Parmi les planètes-orphelines, des sœurs de la Terre pour toujours dans la nuit

Dans le noir de l’espace, en dehors de tout système stellaire, on s’est rendu compte relativement récemment qu’il existe des astres solitaires qui ne sont ni des astéroïdes ni des étoiles, mais d’une masse suffisante pour être des planètes, les « planètes-orphelines ».

On les nomme également « Objets libres de masse planétaire » ou en Anglais, « rogue-planets ». Leur découverte remonte à la fin des années 1990 (Japonais) mais la première étude bien documentée, par David Bennett de l’Université de Notre-Dame (Etats-Unis, Indiana), date du 19 mai 2011 (voir lien ci-dessous).

Tout d’abord on n’a observé que des astres de type Jupiter et de masse comprise entre environ 13 et environ 3 masses joviennes. Le 13 est important parce qu’au-dessus, la masse de l’astre serait telle que la réaction de fusion nucléaire (Hydrogène => Deutérium) se déclencherait et qu’on serait en présence d’une étoile de premier niveau de puissance (« naine-brune »). Le 3 est également important puisque les effets discernables causés par ces astres et qui permettent de les identifier sont très faibles. Mais cette seconde limite est en train de s’abaisser grâce à nos progrès technologiques et à l’expérience, c’est-à-dire la pratique du type d’observation requis. En Septembre 2020, on a ainsi pu déclarer avoir observé (en 2016) une planète-orpheline d’une taille située entre celles de Mars et de la Terre, à qui l’on a donné le doux nom « OGLE-2016-BLG-1928 ».

Détecter ces planètes n’est donc pas facile. Ce qui l’a permis c’est l’effet de loupe des microlentilles gravitationnelles (« gravitational microlensing ») qu’elles-mêmes peuvent créer, comme toute masse par rapport à une source émettrice de lumière située derrière elle dans la ligne de l’observateur. L’effet de loupe est une application de la théorie de la relativité générale d’Albert Einstein* et on ne peut le vérifier et l’utiliser pour des masses aussi faibles qu’une planète, que si l’on dispose d’instruments suffisamment sensibles pour les détecter. Cette condition étant remplie, il s’agit donc de profiter de l’instant fugace (deux heures maximum) de l’alignement avec la Terre, d’une telle source observable (évidemment une étoile) avec la masse qui passe entre elle et nous (la lentille). C’est de ce bref passage (41,5 minutes pour OGLE-2016-BLG-1928) de la planète-orpheline qui apparaît sur le graphe (voir ci-dessous) comme un pic de lumière plus ou moins haut et plus ou moins large, que l’on peut déduire sa masse, son volume (donc la nature gazeuse ou rocheuse), sa distance. Il faut être très clair : nous n’avons pas d’image.

*microlentille gravitationnelle : la lumière est courbée lorsque ses rayons éclairent un objet massif, par cet objet lui-même. La gravité de la masse au premier plan déforme l’espace environnant et agit comme une loupe.

Bien entendu il faut que, sur la durée, le phénomène ne se répète pas périodiquement (cela signifierait que la planète appartient à un système stellaire) et ce dernier « détail » n’est pas facile à vérifier car l’expérience nous a appris que les géantes gazeuses peuvent se trouver à plusieurs UA (Unités astronomiques, distance Terre-Soleil, soit 150 millions de km) de leur étoile. De ce fait, les passages d’une planète éloignée devant son étoile sont rares. Neptune qui se trouve à 30 UA du Soleil a une période de révolution de 165 ans ; Jupiter, à 5,2 UA, a une période de révolution de 11,86 ans. Un indice à rechercher est de voir si lors du passage de la planète devant l’étoile, celle-ci modifie très légèrement sa position. Ce serait la preuve d’un lien gravitationnel. Faute d’arguments contraires, on présume que ces planètes sont orphelines si elles se trouvent à au moins 10 UA d’une étoile (la distance exacte dépendra du type d’étoile), distance à laquelle on considère qu’il y a peu de chances de trouver un Jupiter et encore moins une planète tellurique, et bien sûr on vérifie l’évolution de cette distance.

Dans le cas d’OGLE-2016-BLG-1928 il faut cependant ajouter un bémol. L’objet est si petit que la parallaxe de la lentille (la planète) à la source émettrice de la lumière (une géante rouge) n’a pu être mesurée. On a estimé, d’après la mesure par le télescope Gaia du mouvement-propre de la source, que celle-ci devait être située dans le bulbe de la Voie-lactée et que la lentille devait être plutôt située dans le disque que dans le bulbe. Cela impliquerait une masse de 0,3 masse terrestre. Si elle était dans le bulbe, sa masse maximum serait de l’ordre de 2 masses terrestres, ce qui serait quand même très petit. A noter que d’une façon générale l’on oriente les instruments vers le bulbe ou vers le Nuage de Magellan en raison de la richesse en étoiles de ces régions qui donne la possibilité de très nombreux transits astronomiques. C’est important car les circonstances qui permettent l’observation de ces planètes sans étoile sont quand mêmes difficiles à remplir.

Les premières observations de planètes-orphelines ont été faites par une collaboration nippo-néo-zélandaise (Microlensing Observations in Astrophysics, « MOA »). Dès la première campagne (2006/2007), elle a découvert une dizaine d’astres, ce qui signifiait que les planètes de ce type n’étaient pas exceptionnelles bien que difficiles à observer. Plusieurs équipes poursuivent les mêmes recherches, notamment l’Optical Gravitational Lensing Experiment (« OGLE ») de l’Université de Varsovie qui a plusieurs partenariats. OGLE-2016-BLG-1928 a été découverte, avec OGLE, par Korean Milcrolensing Telescope Network, « KMTNet » du Korea Astronomy and Space Science Institute (« KASI ») .

L’origine de ces astres est toujours débattue. Deux possibilités se présentent. Soit, ils se sont formés directement par contraction d’un nuage de gaz, comme les systèmes stellaires, soit ils se sont fait éjecter de systèmes qui avaient commencé leur formation. C’est la seconde hypothèse la plus probable (ou du moins la plus fréquente) car pour que la contraction d’un nuage interstellaire soit suffisante pour créer des planètes, il faut sans doute que sa densité soit suffisamment élevée, donc que ses éléments soient tenus et resserrés par un centre gravitationnel fort qui non seulement les concentre mais aussi les entraine autour de lui à une vitesse suffisante pour créer des tourbillons de matière et de gaz. Cela ne peut résulter que d’une masse importante, suffisante pour créer une étoile. En fait, dans un nuage protoplanétaire les planètes ne peuvent pas se former avant les étoiles. Autrement dit, il est sans doute nécessaire qu’une étoile se soit déjà formée (allumée) pour que les éléments qui vont former les planètes disposent de suffisamment de vitesse orbitale pour devenir des planètes (sous réserve de cas limites). Mais on peut aussi envisager qu’un nuage protoplanétaire commence à se contracter autour d’une étoile et que, pour une raison quelconque (proximité d’un phénomène analogue en cours qui déchire le nuage ?), il se détache un fragment contenant une partie déjà suffisamment concentrée en planète (on a crû d’ailleurs, observer une planète-orpheline au centre d’un disque de poussière). Quoi qu’il en soit, le plus probable est l’éjection d’un système à la fin de sa période d’accrétion. C’est ce qui aurait pu arriver à notre fameuse et toujours hypothétiques « Planète-9 » (cinquième des géantes gazeuses, entre Saturne et Neptune) dont j’ai déjà parlé. Les auteurs d’une étude publiée le 29 Octobre 2020 dans l’Astrophysical Journal Letter concernant OGLE-2016-BLG-1928* nous disent (1) qu’au moins 75% des systèmes comprenant des planètes géantes (type Jupiter) doivent avoir connu des dispersions planétaires, (2) que les interactions entre planètes géantes (du type Jupiter + Saturne avec les autres géantes gazeuses) conduisent fréquemment à la perturbation des orbites des planètes de la partie interne des systèmes (en dessous de la ligne de glace), en principe telluriques, et parfois à leur éjection du système, aussi bien qu’à la perturbation des orbites des planètes gazeuses, (3) que les planètes peuvent aussi être éjectées à la suite d’interactions entre étoiles d’un système multiple ou parties d’un essaim d’étoiles, du survol d’une étoile voisine, ou de l’évolution de l’étoile après qu’elle soit sortie de la Séquence-principale du diagramme de Hertzprung-Russel (en fin de vie).

Il devrait donc y avoir beaucoup de tels astres dans notre Galaxie. En fait dans l’étude de Nature publiée en mai 2011, les chercheurs estimaient qu’ils pourraient y en avoir deux fois plus que des étoiles (au moins 400 milliards selon David Bennett). On en saura plus avec le télescope « WFIRST* » de la NASA. Ce télescope qui s’appelle maintenant « Nancy-Grace-Roman Telescope » ou « Roman telescope » (Nancy Roman est une astronome américaine de la NASA, mère du télescope Hubble, décédée en 2018), est un télescope à infrarouge, donc permettant de déceler les astres peu ou non lumineux. Outre des preuves de l’énergie noire où la capture d’images et de spectres de quelques grosses exoplanètes proches, il va rechercher les exoplanètes de petites tailles en utilisant le phénomène susmentionné des microlentilles gravitationnelles. Il doit être lancé en 2025.

Mais n’exagérons pas ce qu’on peut déduire de cette recherche. Certains scientifiques (un peu exaltés, à mon avis) comme Neil DeGrasse Tyson après David Stevenson du CalTech (1999), ont imaginé que si ces planètes avaient une atmosphère d’hydrogène épaisse au moment de leur éjection (c’est effectivement possible compte tenu de l’abondance de l’hydrogène et compte tenu de ce que les planètes telluriques dans leur jeune âge ont une atmosphère dense), cette atmosphère pourrait servir de « couverture isolante » planétaire si elle a été préservée lors de l’éjection. Les planètes-orphelines pourraient ainsi maintenir une certaine chaleur en surface (la chaleur interne de la planète étant ainsi conservée) jusqu’à permettre la présence d’eau liquide et donc de vie à condition que la planète ait une taille minimum, c’est-à-dire au moins celle de la Terre (hypothèse pression atmosphérique 1000 bars à l’origine). Comme vous voyez, on retombe toujours sur les mêmes rêves mais ici sans aucun fait pour les étayer. C’est un peu tôt pour s’y laisser entrainer compte tenu des moyens d’observation dont on dispose, aujourd’hui.

Illustration de titre: vue d’artiste d’une planète-orpheline approchant une étoile (qui n’est bien sûr pas la sienne puisqu’elle n’en a pas !). Crédit Christine Pulliam, Center for Astrophysics (Harvard & Smithonian).

Illustration ci-dessous : les différents cas de figure pour une observation par microlentille gravitationnelle.

Le pic lumineux d’une planète-orpheline (rectangle de droite) est petit et étroit, dissocié de toute autre masse. Crédit : Nature. Joachim Wambsganss, Bound and unbound Planets abound. Nature 473,289-291 (2011). https://doi.org/10.1038/473289a.

liens:

https://www.nature.com/articles/21811

https://science.nd.edu/news/astronomer-david-bennetts-team-discovers-new-class-of-planets/

https://www.nature.com/articles/nature10092

https://science.nasa.gov/science-news/science-at-nasa/2011/18may_orphanplanets#:~:text=The%20team%20estimates%20there%20are,our%20Milky%20Way%20galaxy%20alone.

Microlensing, vidéo descriptive de la NASA : https://www.youtube.com/watch?v=6vVetE5cEMA

https://www.nationalgeographic.com/science/phenomena/2014/03/13/a-guide-to-lonely-planets-in-the-galaxy/

https://www.lefigaro.fr/sciences/2011/05/19/01008-20110519ARTFIG00590-des-planetes-sans-etoile-derivent-dans-le-vide-sideral.php

Nature 18 mai 2011 : file:///C:/Users/pierr/Downloads/473289a.pdf

*Prezemek Mróz et al 2020 ApJL 903 L11 : https://iopscience.iop.org/article/10.3847/2041-8213/abbfad

https://www.universetoday.com/148097/a-rogue-earth-mass-planet-has-been-discovered-freely-floating-in-the-milky-way-without-a-star/

https://fr.wikipedia.org/wiki/Objet_libre_de_masse_plan%C3%A9taire

*WFIRST : https://fr.wikipedia.org/wiki/Nancy-Grace-Roman_(t%C3%A9lescope_spatial)

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 21 01 26