Intelligence artificielle: Hype, Trend ou Game Changer? (partie 2)

Au cours de l’année 2016, la plateforme CB Insights indique 658 transactions dans le domaine de l’intelligence artificielle (IA) pour des montants totaux de plus de 5 milliards de dollars. De quoi donner le vertige et confirmer les ambitions du secteur: innovation, exponentielle, disruption. Toutefois, où se situe-t-on dans la transition et l’implémentation de l’IA?

Pour ne citer que ce géant, Google annonçait dernièrement le déploiement de l’IA dans une armada de gadgets: smartphone, écouteurs pour la traduction instantanée ou encore appareil photo qui se déclenche s’il détecte un visage familier. Ces avancées ancrent dans le réel l’utilisation de cette technologie «plateforme», qui peut être appliquée dans quasiment n’importe quel domaine. Un récent rapport publié par McKinsey propose six caractéristiques définissant les «early AI adopters»:

Une maturité digitale: les entreprises qui sont montées tôt dans le train de l’IA se situent sur le devant de la scène et ont développé une large expertise dans ce domaine, leur conférant ainsi un avantage certain sur leurs concurrents.

Un déploiement au cœur: l’IA est mise en pratique au centre des activités de l’entreprise et de ses compétences intrinsèques (développement de produits, service client, etc.).

Une technologie plateforme: l’IA est déployée sous de nombreuses formes et concerne tout les aspects de l’organisation.

Une perception positive: les innovations liées à l’IA sont sources de revenus, accroissent la productivité et ne sont pas seulement perçues comme une manière de réduire les coûts.

Une taille suffisante: les entreprises plus grandes peuvent se permettre d’investir plus massivement que les plus modestes, ce qui renforce le fossé qui les sépare.

Le soutien des dirigeants: l’adoption de l’IA est défendue aux plus haut niveaux de management de l’entreprise.

Pour donner une perspective plus large, on se plaît à rappeler la loi d’Amara: «on tend à surestimer l’effet d’une technologie à court terme et à sous-estimer ses effets à long terme.» Il faut cependant se souvenir que, comme le rappelle Rodney Brooks du MIT, «quasiment toutes les innovations en robotique et en IA prennent bien plus de temps à être véritablement mises en pratique que ce que les personnes extérieurs à ce milieu ne l’imaginent.»

Les données, un enjeu majeur

Quelques exemples permettent d’illustrer les points ci-dessus: ces cinq dernières années, les dix plus grandes groupes de la tech ont acquis cinquante entreprises d’IA. Google a été parmi les premiers à racheter des jeunes pousses, par exemple DeepMind – 500 millions de dollars en 2014 – pour accélérer ses propres recherches. C’est désormais un des principaux acteurs dans le secteur. En parallèle de ces activités, Google a également lancé une nouvelle unité d’éthique chargée de fera de la recherche autour de six thèmes clé, dont la protection des données, la transparence, l’inclusion ou encore l’égalité face à l’impact économique engendré. Par ailleurs, en s’offrant Evi Technologies en 2013, Amazon a grandement contribué au développement de son assistante virtuelle Alexa. De son côté, Apple a récemment mis le turbo dans ses activités de fusion et acquisition, ce qui n’est pas passé inaperçu. Et Intel, qui a repris des entreprises AI dans le hardware telles que Movidius ou encore Nervana Systems, n’est pas en reste.

Avec l’accroissement des données disponibles – une voiture connectée en génère 25 gigabytes par heure, et 90% des véhicules seront connectés d’ici 2020–, des systèmes plus performants et plus efficaces sont nécessaires pour faire face à «l’amnésie» actuelle des entreprises. En effet, l’écart entre les données recueillies et celles qui sont traitées ne fait que s’accroître. L’interprétation de cette masse sera la clé du succès des entreprises de demain.

Intelligence artificielle: Hype, Trend ou Game Changer? (partie 1)

On excusera ces anglicismes, qui sont inhérents au domaine. Ils ont d’ailleurs été partagés par les co-fondateurs de SwissCognitive lors d’une récente table ronde. Ce «WEF de l’intelligence artificielle» était de passage à Boston afin de promouvoir l’excellence de la Suisse dans ce domaine.

Puisque la puissance de calcul de nos ordinateurs a été démultipliée, notamment grâce à la loi de Moore et aux fameux processeurs NVIDIA, on lit désormais que les Google, Facebook, Microsoft, IBM ou encore Amazon de ce monde s’aguerrissent au machine learning. Malgré la fréquence d’utilisation de ce mot à la mode, reprenons les définitions que d’aucuns qualifieront de trop simplistes.

Avec le machine learning, il s’agit, d’une certaine façon, d’enseigner aux ordinateurs à apprendre, voire de leur montrer comment apprendre par eux-mêmes. Descendant dans les catégories, vient ensuite le supervised learning, qui s’applique à un ensemble de données labelisées, par différenciation au unsupervised learning. Une autre technique computationnelle, appelée deep learning, implique l’utilisation d’un très large réseau neuronal («neuron») afin de reconnaître des structures dans un grand nombre de données. De temps à autre, surtout dans le milieu des véhicules autonomes, on mentionne aussi le reinforcement learning: pendant la phase d’entraînement, un logiciel de contrôle répète une tâche un très grand nombre de fois et modifie légèrement ses instructions à chaque essai; il met à jour ses valeurs à mesure que le système apprend.

Ces avancées représentent un pas de géant par rapport aux désavantages d’une intelligence artificielle (IA) «basique» qui requiert un nombre important de règles à implémenter dans le code informatique et «qui montre rapidement des faiblesses lorsque l’on travaille avec des cas aux limites», comme le rappelle Phil Greenwald des Laboratoires de l’Innovation d’Harvard.

Vers une intelligence inexplicable

On comprendra que l’on est entré dans une phase où la machine se programme par elle-même: on pourrait donc parler d’une intelligence augmentée! Et cela peut donner quelques frissons, d’excitation quand on pense aux fantastiques opportunités que cela offre, mais aussi de peur si l’on pense à des scénarios post-apocalyptiques robocopiens. Une des facettes intrigantes du fonctionnement de tels systèmes est qu’il n’y a pas de moyen clair pour les designer afin qu’ils puissent toujours expliquer la logique qui les a mené aux résultats. A l’instar des comportements humains, qui sont souvent impossibles à expliquer en détails, il ne sera peut-être pas possible de comprendre pleinement le fonctionnement de cette forme d’intelligence computationnelle. Comme le souligne le Prof. Clune de l’Université du Wyoming: «c’est peut-être la part ‘naturelle’ de l’intelligence. Si seulement une partie est sujette à une explication rationnelle, une partie est peut-être uniquement instinctive, ou subconsciente, ou insondable.» Certains experts pensent même que l’intelligence pourrait plus facilement émerger si les machines s’inspiraient de la biologie et apprenaient par le biais de l’observation et de l’expérience. D’autres, comme les chercheurs du MIT derrière l’idée de la «Machine Morale», pensent qu’un système qui agrège des points de vue moraux de différentes personnes «pourrait déboucher sur un système moralement meilleur que celui d’un seul individu.» Le professeur de droit James Grimmelmann de Cornell suggère même que «cela rend l’IA plus ou moins éthique, au même titre qu’un grand nombre de personne est éthique ou ne l’est pas».

Mais revenons à des considérations plus pratiques. Alors qu’IBM vient d’investir 240 millions de dollars dans un partenariat avec le MIT pour continuer ses recherches en IA, les récentes critiques à l’encontre de son outil Watson offrent un exemple criant de la difficulté à mettre l’IA au service de la santé. Dans une profonde analyse, le projet STAT du Boston Globe relève le côté boîte noire de la technologie: «actuellement, IBM Watson fournit des preuves à l’appui des recommandations qu’il suggère, mais n’explique aucunement de quelle manière il en est venu à proposer un traitement spécifique pour un patient donné.» Des spécialistes s’insurgent contre la confiance aveugle placée dans des résultats dont les données de base n’ont pas été comprises. Dans le monde de la santé, c’est un risque tentant: gain de temps, accès à des très larges bases de données, etc. Cependant, le monde est encore à un stade où la responsabilité personnelle prime, ce qui explique pourquoi le machine learning est encore utilisé de concert avec un médecin. Mark Michalski du MGH&BWH Center for Data Science relève qu’ «il est nécessaire d’établir une relation de confiance avec cette technologie disruptive dans une industrie très conservatrice.» Katherine Andriole, professeur en radiologie à la Harvard Medical School, pose la situation: «Il se passe beaucoup plus qu’une simple perception, qu’une reconnaissance de motifs: les radiologues font appel à leurs capacités cognitives.» Cela pourrait rapidement changer. Que l’on soit averti. Un exemple helvète: retinAI qui permet d’atteindre, grâce à l’IA, le niveau de professionnalisme d’un ophtalmologue pour la détection de glaucomes ou de dégénérescence maculaire liée à l’âge.

On retiendra un énorme point positif: l’IA nous fait entrer dans une ère «orientée vers les données», ce qui, à terme, nous permettra de prendre des décisions éclairées par la forces des faits.

Créer un «hub» technologique: l’exemple de Boston dans le digital health

Lors d’une récente rencontre, un interlocuteur helvète me lança: «sur quoi les politiques se basent-ils pour prendre de telles décisions?» Il y avait effectivement de quoi rester abasourdi par les 500 millions récemment promis par le Gouverneur de l’Etat du Massachusetts Charlie Baker pour le soutien aux sciences de la vie sur les cinq prochaines années. Précisons qu’un milliard avait déjà été engagé depuis 2007. Ces montants laissent pantois.

Quel constat? Boston est LA Mecque dans ce secteur et tient fermement à conserver cette place, qui lui est enviée aux quatre coins de la planète. Beaucoup ont tenté de copier cette fameuse «recette», ce miracle étatsunien. Ne nous leurrons pas: le liant de tous les aspects dynamiques et innovants du Grand Boston (et, par extension, de la Silicon Valley, d’Austin, et j’en passe) sont propres au lieu. Bien évidemment, certains piliers sont nécessaires, on peut citer la qualité de la recherche, le volume d’investissements et d’autres.

Plusieurs conditions cadre favorisent cet engouement général pour l’innovation et l’entrepreneuriat, mais pas seulement.

Quel rôle les politiques jouent-ils afin de permettre cet essor? Dans l’Etat de la Baie, on assiste à une forte convergence de la recherche, des startups, des grandes entreprises, des investisseurs et des politiques, qui donne lieu à un écosystème qui se développe à vive allure. Rajoutez à cela le penchant nord-américain à voir grand et le cocktail explosif propulse la Côte Est sur le devant de la scène. L’effet boule de neige se charge du reste, sans pour autant que les acteurs se reposent sur leurs lauriers. Le résultat est sans appel: c’est ici que cela se passe, la région n’a rien à envier à la Californie.

Prenons l’exemple du «digital health» qui est un des secteurs en plein boom et qui vise à intégrer les évolutions digitales dans le monde de la santé. L’approche du monde politique est multi-sectorielle:

  • Soutien gouvernemental: l’état a multiplié les partenariats public-privé pour encourager les initiatives dans le secteur. Citons par exemple les accélérateurs PULSE@MassChallenge et TechSpring qui ont bénéficié d’un soutien global de 250 000 dollars. Ces laboratoires de l’innovation facilitent l’entremise entre partenaires stratégiques, les talents et les experts dans l’industrie. S’ensuit un énorme gain de temps lors du lancement de projets pilote, ce qui entretient, par voie de conséquence, l’excitation des acteurs dans le milieu. Les politiciens s’entourent de conseillers triés sur le volet qui sont des spécialistes renommés. Cela permet également un meilleur dialogue entre les mondes du privé et du public afin que des initiatives progressistes voient le jour. On crée des mesures incitatives et on enlève les barrières.
  • Activités universitaires: sans talents, la recherche, l’innovation et l’entrepreneuriat ne pourraient pas subvenir à leurs énormes besoins en employés qualifiés. Le Massachusetts partage ce problème avec la Suisse: c’est un des rares états côtiers à assister à un «brain drain». Toutefois, il semblerait que cet exode de têtes pensantes ralentirait, grâce notamment à des projets tels que le MIT Medicine Hackathon, compétition réunissant des spécialistes (médecins, ingénieurs, designers, etc.) issus de domaines variés afin de plancher, un weekend durant, sur des solutions innovantes et disruptives dans le domaine de la santé. Encore une fois, on simplifie l’échange plutôt que de renforcer des comportements de tour d’ivoire.
  • Collaboration entre les acteurs de la santé: bien que les startups actives dans le digital health et les hôpitaux aient en commun le but d’améliorer les soins, les collaborations ne sont pas toujours aisées à mettre en place. Pour remédier à cette situation, prenons l’exemple de l’iHub du Brigham Women’s Hospital. Cette cellule de l’innovation fait partie intégrante de l’hôpital afin de trouver des solutions aux diverses requêtes des médecins, infirmiers et patients. Ces solutions sont soit achetées à des startups existantes, co-réalisées ou alors développées en interne dans leur intégralité. Aussi, les startups extérieures sont invitées à bénéficier des ressources de l’institution en termes de bases de données, de conseils et d’expériences du corps médical et peuvent valider leurs approches, produits et marchés. La transformation numérique peut s’opérer de la meilleure des façons grâces à de telles entités directement implantées au sein des hôpitaux et permet d’accélérer la commercialisation d’idées innovantes dans le secteur.
  • Investissements: bien que les sommes engagées par les venture capitalists soient encore dominées par les projets biotech, medtech et pharma, les investisseurs n’ont pas tardé à diversifier leurs portfolios pour y inclure des jeunes pousses dans le domaine du digital health. En 2015 seulement, 378 millions de dollars ont été investis dans ces startups bostoniennes. En 2016, les accords dans ce secteur totalisaient 966 millions dans le Grand Boston, juste derrière la région de la baie de San Francisco. Tout cela a contribué à créer un formidable élan qui attire de plus en plus d’investissements et favorise l’émergence d’initiatives innovantes dans le domaine.

Au final, les cercles vertueux ne se basent pas uniquement sur les politiques publiques, mais ces dernières peuvent montrer l’exemple et concrétiser mesures qui encourageront à leur tour les autres acteurs de l’écosystème à monter dans le wagon de l’innovation.

L’innovation et ses exponentielles

«Exponentielle» – au même titre que «renouvelable», cet adjectif est devenu nom commun dans le jargon étatsunien de l’innovation. Il désigne les domaines qui ont démontré une évolution vertigineuse, ceux où le maître mot est vitesse. Un vrai raz-de-marée.

Il y a encore quelques années, des technologies émergentes telles que le graphène, la génomique, les robots, la réalité virtuelle, l’intelligence artificielle, etc. prenaient de vitesse la loi de Moore. A savoir que leurs performances relatives au coût (et à la taille) faisaient plus que doubler tous les douze à dix-huit mois. On assiste désormais aux effets de ces mêmes technologies sur les industries, sur les modèles d’affaires ainsi que sur les stratégies d’entreprises.

Lors d’un récent sommet organisé par Singularity University à Boston, Jennifer McNelly, présidente du conseil de compétitivité des Etats-Unis, martèle: «Nous devons investir sur le long terme et se distancer du modèle traditionnel des venture capitalists [qui choisissent systématiquement un retour sur investissement à court terme].»

Ce message est à méditer car le défi est de taille : trouver de nouveaux moyens de financement afin de répondre aux besoins, ainsi qu’au rythme extrêmement soutenu – exponentiel – du développement technologique.

«Nous allons devoir mettre en place de nouvelles mesures incitatives afin de passer de «start-up» à «scale-up» en termes de production industrielle.» rajoute-t-elle. Et celles-ci devront é également être mises instaurées par les politiques.

Les «exponentielles» représentent des opportunités et il est nécessaire de ne pas laisser nos peurs s’y cristalliser. L’animateur radio Tom Ashbrook lançait la semaine passée: «L’innovation : elle n’est pas tout le temps bienvenue mais elle s’invite quand même chez vous.» Conscient de ce constat, il est donc indispensable  de souligner que d’énormes retombées sont à attendre du côté de la santé, de l’éducation, des matériaux, des modèles d’affaires et j’en passe.

Toutefois, il est légitime devant ce tsunami de nouveautés de se demander comment intégrer  de telles avancées dans les entreprises actuelles? La question est pertinente car la nécessité d’assimiler les opportunités qu’offre cette intense période sera la seule façon de se prolonger la durée de vie d’une entreprise. Rappelons un fait, l’espérance de vie d’une grande entreprise dans le fameux «S&P 500» est passée de 33 ans en 1965 à 20 en 1990 et les analystes suggèrent 14 ans en 2026.

Comme le mentionnait Geoff Tuff de Deloitte par rapport à la stratégie que doit adopter une société: «Il est judicieux de méthodiquement prévoir les étapes à suivre afin d’avancer dans ce brouillard d’opportunités.» La marche à suivre suggérée est la suivante:

  • Etudier certaines «exponentielles» liées à son industrie et envisager leurs les conséquences
  • Explorer leurs potentiels
  • Expérimenter avec des prototypes
  • Etre programmatique: le temps est révolu de ne se fier qu’à son inspiration dans le monde de l’innovation.

Pour beaucoup, le défi est colossal et la nécessité d’une plus grande collaboration est primordiale. La Confédération se doit aussi de participer à ces efforts en contribuant à l’accompagnement ainsi qu’au soutien des entreprises dans cette transition brutale due aux exponentielles.

Pour tous, l’important est de ne de pas s’endormir dans l’inaction. Il faut se préparer hic et nunc au chamboulement en cours.