Exploration spatiale

Nous n’avons pas eu le prix de la Mars Society USA mais pour de bonnes raisons

Comme exposé dans un article récent, j’ai présenté à l’Université de Californie du Sud (USC) le 19 octobre, au nom d’une petite équipe, le projet d’une colonie martienne de 1000 habitants. L’équipe était constituée de Richard Heidmann, polytechnicien et ingénieur en astronautique, fondateur de l’Association Planète Mars (l’entité française membre de la Mars Society), de Tatiana Volkova, ingénieure et candidate à un doctorat d’architecture à l’EPFL (Swiss Space Center) et de moi-même. La présentation était faite dans le cadre d’un « Mars Colony Contest » proposé par la Mars Society USA au monde entier. Sur 100 équipes concourantes, nous avions passé, sur dossier écrit, le premier éliminatoire, puis le deuxième et nous nous retrouvions dans les cinq premiers candidats. Pour passer l’obstacle final nous faisions face à un jury doublé en nombre (huit personnes au lieu de quatre) venant d’horizons différents mais incluant des membres de la Mars Society USA, un « ancien » de la NASA et un cadre de SpaceX (qualifications précises non spécifiées).

Le fait que notre dossier écrit ait reçu du premier jury les notes les plus élevées sur le plan technologique n’a pas été suffisant pour nous donner une position victorieuse (c’est une équipe du MIT qui a gagné et une équipe de l’Université de Wroclaw qui est arrivé en second). La déception de ne pas recevoir de prix fut grande mais l’explication justifiant le choix final, reçue ensuite, m’a rasséréné et finalement conforté dans l’opinion que nous avions fait le meilleur travail. En effet les deux objections qui nous ont « plombés » ont été que (1) nous n’exposions pas suffisamment la vision que nous avions de la colonie et (2) que nous envisagions pour cette même colonie une gouvernance d’entreprise en liens étroits avec la Terre et non une gouvernance locale, entre colons, totalement libre.

Je considère ces objections comme non valables et j’ai bien sûr des arguments pour défendre ce point de vue.

Concernant la première, j’avais en effet constaté que les autres candidats présentaient des visions futuristes d’établissement et de vie sur Mars, sans bien expliquer comment ils parvenaient à la concrétisation, ou en supposant pour le faire, des progrès techniques ou des performances utilisant les technologies d’aujourd’hui, qui me semblaient irréalistes. Ainsi, par exemple, ils montraient de vastes halls viabilisés, très peu occupés pour ne pas dire vides, sans apparemment s’être souciés des pressions qui allaient s’exercer sur les parois contenant ces volumes ou sur les quantités d’azote nécessaires pour les emplir à une pression acceptable* pour constituer, dans l’ensemble des volumes viabilisés, une atmosphère respirable non facilement inflammable (compte tenu de la quantité d’oxygène nécessaire, non réductible). De notre côté nous avons toujours pris soin de préciser comment, en utilisant les technologies existantes, les équipements et les ressources en matière, en robots, en hommes et en réunissant les financements nécessaires, on pouvait obtenir les résultats que nous considérons atteignables. Nos dômes viabilisés ont un diamètre maximum de 30 mètres (et la plupart seulement de 20 mètres) tout simplement  parce qu’au-delà, le socle en duricrete (béton fait avec de l’eau ajouté au régolite martien) qui maintient la structure, serait trop épais (déjà un mètre pour les dômes de 20 mètres et deux mètres pour les dômes de 30 mètres), c’est-à-dire demanderait trop d’eau et serait trop long à construire, et le volume de ces dômes est utilisé sur plusieurs niveaux. Pour nous il ne s’agissait pas, comme le jury l’aurait souhaité, de « montrer la maison qu’on voulait vendre » mais de « montrer comment construire la maison qu’on voulait réaliser ». J’estime que, dans les circonstances supposées (un environnement extrême, s’il en est), c’est bien la seconde approche la plus intéressante et la seule qui aurait dû être prise en considération.

*nous avions choisi 0,5 bars dont 42% d’oxygène ce qui semble le minimum acceptable pour d’une part la pression externe exercée sur le corps et d’autre part l’inflammabilité mais cela induit quand même une poussée de 5 tonnes par m2 sur les parois des habitats, ce qui impose des matériaux particulièrement résistants (pour nous des barres d’acier encadrant et tenant des parois constituées de deux plaques de verre laminé de 1,5 cm d’épaisseur et de 3 mètres sur 1,5 m de largeur / longueur). 

Concernant la seconde objection, je maintiens qu’il est illusoire de prévoir qu’une colonie martienne de 1000 habitants puisse se gouverner elle-même (en dehors bien sûr des nécessités imposées par l’éloignement de la Terre et de l’intérêt de tous de laisser s’exprimer la créativité des résidents) alors qu’elle sera très largement dépendante des importations d’équipements de la Terre et que d’autre part elle sera le résultat d’investissements lourds de capitalistes qui n’auront, au stade des mille résidents, pas récupéré beaucoup de fruits de ces investissements (après les quelques 20 années nécessaires pour « monter » jusqu’à ce niveau de population). On estime que les revenus, provenant surtout de la vente de location d’habitats, de services annexes (à des chercheurs et à des touristes) et de la valeur générée par quelques start-up, commenceront à être engrangés dès le troisième cycle synodique suivant le premier atterrissage mais que ces revenus seront très faibles par rapport aux premières dépenses, même s’ils croîtront ensuite en fonction de l’accroissement des capacités d’hébergement. Il est donc inévitable que les investisseurs, via une « société d’exploitation de Mars » restée sur Terre, contrôlent sérieusement, au moins en exerçant un droit de veto, les décisions qui seront prises par les personnes qui résideront sur Mars (celles qui seront employées par la société d’exploitation et celles qui auront payé pour venir faire un séjour sur Mars) même si, bien entendu, les résidents martiens devront avoir le droit de se prononcer sur la gestion de la colonie et l’orientation des activités pouvant être développées sur Mars. NB : Les « paying-guests », c’est à dire « les clients », qui auront payé pour leur voyage et leur séjour et les membres du « staff », personnel qui sera payé pour faire fonctionner la base, pourront et devront faire bénéficier de leur expérience l’ensemble des personnes intéressées et devront sur place réagir et s’adapter rapidement à l’évolution et aux situations nouvelles.

Heureusement, les dossiers des finalistes, dont le nôtre, seront publiés dans un livre de la Mars Society. Cela permettra à tous les lecteurs de se faire une opinion (et de nous faire justice), au-delà de (trop) belles images peut-être suscitées par la proximité malheureuses (en l’occurrence) de Hollywood.

Illustration de titre :

Un ensemble habitable individuel selon notre projet (ils sont assemblés en rangées de 26 unités accolées, reliées entre elles par des couloirs pressurisés, sous l’habitat). Il utilise l’acier, le verre, la glace d’eau, tous éléments qui peuvent être produits ou obtenus sur Mars. Le module-habitat proprement dit a un diamètre de 6 mètres avec deux niveaux habitables et un sous-sol où circulent les canalisations. A chaque module-habitat sont accolés deux modules-serre et un module-couloir. Chaque personne dispose de 30m2 au sol au niveau principal du module-habitat. Avec les annexes, dômes (pour les réunions et actions collectives) couloirs et sas, la surface viabilisée par personne atteint 50 m2 ; la surface cultivée est de 80 m2 à 100 m2 par résident (le volume des modules-serre est utilisé au maximum, sur plusieurs niveaux).

Nous avons prévu des éléments de construction simples pour pouvoir être produits sur place et remplacés facilement. NB : 30 cm de glace d’eau constitue un excellent écran contre les protons des radiations solaires (SeP).

Les quelques dômes géodésiques qui ponctuent l’ensemble de la base utilisent les mêmes matériaux et sont reliés avec le reste de la base par des corridors pressurisés.

Illustration ci-dessous:

Grand hall du projet de la Wroclaw University of Science & Technology (Pologne), arrivée seconde à la finale du “Contest”. Joli mais comment font-ils pour le construire ? Quelle énergie dépense-t-ils pour édifier les parois et la toiture (si le hall est en surface) ou pour creuser ce volume énorme (s’il est enterré) ? De quels engins ont-ils disposé ? Combien de vols ont-ils été nécessaires pour les importer de la Terre? La pin-up du premier plan est-elle bien utile ? Et quel gâchis de gaz rares (l’atmosphère martienne dont la pression est de 6 millibars ne contient que 2% d’azote; même à une pression interne de 0,5 bars, cela représente des quantités relativement énormes et une énergie considérable pour l’extraire) !

 

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur:

Index L’appel de Mars 19 11 01

Quitter la version mobile