De la pertinence du chiffrage d’un projet comme celui de l’établissement de l’homme sur Mars

Certains parmi mes lecteurs* aimeraient que je chiffre le coût du projet de l’installation de l’homme sur Mars. J’ai bien sûr quelques idées sur le sujet mais je voudrais dire qu’à mon avis, il n’est pas pertinent de procéder aujourd’hui à ce chiffrage. Trop dépend de l’avancement satisfaisant de technologies qui sont actuellement encore en développement.

*je pense en particulier à Pierre Baland qui a abordé ce sujet plusieurs fois.

Il y a plusieurs clefs à considérer.

La première et la plus importante est la finalisation du Starship. C’est en effet le seul véhicule qui permettrait les missions habitées en raison de sa capacité d’emport en masse (100 tonnes) et en volume viabilisable (1100 m3). Nous savons maintenant que le vaisseau lui-même peut voler (test « SN15 ») mais son lanceur (premier étage), le « SuperHeavy », n’a pas encore été testé en vol (le 9 août un “essai statique” à eu lieu, et a réussi, mais avec un seul moteur). Il faudra ensuite faire l’expérience du remplissage des réservoirs en ergols en orbite terrestre. Et nous ne savons toujours pas quand la protection thermique du vaisseau sera suffisamment efficace pour affronter son retour dans l’atmosphère terrestre. On peut avancer que la récupération du lanceur se fera parce qu’elle a été testée pour les Falcons 9 et Heavy mais nous ne savons pas comment se comporteront les 29 ou 31 ou 33 moteurs raptor du SuperHeavy fonctionnant ensemble. Pierre-André Haldi, expert en sécurité énergétique, longtemps professeur à l’EPFL, estime que les risques résultant de la défaillance d’un ou plusieurs moteurs sur la totalité sont élevés.

La deuxième clef est le fonctionnement du système de support vie. Il s’agit de respirer, de se nourrir, de contrôler son environnement microbien et de parer aux problèmes médicaux divers pendant 30 mois (deux fois six mois de voyage autour d’un séjour de 18 mois). Le défi n’est pas impossible à relever. On peut disposer de nourriture embarquée, encore consommable, sur cette durée. On pourra procéder à quelques cultures de produits-frais aussi bien pendant le vol que dans une serre expérimentale sur le sol de Mars. On pourra aussi consommer des algues vertes (spirulines) qui en même temps produiront de l’oxygène, procéder à des cultures de diverses matières organiques (viande) ou à l’élevage de petits animaux (crevettes, poissons). Le contrôle bactérien de l’environnement viabilisé sera difficile mais pas impossible si on le suit de très près et qu’on emporte avec soi, des produits anti-bactériens permettant de le réguler en cas de « dérapage ».

La troisième clef est la mise au point d’un système de gravité artificielle par force centrifuge. Il est évident qu’arriver à destination (Mars) après six mois en apesanteur peut poser problème ne serait-ce que pour les premières actions nécessaires à la survie. Il y a des tests à faire à proximité de la Terre, des adaptations à apporter au Starship pour faciliter la mise en rotation. Des concepts existent ; il faut les tester. A défaut on pourra utiliser des exosquelettes à l’arrivée sur Mars mais ce serait un pis-aller, non totalement satisfaisant (vertiges à craindre en raison d’une mauvaise irrigation du cerveau pendant les premiers heures/jours).

La quatrième clef est le transport et le bon fonctionnement sur Mars d’un « mix » de générateurs d’énergie. Ce sera bien sûr essentiellement un réacteur à fission nucléaire et il y a plusieurs candidats à considérer. Megapower pour l’énergie de base, Kilopower pour l’adaptabilité aux besoins spécifiques nécessitant peu de puissance, Kaleidos pour les besoins de puissance intermédiaire. Des panneaux solaires seront aussi embarqués, pour simple diversification et parce que ce serait trop dommage de ne pas profiter du rayonnement solaire même s’il est insuffisant. Il n’y a pas de doute que les réacteurs fonctionneront (sans doute le Megapower sera trop massif pour un premier vol, on le remplacera par un Kaleidos) et que les panneaux solaires pourront recueillir l’énergie « naturelle ». Mais le problème sera plus le fonctionnement du système (tuyauterie et fluide caloporteurs, réseau de fils électriques, radiateurs et sources froides dans une atmosphère ténue) et surtout la fiabilité/sécurité qui impliquera, dès le début, la redondance.

La cinquième clef est la production et le stockage d’ergols sur le sol de Mars. On sait comment l’obtenir (expérience MOXIE sur Mars, pour l’oxygène ; électrolyse de l’eau de la glace extraite du sol martien pour l’hydrogène – et bien sûr aussi l’oxygène ; test de faisabilité, sur Terre, de la réaction de Sabatier menée dans les années 1990 par Robert Zubrin, pour le méthane). Mais une chose est de maîtriser la réaction chimique, une autre est de la pratiquer en environnement réel (c’est déjà le cas pour MOXIE mais pas pour l’électrolyse ou la réaction de Sabatier) et de produire les quantités correspondant aux besoins. Il faudra densifier le gaz carbonique par des compresseurs, changer ou nettoyer les filtres lorsque la poussière les aura rendus inutilisables, éventuellement renouveler les catalyseurs de ruthénium, stocker le gaz dans des réservoirs (flexibles, isolant thermique, vannes). Il faudra aussi trouver un gisement de glace d’eau, en extraire la glace, la transporter à la base, éviter sa sublimation. Il faudra bien sûr prévoir et organiser le stockage de l’hydrogène, élément volatil s’il en est. Alternativement on peut prévoir d’apporter son hydrogène sur Mars mais on connait les risques de fuite et la masse ne serait pas négligeable (non impossible mais encombrant !).

La sixième clef est le choix des hommes (techniciens divers et médecins), les préparer pour la mission et bien sûr les rémunérer en fonction de leur qualification, des risques qu’ils accepteront de prendre et du temps, long, pendant lequel ils seront en formation puis en mission.

Ce n’est que sur la base de la première mission habitée et de ses résultats, notamment médicaux, qu’on pourra envisager la suite. C’est pour cela que l’on ne peut évoquer que très vaguement aujourd’hui le coût de la première mission habitée et a fortiori celui de l’installation de l’homme sur Mars. Cela ne veut pas dire que l’on ne peut pas avoir une idée assez précise de certains éléments nécessaires à la première mission puis nécessaires à la suite si médicalement il se vérifie que la qualité de vie sur Mars a été acceptable (séjour long en gravité 0,38g). Mais le point d’interrogation de la navigabilité du Starship est tel que ces calculs de détails apparaissent aujourd’hui futiles et surtout prématurés.

En fait il faut avancer progressivement, pas à pas, comme d’ailleurs le fait Elon Musk. La valorisation des actions de ses sociétés SpaceX et Tesla (et leurs nombres) qui résulte de ses très nombreux lancements de Falcon 9 pour divers clients dont, en premier lieu, la NASA, ainsi que des ventes de ses véhicules à moteur électrique Tesla partout dans le monde, lui ont permis de « mettre de côté » suffisamment d’argent pour le développement de son projet martien, via son Starship qui reste la clef la plus importante. Ce qui le freine actuellement, ce n’est pas du tout le manque d’argent, c’est la finalisation des mises au point technologiques et les tracasseries de l’administration. Je veux parler de celles de la FAA (« Federal Aviation Administration » des Etats-Unis) qui comme toute « bonne » administration vis-à-vis d’un « privé » qui a réussi, cherche à montrer son importance en ne ratant pas une occasion de lui jeter toutes sortes de bâton dans les roues. Cela est d’autant moins négligeable que nous vivons une époque « écologique » avec, aux Etats-Unis surtout, des lobbys anti-progrès extrêmement puissants.

Les grands projets ont toujours avancé comme cela. On fait des prévisions de dépenses bien sûr mais elles ne peuvent être qu’indicatives et bornées par un horizon très court car on ne sait jamais vraiment ce qui va arriver, comment les choses vont se passer. C’était vrai pour le Canal de Panama ou le Canal de Suez. C’était vrai pour le Tunnel sous la Manche (que je connais un peu car c’est ma banque qui était chef de file du projet). Ces différents projets ont éventuellement abouti mais pour des montants sensiblement différents de ceux qu’on avait envisagés, malgré des raisonnements (et des calculs!) préalables très sérieux et très précis. C’est vrai aussi pour le Starship, sans même pour le moment considérer le projet martien qui ne pourra être envisager dans ses détails, qu’après, c’est-à-dire après les tests et après les premiers vols sur la Lune. On ne parle pas ici d’une cimenterie ou d’une raffinerie de pétrole mais de quelque chose de beaucoup plus complexe et de plus incertain. Celui qui chiffrerait l’aventure martienne aujourd’hui ne pourrait donner qu’une opinion fondée sur une espérance ou des hypothèses qui peuvent très bien ne pas se vérifier ou se réaliser comme prévu. Disons simplement que les technologies nécessaires sont presque au point et qu’on y verra beaucoup plus clair après la démonstration de capacité opérationnelle du Starship.

Illustration de titre : lancement d’un vaisseau spatial Starship monté sur son lanceur SuperHeavy (futur proche, du moins je l’espère). Crédit SpaceX

Illustration ci-dessous : le bouquet de moteurs raptors devant assurer la propulsion du lanceur SuperHeavy (configuration 29 moteurs). La tour de service est bien visible sur la gauche. Crédit SpaceX.

lien: https://www.space.com/spacex-starship-super-heavy-first-static-fire

Pour (re)trouver dans ce blog un autre article sur un sujet qui vous intéresse, cliquez sur :

Index L’appel de Mars 22 08 17