Le télescope EUCLID doit nous en dire plus sur l’énergie sombre qui étire toujours plus vite le tissu de notre Univers

En 2023, un nouveau télescope spatial de l’ESA, « EUCLID », doit quitter la Terre pour orbiter autour du point de Lagrange Terre-Soleil « L2 ». Son objectif est l’étude de l’Univers ancien, recouvrant largement la période où l’accélération de l’Expansion a commencé à se manifester en opposition à la force de gravité. Le motif sous-jacent est de tenter de comprendre ce qu’est l’énergie-sombre dont on déduit l’existence par la réalité de cette accélération et le bénéfice collatéral sera de vérifier aussi la réalité et l’importance de la matière-noire.

Si l’on ne prenait en compte que la force de gravité, l’expansion de l’Univers résultant de l’explosion primordiale, le Big-bang, devrait ralentir (s’épuiser) avec le temps. L’accélération sur-corrige très légèrement cette tendance. Mais on n’est pas arrivé à cette compréhension facilement et on a besoin aujourd’hui de précisions.

Einstein avait introduit une constante cosmologique « Λ », (lambda) dans ses équations dès 1917 (deux ans après la première version publiée de sa Relativité-générale), en lui affectant une valeur telle que dans ses calculs l’Univers restât statique car il refusait l’idée d’un univers en expansion que donnaient naturellement ses calculs. En 1922, Alexander Friedman montra que les équations d’Einstein restaient valables avec un Λ quelconque. En 1927, se fondant sur la théorie d’Einstein et sur la constatation faite par l’astronome Vesto Slipher en 1920 de l’éloignement des astres lointains (décalage vers le rouge de leur lumière), Georges Lemaître démontra que l’Univers devait être en expansion avec en conséquence au début (en remontant le temps) un « atome primitif » (qui devint le « Big-Bang »). Le concept d’expansion fut confirmé en 1929 par Edwin Hubble qui s’appuyait également sur les travaux de Slipher. Il montrait, comme Lemaître, que plus les galaxies étaient lointaines plus le décalage vers le rouge de leur lumière était marqué (elles s’éloignent à une vitesse proportionnelle à leur distance). Il en tira sa « loi de Hubble », devenue plus tard « Loi de Hubble-Lemaître » et même « Loi de Lemaître »* avec sa « constante », H0 qui de fait remplaçait Λ. En 1931, Einstein reconnut son erreur et, en proposant un modèle d’Univers en expansion continue (espace-temps Einstein-de Sitter), retira son Λ.

*Hubble avait semble-t-il une tendance à orienter fortement les projecteurs sur sa personne.

Tout était pour le mieux dans le meilleur des mondes possibles mais l’on commença à spéculer sur les modalités de l’expansion. Était-elle vraiment « continue » ? En 1998, les astrophysiciens Saul Perlmutter, Brian Schmidt et Adam Riess parvinrent à démontrer qu’en fait l’expansion accélérait très légèrement (ils obtinrent le Prix Nobel pour cela, en 2011). Finie la crainte du Big-Crunch qui aurait pu survenir par épuisement de l’impetus initial donné par le Big-Bang (lente évolution décroissante du paramètre H0 dans le temps). Mais en même temps cela eu plusieurs conséquences : (1) H0 ne pouvait plus être une « constante » et sa variabilité dans le temps la rétrocédait en « paramètre » ; (2) on pouvait « réactiver » la constante cosmologique Λ ; (3) il fallait trouver la cause de cette accélération.

C’est ainsi que fut introduit le concept d’énergie sombre (et le nouveau modèle standard de l’Univers, le « modèle ΛCDM », avec “cdm” pour “cold dark matter”). En même temps on affinait le calcul de la vitesse d’expansion et on tomba sur un autre mystère qu’il faut absolument éclaircir pour aller plus loin. En effet, on obtient 67,4 km/s/Mpc (Mpc = Megaparsec) en observant le Fond Diffus Cosmologique avec le télescope Planck et en même temps 73,3 km/s/Mpc (travaux de la Coopération H0LICOW) en utilisant le déplacement des « chandelles-standards » que sont les supernovæ « Sn1a » qui parsèment la profondeur de l’espace.

C’est ce mystère que le télescope EUCLID doit nous aider à résoudre.

Pour ce faire, il va étudier à une très grande échelle, l’effet de masse des galaxies sur la lumière des sources plus lointaines (cisaillement gravitationnel), couplé à la spectroscopie pour constater les redshift (décalage de la lumière reçue vers le rouge). Il va aussi étudier les grandes structures de l’Univers en les comparant dans l’Univers très lointain et moins lointain. Dans le premier cas, comme toute lumière est magnifiée et courbée par la masse, les galaxies situées au-devant d’autres (dans notre ligne de vue) rapprochent de nous la lumière de ces dernières (effet de loupe-gravitationnelle). Du fait de sa courbure, cette lumière est répartie en croissants autour de la galaxie-loupe. L’effet est d’autant plus fort que la masse de la loupe est importante. Et cette masse est forcément complète, c’est-à-dire qu’elle comprend aussi bien la fameuse « matière noire » que la matière visible (baryonique). EUCLID va étudier l’effet des lentilles gravitationnelles faibles aussi bien que fortes, et leur effet visuel sur les formes des galaxies cachées. Par ailleurs, en analysant par spectroscopie la lumière de ces croissants de lumière, on obtiendra un redshift donc une distance. Dans le second cas, l’effet de l’énergie noire, sur la durée, devrait donner aux grandes structures (amas de galaxies, filaments cosmiques) des aspects différents aux époques différentes, que l’on pourra comparer.

EUCLID étudiera ces phénomènes sur une très grande profondeur d’espace et de temps (jusqu’à 10 milliards d’années) et sur une très grande surface de voûte céleste (15.000 degrès2 à comparer aux 41.253 degrés2 de l’ensemble de la voûte céleste, pour les deux hémisphères). Cela facilitera les comparaisons et les étalonnages. On pourra voir à la fois l’effet progressif de l’accélération de l’expansion de l’Univers et l’effet plus ou moins fort de l’énergie sombre, ce qui permettra de mieux comprendre cette dernière. On devra pouvoir déterminer l’accélération de l’expansion à 1% près et les (éventuelles) variations d’accélération à 10% près.

EUCLID, (mauvais) acronyme pour « EUropean Cosmic aLl sky Investigator of the Dark universe » a été initié en 2008 par le « Concept Advisory Team » de l’ESA. Le projet, approuvé en 2011, pour la modique somme de 500 millions d’euros (mais le maximum pour ce type de projet), fait suite à la mission Planck dont l’objet était d’étudier le Fond Diffus Cosmologique (CMB), la limite de ce qu’on peut voir, le fond du tableau en quelque sorte. EUCLID va étudier la dynamique qui, à partir de ce fond, a permis à l’Univers de se déployer jusqu’à nous.

Les deux maîtres d’œuvre sont Thales Alenia Space (module) et Airbus (télescope). EUCLID disposera d’un miroir de 1,2 mètres qui permettra de recueillir les ondes lumineuses (instrument VIS, construit par un consortium d’instituts dirigé par le Laboratoire de science spatiale Mullard, de l’University College de Londres) et celles de l’infrarouge proche (deux instruments NISP, construits par un consortium d’instituts dirigé par le Laboratoire d’Astrophysique de Marseille – LAM ; leurs détecteurs sont fournis par la NASA). Le module de charge utile (« payload ») et le télescope lui-même sont en carbure de silicium, comme pour le télescope Gaïa. Cela présente l’avantage de la plus grande stabilité possible aux différences de températures. Comme le dit l’ESA, « Les détecteurs de NISP – spectrographe et photomètre – bénéficieront du plus grand champ visuel sur un instrument infrarouge ayant jamais volé dans l’espace ».

Derrière les constructeurs, il y a une communauté scientifique et technique impressionnante. Le « Consortium EUCLID », « EC », regroupe des scientifiques et des ingénieurs de 14 pays européens (dont la France et la Suisse avec l’EPFL et l’Uni. de Zurich) ainsi que le Canada et les USA. Il comprend 1500 membres et il est structuré avec un « lead » (ECL, Euclid Consortium Lead) et par un board (ECB). Avec les constructeurs et l’ESA, le Consortium forme la « Coopération EUCLID ».  Il tient une réunion annuelle (les « Euclid Meetings »). Le dernier, organisé par le LASTRO de l’EPFL a eu lieu à Lausanne en juin 2021, virtuellement (covid oblige !).

Le lancement se fera de Kourou en mars 2023 avec une fusée Ariane 6-2 (on avait prévu une fusée Soyouz et il y a sans doute quelques aménagements à faire car le pliage de la sonde était parfaitement adaptée à la coiffe de son transporteur !). La destination sera encore une fois le point de Lagrange Terre-Soleil L2, à seulement 1,5 millions de km de la Terre. Ce « point » présente l’avantage d’être plus loin du Soleil que nous le sommes et dans l’ombre de la Terre. Pour bien capter les rayonnements infrarouges, le télescope devra garder une température de -190°C (ce qui implique bouclier thermique et liquide cryogénique) et son positionnement devra être réglé très finement puis maintenu totalement stable (propulseurs au gaz froid). Du fait des « consommables », il ne pourra être utilisé que 6 ans.

Le montage se termine, presque tout est prêt. On attend avec impatience que ce petit bijou puisse fonctionner !

Illustration de titre : vue d’artiste du télescope EUCLID (crédit ESA).

PS: j’attire votre attention sur la conférence que Claude Nicollier va donner au Club 44 (La Chaux-de-Fonds) ce jeudi 7 avril, “L’espace des possibles – En quête de nos origines avec Hubble et son successeur”. Je rappelle qu’outre son passé, bien connu, d’astronaute, Claude Nicollier est aussi astrophysicien et professeur (honoraire) à l’EPFL (eSpace) : Club 44

Liens :

https://www.lefigaro.fr/sciences/le-satellite-europeen-euclid-va-tenter-de-resoudre-le-mystere-de-l-energie-noire-dans-l-univers-20220125

https://fr.wikipedia.org/wiki/Euclid_(t%C3%A9lescope_spatial)

https://www.euclid-ec.org/

https://sci.esa.int/web/euclid

https://www.futura-sciences.com/sciences/actualites/cosmologie-energie-noire-acceleration-expansion-univers-defie-encore-cosmologie-62378/

https://fr.wikipedia.org/wiki/Constante_cosmologique

https://sciencepost.fr/mesure-quantite-de-matiere-univers/

https://shsuyu.github.io/H0LiCOW/site/

https://fr.wikipedia.org/wiki/%C3%89nergie_noire#:~:text=En%20cosmologie%2C%20l’%C3%A9nergie%20noire,comme%20une%20force%20gravitationnelle%20r%C3%A9pulsive

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 22 03 13