.

Ceci explique aussi pourquoi on détecte des concentrations de médicaments assez importantes  dans les effluents de stations d’épurations de petits villages.

Cependant, pour certains médicaments particuliers, l’hôpital représente quand même 50% de la pollution à la station d’épuration. C’est le cas de certains antibiotiques utilisés pour traiter des bactéries multirésistantes par exemple.

Notons que les résultats trouvés pour le CHUV sont confirmés par d’autres études, comme celle menée sur l’hôpital de Baden par le centre de recherche eawag, ou encore aux HUG de Genève.

Faut-il donc s’occuper des effluents hospitaliers?

A mon sens oui, ceci du fait que pour certaines substances, souvent assez actives comme des antibiotiques ou anticancéreux, les hôpitaux représentent une part non négligeable de la pollution.

De plus, ces effluent véhiculent des virus et des bactéries multirésistantes que nous préférerions ne pas retrouver dans l’environnement. Ils contiennent enfin également des désinfectants et des biocides utilisés pour le ménage, mais aussi pour les bacs de désinfection des instruments. Or on sait que les biocides peuvent engendrer des résistances dans l’environnement.

Mais actuellement, légalement, rien de contraint les hôpitaux à traiter les eaux usées, sauf dans le cas de substances radioactives.

Traiter ne serait d’ailleurs pas évident. Comme mentionné plus haut, les bâtiments ont des réseaux d’eaux usées complexes qui ne se rejoignent pas forcément au même endroit.

L’idée serait donc plutôt de proposer un catalogue de solutions qui pourraient être appliquées au cas par cas.

Par exemple à Lausanne, les effluents hospitaliers vont être traités par la nouvelle station d’épuration qui retiendra les micropolluants. Il n’y aura donc pas vraiment de problèmes par temps sec.

Par contre, en cas de pluie, une partie des eaux usées se déverse directement dans le lac. L’idée serait donc de construire un bassin qui retiendrait les eaux de l’hôpital lors des pluies, et les renverrait dans le réseau après, afin d’être traitées.

Cependant, à côté du traitement, différentes solutions pourraient aussi être appliquées directement à l’hôpital pour éviter les rejets. Ainsi les restes de perfusions sont le plus souvent jetés à l’évier. Certains hôpitaux réfléchissent ainsi à brûler tous leurs déchets, inclus les liquides.

D’autres études proposent de récupérer les urines après traitements radiographiques dans des poches que le patient pourraient ramener à l’hôpital.

Dans ces deux cas, une sensibilisation, voire une formation du personnel soignant à cette problématique semble indispensable! Malheureusement, les questions liées à la pollution environnementale par les médicaments sont encore trop peu évoquées dans les études en soins infirmiers ou en médecine.

En résumé, même si les hôpitaux ne sont pas les sources principales de pollution par les médicaments, des mesures prises à la source et/ou sur le réseau, pourraient permettre de réduire encore la part qu’ils représentent. Mais ceci reste pour l’instant dépendant de la volonté des directions des centres hospitaliers.

Notons encore que nous avons parlé ici des grandes structures hospitalières. Mais à côté, il existe également de multiples petites à moyennes unités de soins (centres de radiographies, cabinets médicaux ou dentaires, centre pour personnes âgées, etc…). Ces derniers représentent également des sources ponctuelles de pollution par les médicaments. Certes petites, ces contributions pourraient également être réduites avec des solutions adéquates.

Références:

Daouk S, Chèvre N, Vernaz N, Widmer C, Daali Y, Fleury-Souverain S. 2016. Dynamics of active pharmaceutical ingredients loads in a Swiss university hospital wastewaters and prediction of the related environmental risk for the aquatic ecosystems. Science of the Total Environment 547: 244-253.

Chèvre N, Coutu S, Margot J, Wynn HK, Bader HP, Scheidegger R, Rossi L. 2013. Substance flow analysis as a tool for mitigating the impact of pharmaceuticals on the aquatic system. Water Research 47: 2995-3005.

 

Des poêles…à l’Himalaya

La semaine passée, l’émission Temps Présent à diffusé un reportage sur le scandale de la pollution au téflon dans la région de Parkersburg aux Etats-Unis. Dans les années 80 et 90, l’entreprise DuPont a ainsi déversé quelques 7000 tonnes de substances toxiques dans les eaux de la région, impactant de manière durable la santé des habitants.

Cet exemple dramatique de pollution industrielle concernait un composé utilisé dans le téflon et portant le doux nom d’acide perluorooctanoïque, “PFOA” pour les intimes. Ce composé fait partie de la famille des Polluants Organiques Persistants (POPs) dont je vous ai déjà parlé dans d’autres articles.

Les POPs sont des substances chimiques, souvent inventées entre le début et le milieu du XXème siècle, et utilisées pour leurs propriétés de stabilité. En effet, que ce soit sous l’effet de la chaleur ou du temps, elles gardent cette stabilité.

Et c’est bien là le problème, une fois dans l’environnement, ces composés sont aussi très stables. On estime leur persistance à plusieurs dizaines, voir plusieurs centaines d’années. Autant dire qu’ils nous survivront.

Pourquoi sont-ils persistants? Parce que ce sont des molécules complexes, contenant des éléments toxiques comme le chlore, le brome, ou encore le fluor dans le cas du PFOA. Les bactéries ne sont pas bêtes, et avant de s’attaquer à des molécules qui, d’une part, leur demanderont beaucoup d’énergie à dégrader et qui, d’autre part, pourraient être toxiques, elles vont chercher d’autres sources de nourriture.

Ce qui m’amène à mon deuxième point, ces molécules sont toxiques voir très toxiques. Elles sont souvent cancérigènes et ont des effets sur la reproduction (malformation du foetus, stérilité, etc.). Ainsi le reportage de Temps Présent présente le cas dramatique d’un enfant né avec la moitié du nez et ayant subi de multiples opérations dans son enfance. Sa mère a travaillé dans une usine produisant du téflon (et du PFOA) et il a été exposé à cette substance pendant toute la période in utero.

Enfin, de part leurs caractéristiques physico-chimiques, les POPs ont tendance à s’accumuler dans les graisses et leurs effets peuvent être amplifiés le long de la chaîne alimentaire. C’est le cas bien connu du DDT que j’ai traité dans l’article “Les douze salopards”.

Une partie de ces composés sont donc réglementé au niveau mondial par la Convention de Stockholm (pour la Suisse). Les pays signataires d’engager à ne pas produire, vendre, acheter ou utiliser de tels substances.

En 2009, s’est ajouté à la liste des 12 salopards, l’acide perfluorooctanesulfonique ou PFOS, un cousin du PFOA.

Ces deux substances font partie de la grande famille des perfluorés. Ce sont des substances chimiques dont les atomes de carbones sont saturés en fluor. Parmi la vingtaine de composés perfluorés, le PFOS et le PFOA sont actuellement ceux dont la toxicité est la plus importante. Pour ce qui est connu…

Le PFOS est inclu dans la Convention de Stockholm, donc réglementé, mais pas le PFOA. Cependant des pays comme la Norvège appellent à sa réglementation car sa grande toxicité ne semble plus faire de doutes.

Mais n’est-ce pas un peu tard? En 2015, Greenpeace a ainsi montré qu’on trouvait des composés perfluorés même sur le toit du monde.

Alors quelles sont les sources et que peut-on faire?

On a déjà parlé des poêles en téflon. On peut en trouver sans PFOA, mais se pose alors la question de la substances utilisée à sa place et de sa dangerosité? Sinon il est possible d’utiliser des poêles en fonte par exemple.

Cependant, les poêles ne sont de loin la source principale de composés perfluorés. Ils sont en effet utilisés largement dans les textiles pour leurs effets “repellents”. Vous savez, quand l’eau que vous versez sur votre canapé ne pénètre pas le tissu, mais coule dessus…

Ainsi, dans une autre campagne, Greenpeace a montré en 2013 que ces composés étaient présents dans la majorité des vestes de montagne…celles dont on veut qu’elles résistent à la pluie et à la neige. Par association, on peut se douter qu’on les trouvent aussi dans les vestes et les chaussures résistants à la pluie…que l’on utilise tout l’hiver.

Certes, ces vêtements et textiles high tech sont intéressants. Plus besoin de se préoccuper de prendre un parapluie ou de frotter pour détacher des salissures sur le tapis, le liquide coule sur le tissu et ne l’imprègne pas. Mais ce confort a peut-être un prix que nous ne connaissons pas encore au vu de la toxicité des composés perfluorés.

A mon sens, les composés perflorés devraient être réservés pour des utilisations spécifiques. Par exemple en médecine, il est important d’avoir des habits qui n’absorbent pas les liquides au contact du sang ou des vomissures des malades.

Mais nous n’en avons pas vraiment besoin dans nos habits de tous les jours.