La NASA va envoyer un hélicoptère sur Mars

Le nouvel administrateur de la NASA, Jim Bridenstine, l’a décidé, la mission « Mars-2020 » de la NASA, qui quittera la Terre en juillet 2020, emportera un mini-hélicoptère avec elle. Cela ouvre des perspectives très intéressantes.

Une difficulté majeure que les missions martiennes en surface doivent affronter est le caractère souvent extrêmement agressif du sol pour les roues puisqu’il n’y a évidemment pas de route et que par ailleurs l’érosion a été faible donc que les roches sont coupantes. On le voit bien sur les photos que Curiosity prend périodiquement de son train de roues. Elles nous inquiètent car on y voit depuis longtemps des déchirures sur la bande de roulement en aluminium alors qu’elles étaient prévues pour parcourir un terrain difficile pendant aussi longtemps que durerait l’approvisionnement en énergie de l’appareil. La conséquence est que l’on doit ménager ces roues au détriment de la visite de sites qu’on voudrait examiner de plus près. Que de fois le rover est passé hors d’atteinte de reliefs dont on ne pouvait que rêver de s’approcher ou près desquels on était passé et qu’on regrettait de ne pas avoir étudiés (par exemple les supposés tapis microbiens fossiles que la paléo-biogéologue Nora Noffke a cru voir sur le site Gillespie Lake Member fin 2014) ! Par ailleurs, la visibilité est limitée. On se demande toujours ce qu’il peut y avoir « derrière » ou « plus loin ». Enfin certains endroits peuvent être dangereux et contraindre à des détours. Rappelons-nous que Spirit s’est ensablé, que sa mission s’est de ce fait terminée prématurément et que les pentes fortes sont intéressantes à explorer (examen de leurs strates) mais qu’au-delà d’un certain degré de déclivité, on ne peut s’y risquer.

Il y a donc un besoin, celui de s’élever au-dessus du sol pour voir un peu plus loin ou pour aller « quelque part » et y aller vite (car le temps est toujours compté puisqu’on souhaite faire le maximum d’observations dans le cadre d’une mission et que le rover peut subir une défaillance fatale prématurée). Pour cela deux solutions, le plus lourd ou le plus léger que l’air. Dans les deux cas, le problème est la faible densité de l’atmosphère, en ordre de grandeur environ 100 fois moins élevée que sur Terre (610 Pascal en moyenne, au « datum », 1100 Pascal maximum, au fond du bassin d’Hellas et quelque 30 Pascal, minimum, au sommet d’Olympus Mons). C’est très peu pour la portance ou la traînée (« lift and drag ») d’un observateur « volant ». Compte tenu de la composition de l’atmosphère (CO2), meilleure de ce point de vue que notre mélange oxygène et azote, ces facteurs donnent, pour les pressions de 600 à 1100 Pascal, l’équivalent des conditions que l’on a, sur Terre, vers 30 à 35 km d’altitude au-dessus du niveau de la mer. A ces altitudes, la stabilité est précaire et les phénomènes chaotiques possibles (« nombre de Reynolds » élevé). Et plus on s’élève plus cette instabilité s’aggrave. Nous ne discuterons pas ici des avantages ou des inconvénients du plus léger que l’air puisque le sujet est l’hélicoptère. Disons seulement en ce qui concerne le premier, qu’il présente l’avantage d’être peu consommateur d’énergie une fois gonflé (principalement pour la propulsion) et qu’il pourrait donc mener des missions longues. Ses inconvénients sont (1) le poids de l’enveloppe et de la structure, accessoirement du gaz – hydrogène de préférence puisque le plus léger – et (2) le volume puisque le différentiel entre pressions intérieure et extérieure est faible, et en conséquence la prise au vent.

Ce premier hélicoptère de la NASA (« Mars Helicopter Scout ») est naturellement prévu comme un essai ou une démonstration de faisabilité en situation réelle plus que comme un instrument d’observation. L’étude a commencé en 2013, avec GeorgiaTech, une des meilleures écoles d’ingénieurs des Etats-Unis, et le résultat que l’on voit sur la vidéo de la NASA est impressionnant car celle-ci montre qu’il a bel et bien volé de façon satisfaisante dans une atmosphère raréfiée équivalente à l’atmosphère martienne (composition et densité). La raison du succès est sans doute (1) la giration en sens contraire des deux rotors coaxiaux (configuration éliminant le besoin d’un « rotor de queue »), et (2) le fait que la rotation se fait à très grande vitesse (3000 tours par minute donc 10 fois la vitesse de rotation des rotors d’hélicoptère traditionnel). La configuration assure la stabilité directionnelle (un hélicoptère « classique » se met à tourner sur lui-même si son rotor de queue est défaillant) car la rotation en sens contraire des deux rotors assure un « couple en lacet » nul. La grande vitesse de rotation permet de générer un flux d’air vers le bas suffisamment rapide pour créer par réaction, malgré la faible densité de l’atmosphère, la sustentation requise pour soulever la masse de l’appareil soumise à la gravité martienne.

Bien sûr la masse de l’hélicoptère est faible (1,8 kg) et l’énergie embarquée étant limitée (batterie Lithium-ion rechargée par panneaux solaires sur le corps de l’hélicoptère) l’appareil ne pourra faire que de petits vols (maximum prévu de 2 à 3 minutes, par jour) d’autant que la vitesse de rotation rapide des pales doit en être très consommatrice. Ces petits vols lui permettront cependant de parcourir jusqu’à 600 mètres en distance (aller et retour!) et de monter jusqu’à 40 mètres du sol mais l’appareil pourra aussi faire du « sur-place » et cela est très important pour l’observation. Notons la taille impressionnante de ces pales : 120* centimètres (pour un corps cubique de 14 cm de côté) !  On imagine difficilement de plus gros hélicoptères martiens avec ces proportions mais ce n’est pas nécessaire si l’appareil doit simplement reconnaître le terrain sur la trajectoire d’un rover ou s’il doit prendre des photos ou analyser la composition par spectrométrie d’une roche inaccessible au rover.

*dimension pour le « diamètre » balayé (en fait deux longueurs de pales).

Entre les vols, l’hélicoptère une fois déposé au sol (détaché du « ventre » du rover) n’aura plus de connexion fixe au rover et communiquera avec lui par ondes (envoi de l’ordre de mission, retour d’images ou de données observées et renseignements sur l’état de l’appareil).

Espérons que cette démonstration technologique soit un succès. Cela faciliterait énormément les missions robotiques. Mais attention ! Sans homme en prise directe avec l’appareil (impossible compte tenu du « time-lag » entre Mars et la Terre), tout doit être programmé. L’appareil ne pourra donc servir que pour les repérages puis ensuite les observations à distance, plus que pour les collectes d’échantillons qui supposent toutes sortes de capteurs (et d’intelligence artificielle, comme on dit) qui sont probablement encore difficile à mettre au point (identification de l’objet « intéressant », descente jusqu’au sol ou en sustentation immobile à proximité, prélèvement) et qui représentent une masse complémentaire aux instruments d’observation qu’il serait de plus en plus difficile de soulever.

Image à la Une: vue d’artiste de l’hélicoptère en opération sur Mars. Crédit NASA.

Source :

NASA : note de presse 18-035 du 11 mai 2018:

https://www.nasa.gov/press-release/mars-helicopter-to-fly-on-nasa-s-next-red-planet-rover-mission