Exploration spatiale

Avec le JWST, l’observation par les ondes infrarouges est sur le point de révolutionner l’astronomie

Le rayonnement infrarouge est porteur d’une richesse considérable d’informations sur l’espace. C’est notre capacité à positionner des télescopes hors de l’atmosphère terrestre et à les protéger de la chaleur environnante qui nous permet aujourd’hui de l’exploiter. Le télescope JWST qui est équipé précisément pour ce faire et le plus grand jamais lancé, nous offre la perspective d’un véritable saut en astronomie.

Le rayonnement infrarouge est un des segments du spectre électromagnétique. Il se situe entre le domaine du visible et celui des micro-ondes, dans des longueurs d’ondes qui vont de 0,78 µm (au plus près du spectre visible) à 5 mm (au plus près des micro-ondes). Il se divise entre infrarouge proche – « PIR » – (0,78 µm à 3 µm), infrarouge moyen – « MIR » (3 µm à 50 µm) et infrarouge lointain – « LIR » (de 50 µm à 5 mm).

Il est seulement notable par sa manifestation thermique. C’est d’ailleurs la gradation de cette manifestation qui permet de faire la différence entre les sous-segments PIR, MIR, LIR du segment infrarouge. A noter que toute manifestation thermique est due au déplacement d’énergie du chaud vers le froid et que donc d’autres segments du même spectre électromagnétique traduisent aussi un transfert de chaleur (mais pas seulement). A noter également que les mêmes sources peuvent rayonner dans plusieurs segments de longueur d’ondes (visible, infrarouge ou autres) mais que certains astres, les plus froids ou les moins lumineux, ne rayonnent que dans ce segment infrarouge ou en dessous (longueurs d’ondes encore plus grandes, à commencer par les ondes radio voisines). Par ailleurs l’atmosphère (terrestre, pour ce qui nous concerne) diffuse ou bloque le rayonnement thermique (selon la longueur d’ondes) et empêche l’observation dans la plupart des longueurs d’ondes du segment infrarouge à partir de la surface de la planète.

La conséquence de cette manifestation thermique est que, pour l’observation, il est nécessaire que non seulement l’atmosphère soit absente ou aussi ténue que possible mais aussi que l’environnement du capteur soit d’une température inférieure à celle du rayonnement que l’on veut capter. C’est pour cela que le JWST qui est conçu pour exploiter à partir de l’espace les sous-segments infrarouges les plus éloignés du visible, doit être particulièrement protégé, d’où (1) son positionnement au point de Lagrange L2 avec orientation du système de collecte (et d’abord son miroir primaire) dans la direction opposée au Soleil, (2) son bouclier thermique et (3) un liquide de refroidissement (hélium) pour les observations aux plus basses températures (en dessous des températures prévalant dans l’espace non éclairé au voisinage de la Terre).

Mais que peut-on « voir » en infrarouge ? Outre les sources proprement visibles, toutes les sources « froides », c’est-à-dire celles dont la lumière qui nous parvient est à la limite ou en-dessous du seuil de visibilité. Il peut s’agir de tous les astres dont la lumière apparente n’est qu’une réflexion de leur étoile et donc faible…et des autres qui ne réfléchissent pratiquement aucune lumière mais qui sont moins froides que leur environnement parce que leur masse génère de la chaleur par gravité, et parce que leurs composants instables suivent un processus de dégradation continue générateur de chaleur (radio-activité).

Dans notre système, il peut s’agir des astéroïdes proches et lointains. Il peut s’agir des planètes naines perdues dans la Ceinture de Kuiper (les « KPO »). Il peut éventuellement s’agir de la fabuleuse « Planète 9 » qui se « balade » dans cette zone et dont la masse serait au moins égale à celle de la Terre.

A l’extérieur de notre système et dans notre environnement galactique proche, il peut s’agir des exoplanètes les plus intéressantes du point de vue de la recherche d’une vie éventuelle parce qu’elles sont semblables à la Terre et parce qu’on a beaucoup de mal à les voir en ondes visibles. Elles sont petites comme la Terre et elles orbitent des astres très lumineux, comme notre Soleil, devant lesquels elles passent très rarement (toutes choses égales par ailleurs, environ une fois par an, comme notre Terre). Cela nous changera des exoplanètes orbitant les naines-rouges ou des planètes géantes orbitant les étoiles plus lumineuses (que les media nous présentent à chaque fois comme des « nouvelles-terres » mais qui n’en sont pas). Il y a beaucoup moins de différence d’intensité de rayonnement entre l’infrarouge reçu d’une planète et l’infrarouge reçu de son étoile qu’entre leurs rayonnements respectifs reçus dans le spectre visible. Et on pourra encore « arranger les choses » en utilisant de bons coronographes « à masque de phase » pour occulter la lumière plus intense de l’étoile. Il peut aussi s’agir de planètes-orphelines qui, pour une raison ou une autre, ont rompu les amarres avec leur système d’origine et qui errent dans l’espace interstellaire. Il peut bien sûr s’agir de naines brunes, astres plus chauds qu’une planète mais d’une température trop faible pour rayonner dans le visible.

En allant plus loin, nous pourrons entrer dans les pépinières d’étoiles ou « nuages-moléculaires », riches en poussière, occultants dans le visible, car l’infrarouge se joue de cette difficulté, le critère n’étant plus le photon mais la chaleur qui passe et qui transperce ou qui « éclaire » cet environnement. Nous pourrons y voir des étoiles en formation, déjà chaudes de leur accrétion mais dont la première lumière n’a pas encore jailli.

En allant encore plus loin nous pourrons courir après les astres les plus lointains qui, il y a plus de 13 milliards d’années, ont émis dans une longueur d’ondes plus courtes mais qui sont tellement distants aujourd’hui que leur « lumière reçue » s’est considérablement étirée vers le rouge du fait de leur vitesse d’éloignement (dilatation de l’Univers). Nous avons ainsi de bonnes chances de découvrir toute une population de galaxies primitives, surtout les premières qui, au-delà de « GNz11 » dont la lumière a mis 13,3 milliards d’années pour nous parvenir et qui est la plus lointaine identifiée aujourd’hui, se sont formées après la ré-ionisation de l’Univers qui a débouché sur la sortie des Ages-sombres. Hubble a vu GNz11 parce que la lumière de ses étoiles a été émise en ultraviolet ; mais si elle l’avait été en visible, elle ne serait observable que dans un infrarouge très profond (LIR). Avec le JWST on pourra voir dans ce LIR, et on peut espérer remonter jusqu’à 13,4 milliards d’années, voir de nombreuses galaxies de cette époque et tirer des généralisations sur la formation de ces galaxies.

Tout cela le JWST devrait pouvoir nous l’apporter avec une précision (« résolution angulaire ») aussi bonne que celle de Hubble sur des objets d’une luminosité cent fois plus faible. Il ne manque plus que la « mise en place ». Décollage le 24* décembre, voyage vers le point de Lagrange L2 (1,5 millions de km tout de même), déploiement de l’« origami » (c’est comme cela que l’on appelle le « pliage » de la sonde d’après le nom des pliages en papier sophistiqués des Japonais ) et première lumière…six mois après (été 2022). Prions que tout ce processus très complexe et délicat se déroule correctement.

*la date a encore changé. Espérons que ce soit la bonne!

Illustration de titre : NASA & K Luhman (Harvard-Smithonian Center for Astrophysics). Les étoiles enveloppées dans leurs nuages de poussière (à gauche, en visible) sont déshabillées lorsqu’on les observe dans leur rayonnement infrarouge (les mêmes étoiles, à droite).

Référence : Ciel & espace (revue de l’association française d’astronomie) n°580 (Nov. Dec. 2021)

https://en.wikipedia.org/wiki/Infrared

Illustration ci-dessous: spectre électromagnétique, atmospheric electromagnetic transmittance or opacity.jpg. crédit NASA

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 11 14

Quitter la version mobile