Exploration spatiale

Moon-Direct : un pis aller pour ensuite aller sur Mars

Robert Zubrin, fondateur de la Mars Society et président de l’association américaine, a écrit un article* encourageant le gouvernement américain à décider la création d’une base lunaire, en lui recommandant une marche à suivre qui s’apparente beaucoup à « Mars-Direct », l’architecture de mission géniale qu’il a imaginée avec son collègue de Martin-Marietta, David Baker, au début des années 1990 (voir son livre « The case for Mars » publié pour la première fois en 1996).

*article publié le 26 mars dans Space News Magazine; traduction en Français après mon propre article, ci-dessous.

La démarche peut surprendre venant de quelqu’un qui était très critique des projets d’établissements sur la Lune, considérant que cet astre était un piège où la volonté de sortir véritablement du berceau terrestre, se perdrait. Il avait notamment comparé la Lune à une « sirène »  dont il convenait de se protéger.

La Lune est en effet un monde beaucoup plus hostile que Mars avec sa gravité de 0,16 g très handicapante, la longueur de ses jours et de ses nuits (14+14), son absence totale d’atmosphère, son aridité extrême (les volumes de glace d’eau sur la Lune sont « anecdotiques »), la dangerosité de ses particules de poussière acérées. Ces défauts sont en creux les avantages de Mars même si la planète reste beaucoup moins hospitalière que la Terre. Les deux seuls avantages que l’on puisse donner à la Lune, c’est (1) qu’elle est accessible à tout moment de l’année alors que nos fusées ne peuvent partir de la Terre pour Mars que tous les 26 mois en raison de vitesses différentes sur orbite (en gros 30 km/s pour la Terre et 20 km/s pour Mars) ; (2) que le voyage est beaucoup moins long (environ 3 jours pour la Lune et de 4 à 9 mois pour Mars selon que l’on consomme plus ou moins d’énergie) ce qui implique une exposition plus longue aux radiations et la nécessité d’un support vie plus « musclé ». Mais il n’y a aucun avantage énergétique à aller sur la Lune, l’essentiel de l’effort étant dû à la sortie du puits de gravité terrestre et ensuite, dans une moindre mesure, au freinage pour descendre sur l’astre visé.

Alors, est-ce un renoncement ?

Je ne le pense pas. Robert Zubrin est réaliste et il fait de la politique. Il sait que tant que Donald Trump détiendra le pouvoir exécutif aux Etats-Unis, le projet Mars Direct n’a aucune chance. Alors il s’adapte comme un judoka s’adapte à la poussée de son adversaire. Ce faisant, il sert son ami Elon Musk qui est absolument déterminé à aller sur Mars, avec ou sans l’aide de l’Etat (mais mieux avec cette dernière), et qui devrait obtenir des contrats avec la NASA pour mener quelque mission habitée que ce soit dans l’espace profond puisque le Falcon Heavy est le seul lanceur mi-lourd qui existe aujourd’hui (le SLS est toujours dans les limbes et ne semble pas devoir en sortir). Quelle que soit l’utilisation qui en sera faite, elle confirmera la technologie de SpaceX, elle abaissera les coûts de lancement unitaires et elle apportera des fonds dans les caisses d’Elon Musk. Par ailleurs l’article de Robert Zubrin remet en avant la stratégie « Direct ». En gros, pour aller sur un astre, il faut décider d’y aller vraiment, sans prendre de voie détournée, et il faut y aller aussi « léger » que possible en utilisant les ressources locales, notamment pour le retour sur Terre. Ce qui est valable pour la Lune est valable pour Mars et on suivra la même stratégie sur Mars après avoir démontré que c’était la meilleure pour la Lune.

Espérons que Donald Trump entre dans le jeu ; c’est-à-dire qu’à défaut de Mars, il lance les Etats-Unis vers la Lune pour s’y poser et laisse tomber le stupide et coûteux projet de Lunar-Orbital-Platform-Gateway qui ne propose que de tourner autour. C’est encore possible. Cependant je persiste à craindre que la Lune ne soit le tombeau des rêves martiens, que l’on risque de s’y investir longuement et coûteusement comme on a fait dans la Station Spatiale Internationale, pour presque aucune retombée valable, que la vie sur la Lune s’avère vraiment difficile en raison des problèmes exposés ci-dessus, que les retombées scientifiques soient médiocres, la Lune n’étant qu’un fragment de la Terre desséché, morte presque depuis son origine, et qu’en fin de compte cela « dégoûte » le public (c’est lui, in fine, qui paye) de l’aventure spatiale. La stratégie du judoka est donc très dangereuse, mais nous verrons bien, nous n’avons, jusqu’à la fin de la présidence Trump, pas le choix!

Pierre Brisson

Image à la Une: Falcon Heavy sur son aire de lancement, Crédit Space-X

Lien vers l’article de Robert Zubrin dans Space News, traduit ci-dessus :

http://spacenews.com/op-ed-moon-direct-how-to-build-a-moonbase-in-four-years/

Traduction de l’article:

La Lune en direct : comment construire une base lunaire en quatre ans

Robert Zubrin ; article publié dans Space News Magazine le 26 mars 2018

Le récent et spectaculaire succès du lancement de Falcon Heavy offre à l’Amérique une opportunité sans précédent pour mettre fin à la stagnation qui a affecté son programme de vols spatiaux habités pendant des décennies. En bref, la Lune est maintenant à notre portée.

Voici comment le plan de mission pourrait être développé. Le Falcon Heavy peut emporter 60 tonnes en orbite basse terrestre (LEO). À partir de là, un atterrisseur-cargo propulsé par fusée à hydrogène / oxygène pourrait déposer 12 tonnes de charge utile à la surface de la Lune.

Nous pourrions donc envoyer deux atterrisseurs à l’emplacement prévu pour la base. La meilleure région serait l’un des pôles car il y a des endroits sur ces pôles où la lumière du soleil est accessible tout le temps et, en proximité immédiate, des cratères en permanence dans l’obscurité absolue où la glace s’est accumulée. Cette glace pourrait être électrolysée pour produire des ergols d’hydrogène et d’oxygène pour approvisionner à la fois des véhicules de retour sur Terre (« ERV ») et des fusées qui fourniraient au personnel de la base lunaire un accès pour exploration à la plus grande partie du reste de la Lune.

Le premier atterrisseur-cargo transporterait des équipements comprenant un dispositif de panneaux solaires, un équipement de communications à haut débit, un faisceau micro-ondes de transmission d’énergie avec une portée de 100 km, une unité d’électrolyse / réfrigération, deux véhicules pour l’équipage, une remorque, et un groupe de rovers-robots télécommandés. Après l’atterrissage, certains des rovers seraient utilisés pour installer le système de panneaux solaires et de communications, tandis que d’autres seraient utilisés pour explorer la zone d’atterrissage en détail et pour poser des radio-émetteurs pour signaler les emplacements précis des atterrissages futurs.

Le second atterrisseur-cargo déchargerait un module d’habitation de 12 tonnes, empli de nourriture, de combinaisons spatiales de rechange, d’équipements scientifiques, d’outils et autres fournitures. Il servirait de logement aux astronautes, de laboratoire et d’atelier. Une fois qu’il aurait atterri, les robots le brancheraient à l’alimentation électrique et tous les systèmes seraient vérifiés. Ceci fait, les rovers seraient déployés pour prendre des photographies détaillées de la zone de la base et de ses environs. Toutes ces données seraient envoyées sur Terre pour aider les planificateurs de mission et les équipes de soutien scientifique et technique et pour finalement établir la structure d’un programme de réalité virtuelle qui permettrait à des millions de personnes de participer aux missions.

La base étant opérationnelle, il serait temps d’envoyer le premier équipage. Un Falcon Heavy serait utilisé pour placer un autre atterrisseur-cargo en orbite dont la charge utile serait constituée d’un Véhicule d’Excursion Lunaire (LEV) dont on aurait fait le plein en carburant/comburant. Ce véhicule serait constitué d’une cabine de deux tonnes comme celle utilisée par le module d’excursion lunaire d’Apollo, monté sur un système de propulsion hydrogène / oxygène d’une tonne, chargé de neuf tonnes de propergol et capable de le transporter de la surface lunaire à l’orbite terrestre. Une fusée Falcon 9 certifiée vol habitable emporterait ensuite l’équipage dans une capsule Dragon jusqu’à LEO où il passerait dans le LEV. Ensuite l’atterrisseur-cargo emporterait le LEV avec l’équipage à bord, jusqu’à la Lune tandis que le Dragon resterait en arrière sur LEO.

Après atterrissage sur la base lunaire, l’équipage terminerait les opérations d’installation nécessaires et commencerait l’exploration. Un objectif clé serait d’aller dans un cratère abrité de la lumière solaire et, en utilisant l’énergie transmise depuis la base par rayon, d’utiliser des robots télécommandés pour extraire de la glace d’eau. Après avoir rapporté ce trésor à la base dans leur remorque, les astronautes introduiraient l’eau dans l’unité d’électrolyse / réfrigération qui la transformerait en hydrogène liquide et en oxygène. Ces produits seraient ensuite stockés dans les réservoirs vides des atterrisseurs-cargo pour une utilisation future – principalement pour propulser des fusées mais aussi pour fournir une source d’énergie aux piles à combustible et pour constituer une source abondante de consommables de support vie.

Après avoir passé quelques mois à lancer ce genre d’opérations et à engager d’autres formes de prospection de ressources ainsi que diverses explorations scientifiques, les astronautes prendraient place dans le LEV, décolleraient et retourneraient sur orbite terrestre. Là, ils seraient recueillis par un Dragon – soit celui qui les aurait placés en orbite en premier lieu, soit un autre qui viendrait d’être lancé pour transporter l’équipage assurant la relève sur la Lune – et qui servirait de capsule de rentrée pour la dernière partie du voyage de retour.

Ainsi, chaque mission suivante ne nécessiterait qu’un seul lancement de Falcon Heavy, de 100 millions de dollars, et un seul lancement de Falcon 9, de 60 millions de dollars. Une fois la base établie, il y aurait peu de raisons de ne pas prolonger les séjours de surface à six mois.

En supposant que le coût du matériel de la mission soit à peu près égal au coût de son lancement, nous devrions être en mesure de créer et de maintenir une base lunaire occupée en permanence, pour un coût annuel constant de moins de 700 millions de dollars. Cela représente moins de 4% du budget actuel de la NASA, soit environ le quart de ce qui est dépensé annuellement pour le programme du « SLS » (le lanceur spatial désormais obsolète de l’agence) qui traîne depuis plus d’une décennie sans avoir rien produit.

Les astronautes ne seraient pas limités à l’exploration de la région autour de la base. Ravitaillé avec de l’hydrogène et de l’oxygène, le même vaisseau spatial LEV, prévu pour rejoindre la surface lunaire et revenir sur Terre, pourrait être utilisé pour voler à partir de la base jusqu’à n’importe quel autre endroit de la Lune, atterrir, servir d’habitat sur place pour permettre à l’équipage de mener son exploration, puis revenir à la base. Nous n’obtiendrions pas seulement un poste avancé ; nous aurions un accès complet à un monde tout entier.

Actuellement, la NASA n’a pas de tel plan. Au lieu de cela elle propose de construire une station spatiale en orbite lunaire nommée Deep Space Gateway. Ce gâchis coûtera au moins plusieurs dizaines de milliards de dollars et ne servira à rien, sauf peut-être à fournir une publicité de lancement pour le SLS. Nous n’avons pas besoin d’une station en orbite lunaire pour aller sur la Lune. Nous n’avons pas besoin d’une telle station pour aller sur Mars. Nous n’en avons pas besoin pour aller sur les astéroïdes proches de la Terre. Nous n’en avons pas besoin pour aller où que ce soit. Si nous gaspillons notre temps et notre argent à le construire, nous n’irons nulle part.

Si on veut aller sur la Lune, on doit aller sur la Lune. Nous avons maintenant la capacité de le faire. Saisissons l’opportunité.

Image “à la Une”: Falcon Heavy sur son pas de tir. Photo SpaceX

image ci-dessous; architecture de mission Lune Direct (crédit Robert Zubrin et Space News graphic):

Quitter la version mobile