I-MIM une mission pour rechercher la glace accessible sur Mars afin de préparer l’arrivée de l’homme

En Août 2022, un « final report » a été remis par un groupe international de chercheurs* pour le compte de plusieurs agences spatiales**, pour réaliser la cartographie et la caractérisation des gisements de glace d’eau facilement accessibles sur Mars (de 0 à 10 mètres en profondeur) ainsi que leur couverture (rochers ou régolithe). Le projet connu comme « International Mars Ice Mapper Measurement Project » (« I-MIM ») a fait l’objet d’une présentation en session plénière à la Convention 2022 de la Mars Society américaine (samedi 22 octobre), par l’un de ces chercheurs, le Dr. Stefano Nerozzi (Lunar and Planetary Laboratory, University of Arizona). Il est prévu pour ce travail de recherche, d’utiliser des moyens robotiques compatibles avec les technologies aujourd’hui disponibles, principalement un orbiteur avec radar. Une mission ayant cet objet pourrait partir pour Mars avant la fin de cette décennie. Elle ne semble pas si difficile à réaliser en termes de masse et de volume et même d’instruments. Elle aura clairement pour objectif de préparer un séjour de longue durée de l’homme sur Mars. Il faut donc souhaiter fortement que les Agences (dont bien sûr la NASA) lui allouent les crédits nécessaires.

*une soixantaine, dont le Professeur Nick Thomas de l’Université de Bern et Valentin Bickel de l’ETHZ, aucun représentant d’université française.  

**Canada, Italie, Japon, Pays-Bas, Etats-Unis

Il n’est pas question de vérifier encore une fois qu’il y a eu de l’eau liquide sur Mars et qu’il y a encore de la glace d’eau dans le sous-sol immédiat (en dehors des pôles, bien sûr). Ceci on le sait depuis longtemps. Il n’est pas question non plus de rechercher l’eau profondément enfouie dans la croûte de la planète. On sait qu’elle existe et le savoir présente un intérêt pour comprendre l’histoire géologique de Mars, qui est exploité par ailleurs. Cette fois-ci les chercheurs se sont orientés sur l’utilisation que les hommes pourront faire de cette eau pour en vivre. D’ailleurs, les régions qui doivent être explorées sont les latitudes basses et moyennes, c’est-à-dire celles où l’on envisage d’atterrir (il est exclu de monter trop haut en latitude pour que les conditions hivernales soient acceptables tant en besoin de chauffage que d’énergie solaire captable continument).

Pour affiner le concept de mission, définir les données à recueillir et les moyens de le faire, les Agences ont constitué une « équipe de définition des mesures », « MDT » (pour « Measurement Definition Team »). Cette MDT a remis son rapport (le « final-report » mentionné ci-dessus) en août 2022 précisant les buts et objectifs de la mission ainsi que sa charge utile principale, un radar polarimétrique à synthèse d’ouverture (SAR), hybride, observant verticalement (Nadir), avec polarisation circulaire à l’émission (angle 40 à 45°, zone couverte d’une trentaine de km de large) et bilatérale linéaire à la réception. La polarimétrie permet la spectrométrie donc l’analyse chimique de la surface réfléchie par les ondes. Ce radar scrutera le sol dans la bande « L » du spectre électromagnétique (930 gigahertz), cette longueur d’onde étant la plus sensible pour détecter et évaluer l’humidité concentrée dans le sol. Le radar (fourni par l’agence italienne – ASI, fonctionnant sur une structure – « bus » – de l’agence japonaise – JAXA) fonctionnera avec une antenne dotée d’un grand réflecteur déployable, (LDR, « Large Deployable Reflector ») d’un diamètre de 6 mètres (voir ci-dessous). Il aura ainsi une capacité de définition bien meilleure que les autres radars déjà envoyés autour de Mars.

Le MDT émet aussi ses recommandations sur les opérations à effectuer pour tirer profit de la découverte des gisements.

Il ne s’agira pas seulement de constater la présence de glace ou les propriétés du manteau rocheux la recouvrant mais aussi d’évaluer si la zone pourra supporter des opérations de surface (notamment l’extraction) ; à quelle profondeur se trouve le socle sous-jacent ; quelle sera la science que l’on pourra effectuer à l’aide de ces gisements. On attend ainsi du radar qu’il puisse donner une image en 3D des gisements et évaluer la pureté de l’eau et ses autres caractéristiques. Rappelons que la surface de Mars est couverte de sels de perchlorates et que l’eau à partir de laquelle la glace s’est formée était très salée (perchlorates et autres) suite à une très forte évaporation/sublimation sur une période très longue. Par ailleurs dans les premiers mètres, il a pu y avoir sublimation par tous les interstices le permettant et il peut donc y avoir beaucoup d’impuretés dans la glace la plus superficielle.

L’orbiteur porteur du radar pourrait arriver vers 2030 et faire ses observations à l’altitude de 255 Km (orbite circulaire) pendant une année martienne (690 jours). Il aura bien sûr une orbite polaire afin de couvrir progressivement toute la surface de la planète. NB : pour comparaison l’ISS évolue autour de la Terre entre 330 et 420 km.

Pendant les premiers 10 mois (période dite de « reconnaissance »), il fera une couverture exhaustive de la surface utile de la planète délimitée par une latitude Nord et une latitude Sud maximum, avec une définition de 30 mètres au sol. Ensuite il reviendra sur les zones les plus intéressantes pour effectuer une étude aussi précise que possible (« detailed characterization ») avec une résolution horizontale de 3 à 30 mètres et une résolution verticale de moins d’un mètre sur plus de 6 mètres de profondeur. C’est nettement supérieur à ce qu’on a pu faire auparavant (la résolution verticale de SHARAD – NASA, à bord de l’orbiteur MRO – est de 8 à 15 mètres, celle de MARSIS – ESA à bord de l’orbiteur Mars Express – de 150 mètres).

Il embarquera des équipements complémentaires, « en synergie », qui pourront profiter du transport et contribuer à l’amélioration de la capacité de la mission à remplir ses objectifs (toujours avec en vue le séjour/établissement de l’homme sur Mars) ou aller un peu plus loin.

Ainsi un sondeur VHF (à très haute fréquence) pourra combler le « gap » entre la zone de précision du radar SAR (celui qui sera embarqué) et la couche qui est actuellement observable par les radars SHARAD ou MARSIS. Le premier évolue entre 250 et 316 km et le second entre 800 à 1200 km de la surface (ce dernier est donc beaucoup moins précis, et SHARAD un peu moins). Pour SHARAD, la couche aveugle est d’une vingtaine de mètres (et il sonde le sol jusqu’à un km de profondeur). La couche aveugle de l’autre radar, MARSIS est un peu plus importante mais sa pénétration peut descendre jusqu’à – 5 km. Le VHF couvrira donc au-delà du SAR, toute la zone exploitable et la zone sous-jacente.

Un imageur à haute résolution (25 cm/pixel) embarqué à bord de la mission I-MIM pourrait par ailleurs permettre de visualiser les sites observés par le radar et aussi les sites visibles directement tels que les cratères récents contenant de la glace d’eau (comme les deux que le sismomètre SEIS de la sonde InSight vient de nous révéler) ou tel que les falaises de glace (« scarps » en Anglais ; on en a déjà identifiée certaines). Sa vision bilatérale (stéréo) pourrait aussi permettre d’affiner la carte topographique MOLA précédemment établie. A noter que la puissance de discernement de la caméra la plus performante actuelle, HiRISE de la NASA (à bord de l’orbiteur MRO), est de 30 cm/pixel et que nous aurons donc une définition un peu améliorée.

Bien entendu les équipements embarqués pourraient aussi collecter des données utiles à d’autres recherches : études géologiques en général (stratigraphie) ; meilleures compréhension des interactions entre atmosphère et surface ; système des vents et leurs effets sur la température ou sur la circulation d’éléments qu’ils peuvent porter (poussière, vapeur d’eau) ; étude de l’ampleur des aurores boréales (pour détecter les champs magnétiques résiduels) ; repérage des sites favorables à l’habitabilité ou à de possibles réactions prébiotiques (outre les gisements de glace, les vides sous la surface correspondant à des cavernes ou les points humides).

Ces études doivent déboucher sur des propositions de sites sur lesquels une implantation humaine pourra être envisagée (quantité de glace adéquate et accessibilité de cette glace notamment sous régolithe et non sous rochers massifs). On recherchera bien sûr un site le plus au Sud possible, dans la zone intertropicale.

L’un des effets annexes de la mission pourrait être l’installation en orbite d’un relai de communication à très forte capacité évoluant de concert avec l’orbiteur I-MIM en très haute altitude (voir illustration de titre). En effet les données recueillies par ce dernier pourraient être très importantes en volume et non transmissibles constamment en direct depuis l’orbiteur. Ce relai pourrait également servir à d’autres missions.

Ce qui manque maintenant c’est le financement et bien sûr, rien n’est gagné. Tout dépendra d’une décision politique, ce qui sera recommandé par la communauté scientifique américaine dans son ensemble et ce qui sera décidé par le Congrès des Etats-Unis. C’est cependant à ma connaissance le projet scientifique (et non seulement ingénieurial) auquel la NASA participe qui soit la plus forte contribution à la concrétisation au projet de l’homme sur Mars (même s’il est bien précisé que la motivation sera la recherche scientifique et non le développement d’une nouvelle branche de l’humanité en dehors de la Terre). Cela pourrait profiter à Mars par rapport à la Lune. En effet, pour l’avenir de l’habitabilité de la planète, l’abondance d’eau accessible est ce qui fera l’une des différences essentielles avec cette dernière (en plus d’une atmosphère non négligeable, de journées de 24h39, d’une gravité plus forte).

On peut remarquer enfin l’absence d’implication de l’ESA, toujours pudiquement en retrait quand il s’agit de missions habitées.

Illustration de titre : évolution dans l’espace proche de Mars, de l’orbiteur I-MIM avec son radar (l’ombrelle) envoyant les données reçues vers son relai de communication vers la Terre, situé sur une orbite plus élevée. vue d’artiste. Crédit NASA.

Lien :

https://science.nasa.gov/science-pink/s3fs-public/atoms/files/I-MIM_MDT_Final_Report_24_Aug_2022_exec_sum2.pdf

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 22 10 22