RSS Feeds Plugin by BMI Calculator
premier regard sur Mars_3

Elon Musk se lance à la conquête de Mars

Le 27 septembre sera une date qui restera dans l’histoire. Ce sera le jour où Elon Musk aura présenté* pour la première fois son plan pour transporter sur Mars les hommes désirant y créer un établissement permanent et faire ainsi de l’être humain une espèce multiplanétaire. Nous soutenons sans réserve ce plan qui reprend beaucoup des éléments de l’architecture de mission proposée par Robert Zubrin, fondateur de la Mars Society, dès le début des années 1990 et qui ressemble beaucoup au projet qu’avait élaboré il y a quelques mois Richard Heidmann, fondateur de la branche française de la Mars Society (« Association Planète Mars ») qui d’autre part est ingénieur en propulsion et ancien Directeur Orientation Recherche et Technologie chez SNECMA (concepteur et constructeur des fusées Ariane).

*Au 67ème congrès de l’IAC (International Astronautical Congress) à Guadalajara, au Mexique.

Sur le fond, il s’agit d’envoyer sur Mars le maximum de masse utile au moindre coût et le plus rapidement possible, lorsque cette masse est composée d’êtres humains (problèmes des radiations et de l’apesanteur).

Elon Musk propose un vaisseau gigantesque de 49,5 mètres de haut, placé au-dessus d’un lanceur de 77,5 mètres (l’ensemble constituera ce qu’il appelle un « ITS » (pour « Interplanetary Transport System »); le diamètre est au plus large, de 17 mètres au niveau du vaisseau et de 12 mètres au niveau du lanceur. Ce lanceur monstrueux sera capable de monter 550 tonnes en orbite basse terrestre (les plus gros lanceurs tels que le Saturn V des missions lunaires Apollo ne pouvaient aller au delà de 130 tonnes). Il sera équipé de 42 moteurs Raptor (pas plus volumineux que les Marlin du Falcon 9 actuel de SpaceX mais capable de gérer une pression-chambre  de 300 atmosphères, 3 fois plus élevée que celle du Marlin!), tandis que le vaisseau spatial sera propulsé par 9 moteurs Raptor. La poussée totale sera de 13.000 tonnes (contre 3.500 tonnes pour la fusée Saturn V). Il s’agit de soulever 10.500 tonnes au départ alors que Saturn V ne pouvait soulever « que » 3000 tonnes. Pour alléger le poids au maximum, les réservoirs (c’est une première) seront en fibre de carbone.

L’idée originale d’Elon Musk est de positionner le vaisseau transplanétaire en orbite terrestre de parking sans carburant et sans passager ; puis de remplir les réservoirs par un vaisseau « tanker » identique au vaisseau mais rempli d’ergols, en fait un énorme réservoir ; enfin d’amener les passagers dans un vaisseau taxi. Bien entendu les lanceurs du vaisseaux habitat et du tanker, redescendront sur leur pas de tir, seront reconditionnés puis réutilisés (la réutilisation est un des apports majeurs d’Elon Musk à l’astronautique)

L’ITS, grâce à la quantité d’ergols emportée (méthane brûlant dans l’oxygène), peut rejoindre Mars en seulement 150 à 90 jours (la durée dépendra de la masse hors carburant transportée) au lieu des 180 jours minimum des missions actuelles.

Il se posera sur Mars en entier et à la verticale en utilisant la rétropropulsion à partir d’une vitesse de descente initiale de 8,5 km/s (comme la fusée de Tintin et toujours grâce à la masse énorme d’ergols importée de la Terre). Il est en effet trop lourd pour être freiné par parachute(s). Le retour du vaisseau seul (sans nouveau lanceur car le puits de gravité martien est moins profond que celui de la Terre) se fera avec des ergols produits sur Mars selon la technologie bien connue utilisant la réaction de Sabatier (recommandée par Robert Zubrin en 1990).

Compte tenu de ce système et en supposant bien sûr un grand nombre de vaisseaux (construits, entretenus, renouvelés) en service et réutilisés entre 12 et 15 fois , le coût du transport serait au début de l’ordre de seulement 200.000 dollars par passager (du fait des économies d’échelle). Il pourrait descendre rapidement à 140.000 dollars et à terme à 90.000 dollars. C’est parce que les prix seront bas que l’on pourra aussi compter sur de nombreux « clients ». Après une période assez courte (fin du XXI ème siècle?) la population martienne pourrait atteindre un million de personnes…et parmi eux certains commenceront à regarder encore plus loin (création de dépôts de carburant dans la ceinture d’astéroïdes, pour servir de relais vers les lunes de Jupiter ou de Saturne, Pluton et la ceinture de Kuiper).

Le lancement vers Mars du premier ITS est envisagé pour 2022. Dans l’immédiat SpaceX continue la mise au point du Raptor (première mise à feu réussie) et perfectionne sa capsule Dragon pour la rendre opérationnelle jusqu’à la surface de Mars (premier lancement en 2018 et second lors de la fenêtre de tir suivante, en 2020).

Un seul regret sur le plan astronautique : Elon Musk n’a pas parlé de remédiation à l’absence de gravité pendant le voyage. Richard Heidmann avait pensé comme l’avait préconisé Robert Zubrin, a recréer une gravité artificielle par force centrifuge. En l’occurrence, il faudrait lancer deux ITS en même temps, les relier par un filin et mettre le couple en rotation.

Le sujet du support vie n’est pas abordé non plus. Il faut espérer que l’on fasse des progrès pour qu’il devienne vraiment régénératif (MELiSSA). En l’état de nos connaissances, il devrait cependant être suffisamment performant pour un voyage court comme celui considéré. Une fois sur Mars on peut envisager, en dehors de la régénération naturelle de type MELiSSA, des correctifs chimiques produits sur Mars à partir des ressources martiennes.

La vie de l’homme sur Mars (au delà du support vie, la construction et l’entretien de la base, les transports planétaires) n’est pas non plus considérée. Disons que c’est en dehors de son sujet. Il dit d’ailleurs que son seul but est de rendre possible le transport (sous entendu d’autres devront se poser la question de la vie de l’homme sur Mars et y répondre).

La recherche scientifique n’est pas non plus évoquée. Il faut évidemment espérer que le peuplement de cette terre vierge se fasse avec le plus grand respect possible de l’environnement. Il faudra y veiller mais la rareté sur Mars des matières organiques et de l’eau, forcera à la non dispersion des déchets et à leur recyclage très complet.

Reste le problème du financement. Pour le moment Elon Musk n’a pas de solution précise. Il compte sur le succès de ses entreprises, la possibilité de lever des fonds dans le public et auprès d’investisseurs, au fur et à mesure de la progression positive de son projet. Il pense aussi que les agences suivront après démarrage de l’initiative. Mais de toute façon les sommes ne seraient pas énormes par les temps qui courent. Il les estime « seulement » à une dizaine de milliards de dollars.

Les dés sont jetés. On to Mars !

Image à la Une: « Premier regard sur Mars ». Flottant dans le vaisseau géant qui l’emporte sur Mars, une passagère jette un premier regard sur sa nouvelle planète. Crédit image: SpaceX.

lien vers la présentation d’Elon Musk diffusée sur YouTube (elle commence à la minute 21:55): http://www.spacex.com/Mars

Voir aussi l’article d’Olivier Dessibourg dans Le Temps du 28 septembre 2016, page 10 (sciences).

Images ci-dessous: coupe de l’ITS, crédit Space X. La première image (1) montre le lanceur (77,5 mètres) qui est le cylindre à gauche et le vaisseau spatial (49,5 mètres) qui est la pointe renflée à droite. La deuxième image, en dessous (2), montre le vaisseau après séparation du lanceur. La séparation se fait en orbite terrestre; le lanceur redescend sur Terre où il sera reconditionné et réutilisé; le vaisseau spatial part vers Mars propulsé par ses 9 moteurs Raptor. Il y arrivera après un voyage de 90 à 150 jours. Vous pouvez voir la baie vitrée de « l’image à la une » tout en haut de l’image (2), à la pointe du vaisseau.

(1)

ITS

(2)

Coupe du vaisseau

Blog_64_Nasa_Don_Pettit_ISS_expedition_6_2003

Il faut de tout pour faire un monde

Dans mon billet précédent j’ai parlé de Mars comme Université. Je voudrais mettre aujourd’hui le projecteur sur les autres activités, celles des habitants qui feront fonctionner la première colonie de mille habitants, telle que nous l’avons étudiée avec mon ami Richard Heidmann.

Outre les scientifiques, les ingénieurs et les touristes, toutes les professions seront représentées dans cette Colonie. En effet les « Martiens » devront faire face à toutes les sollicitations d’une vie active, à tous les besoins de service (y compris ceux de policiers, de juges, de psychiatres, de banquier) et à la production de presque tous les biens tangibles nécessaires à cette vie car il ne pourra y avoir que très peu de recours aux importations. D’abord parce que les arrivages sur Mars ne seront possibles que tous les 26 mois (il faudra attendre que les deux planètes soient en position favorable l’une par rapport à l’autre en raison de la mécanique céleste), ensuite parce qu’on cherchera toujours à limiter les masses importées (et l’encombrement) en raison du coût du transport et du volume utilisable des soutes des vaisseaux spatiaux. Dans le même esprit on limitera aussi le nombre de personnes faisant fonctionner la Colonie puisque leur transport, le volume de leur habitat, leur maintien en bonne santé et leur rémunération coûteront fort cher. La société martienne sera donc extrêmement mécanisée et robotisée.

Les deux premières solutions pour atténuer ces contraintes, seront bien sûr les télécommunications avec la Terre* et l’impression 3D, la troisième sera un recrutement extrêmement rigoureux du personnel fonctionnel sur des critères de compétence et d’ingéniosité (on pourrait aussi parler de débrouillardise).

*NB : Il ne faut pas oublier que la vitesse de la lumière n’étant « que » de 300.000 km/s, le temps nécessaire à une information pour parvenir jusqu’à l’autre planète va de 3 à 22 minutes.

On aura donc une société extrêmement informatisée avec des personnes exerçant des fonctions très sophistiquées et d’autres moins mais auxquelles le contexte de l’environnement martien imposera des exigences élevées. Regardons en de près quelques-uns :

Le ménage par exemple. Ce ne sera pas une petite affaire et l’effectuer (largement en surveillant des robots) constituera une lourde responsabilité. Il consistera en effet à contrôler très sérieusement la viabilité des zones habitées. Cela signifie qu’il faudra non seulement enlever les poussières mais en prendre des échantillons qu’on analysera pour vérifier que le contenu rapporté de l’extérieur est minimum (risque de silicose ou d’empoisonnement aux perchlorates), vérifier la composition atmosphérique de chaque bulle de vie et remédier aux déséquilibres de proportions de gaz ou de pression ; examiner les parois, les meubles et les sols pour stopper une éventuelle prolifération de bactéries ou de champignons ; contrôler les analyses bactériologiques de l’air et de l’eau effectuées grâce aux capteurs MiDASS. Mais ce n’est pas tout. L’environnement extérieur Martien est fragile et sujet d’études. Il n’est pas question de le polluer et de le transformer avant de le connaitre. Les « ingénieurs-sanitaires » devront donc traiter les « poussières » et déchets pour les recycler ou les détruire (pyrolyse ?), les cendres devant probablement être isolées dans des containers étanches.

Pour prendre un autre exemple, le cuisinier, qui sera plus un « cuisinier-diététicien », devra gérer l’environnement sanitaire de ses produits avec un soin extrême et penser toujours que (1) on ne gâche rien (puisque tout est si difficile à produire), (2) toute matière, organique ou autre, doit être autant que possible recyclée et (3) la nourriture n’est pas faite que pour le plaisir mais doit d’abord permettre de survivre dans des conditions diététiques idéales.

De manière générale une profession très demandée sera celle d’« ingénieur-bricoleur ». En dehors de l’utilisation de l’imprimante 3D pour renouveler le petit outillage ou les meubles, il faudra réparer, faire fonctionner des machines complexes ou simples, fatiguées par l’usage ou simplement victime de défaillances. On ne jettera (presque) rien sur Mars. Avant de mettre une machine en pièces ou au rebut, on cherchera à la réparer ou à la réutiliser d’une manière quelconque, en entier ou en partie.

Pour régler les rapports entre les gens il faudra introduire l’argent et on aura donc aussi une banque (et un ou deux banquiers) sur Mars. On ne peut en effet envisager de soumettre des personnes différentes, dont le seul intérêt commun sera d’avoir choisi de résider sur Mars pendant 18 mois, au même rythme de vie, ou de leur imposer les mêmes consommations. Pendant leur temps libre, certains voudront sortir aussi souvent que possible, d’autres seront heureux de rester dans la Colonie devant leur ordinateur. Certains voudront faire du sport, d’autres regarder des films, ou les deux en proportion variées. Certains solliciteront énormément les installations communes, d’autres très peu. La seule façon de gérer la situation et les tensions sera de donner un prix aux biens et services et de les faire payer.

Cette monétarisation des relations sera aussi le moyen d’introduire dans la société les professionnels individuels qui auront choisi de tenter leur chance sur Mars en indépendants (en accord avec l’administration de la colonie), soit avant de quitter la Terre, soit une fois sur place. Leur succès sera matérialisé par les revenus qu’ils tireront de leurs services à la Société d’exploitation de Mars, aux autres résidents ou à la Terre lointaine. Mais avant d’entreprendre, ils auront peut-être aussi besoin d’emprunter. D’autres résidents de leur côté auront peut-être envie d’investir. L’intermédiation bancaire sera pour eux indispensable.

Il faut, dit-on, « de tout pour faire un monde » et dans ce monde naissant presque tous les métiers seront donc exercés. Maintenant, comme la population sera très faible, il faut aussi envisager qu’une même personne en exerce plusieurs (en fonction de leur complexité et de la difficulté intellectuelle à les maîtriser). Mars sera le monde de la souplesse et de l’adaptabilité. Tout problème devra être traité d’une manière ou d’une autre, car très souvent la vie, de soi-même et des autres, sera en jeu.

Image à la Une: Le type même de l’ingénieur bricoleur. Dan Pettit, astronaute de la mission 6 de l’ISS (2003), en pleine activité (crédit NASA).

Blog_63_UVA rotunda_treeless_

Voir Mars comme une Université

J’ai récemment travaillé avec mon ami Richard Heidmann, polytechnicien (français) et fondateur de la Mars Society française (« Association Planète Mars« ) sur une étude concernant la viabilité économique d’une première colonie martienne. Elle comprendrait un millier de personnes, taille optimum qu’on pourrait atteindre avec les technologies (presque) d’aujourd’hui.

La faisabilité d’une telle Colonie repose sur la réussite du projet d’Elon Musk de « Mars Colonization Transport » (« MCT »). Il s’agit de la mise au point d’un lanceur super lourd capable de déposer en surface de Mars 100 tonnes ou 50 personnes et 50 tonnes. Le coût de ce lanceur serait raisonnable en raison de sa réutilisabilité, pourvu bien sûr qu’il soit construit en un minimum d’exemplaires (on en envisage une dizaine) et que les vols soient suffisamment fréquents malgré la contrainte imposée par la fenêtre de tirs qui ne s’ouvre que tous les 26 mois (NB : Elon Musk doit dévoiler les détails de son projet de MCT lors du prochain congrès IAC -International Astronautical Congress-, entre le 26 et le 30 septembre à Guadalajara, Mexique).

Nous avons estimé qu’une mission de 30 mois y compris deux fois six mois de voyage (avec utilisation du MCT) et 18 mois de séjour en surface de Mars, coûterait pour une personne, en l’état actuel de nos capacités technologiques pour construire également la base, la viabiliser et la maintenir viable, de 6 à 8 millions de dollars (3,2 millions de dollars par an).

Le montant est élevé mais il n’est pas invraisemblable d’envisager que des Terriens consentent à le payer. Le problème se pose vraiment sur la durée car on ne peut raisonnablement envisager que de telles dépenses soient indéfiniment à la charge des promoteurs du projet (personnes publiques ou privées) sans retours financiers suffisants. Il faudra que, tôt ou tard, la Colonie devienne rentable, c’est-à-dire qu’elle s’autofinance ou qu’elle génère par la vente de services proprement martiens, la couverture de ses coûts de fonctionnement et de développement (oubliez les exportations de pondéreux, les transports sont trop chers !).

Le coût c’est bien entendu l’importation des équipements que l’on ne peut fabriquer sur place (nombreux au début, malgré l’impression 3D), bien sûr les transport de personnes (aller et retour !) et leur rémunération ainsi que le fonctionnement du support vie (ECLSS et de plus en plus MELiSSA) pendant leur séjour.

La population martienne comprendra d’abord le personnel indispensable au fonctionnement de la Colonie. Compte tenu de la difficulté et de la complexité de l’implantation dans un milieu aussi hostile et éloigné, on évalue cette population « fonctionnelle » à environ la moitié des mille personnes. Les autres (les « hôtes payants ») seront des scientifiques, des professionnels indépendants et des touristes. Tous seront des personnalités remarquables dans leur domaine car il faudra être très compétent (et ingénieux) pour aller sur Mars. Même les « touristes » seront des gens, certes passionnés d’espace mais aussi ayant « réussi » leur vie professionnelle, riches d’une expérience et d’une capacité à la transmettre. On aura donc rassemblé dans ce milieu isolé une somme considérable de « cerveaux », tous disposant à un moment ou à un autre de temps libre qui leur permettra d’échanger…ou de former. Ce sera une « ressource » martienne évidente, dont on ne trouvera l’équivalent que dans quelques-unes des meilleures universités terrestres.

Il serait donc logique que des étudiants de haut niveau (doctorants) s’intéressant à des sujets dont le contexte martien favorisera l’étude, viennent sur Mars pour rassembler les dernières données d’observation nécessaires à leur diplôme, pour les analyser, les interpréter et publier leurs recherches sous le contrôle de ces personnes compétentes. On peut penser à des géologues ou à des exobiologistes mais aussi à des ingénieurs étudiant la résistance des matériaux ou des biochimistes travaillant sur les systèmes de support vie, ou des sociologues s’intéressant aux relations en milieux isolés fermés, des nutritionnistes, des agronomes, etc…

Alors oui, le prix à payer sera « un peu » cher pour des étudiants mais certaines recherches pourront apparaître comme particulièrement intéressantes à des industriels désireux d’exploiter de nouvelles connaissances et obtenir de nouveaux brevets pour des applications terrestres. Ce seront eux leurs financiers (on retrouve la même implication entre industrie et recherche sur Terre).

Au total ce sera un petit nombre de personnes, peut-être en régime de croisière une cinquantaine d’étudiants provenant de tous les points du globe terrestre. L’université fonctionnerait, en rapport avec les grandes institutions terrestres, avec très peu de personnel dédié (trois ou quatre administrateurs) et beaucoup de professeurs à temps partiel (les chercheurs et professionnels résidents). Le rôle des administrateurs serait un rôle d’organisation, de gestion et de diffusion.  Outre la publication de recherches, on peut concevoir aussi que les scientifiques produisent dans ce cadre des MOOC à l’attention du monde entier.

Avec le temps, le coût des voyages baissera, les résidents permanents deviendront plus nombreux, ils auront des enfants et ceux-ci seront évidemment éduqués. Parallèlement les étudiants terrestres auront moins de difficultés à se payer le voyage puisque le prix aura baissé. Ensemble avec les Martiens natifs, ils étofferont petit à petit les effectifs des étudiants, et des professeurs.  Mars deviendra ainsi ce à quoi sa nature la prédisposait, un des « pôles » de l’activité intellectuelle de notre civilisation nouvellement multiplanétaire.

Image à la une : « Grounds » of the University of Virginia (« UVA »), Charlottesville, « mon » université (conçue et construite par Jefferson, au pied de sa résidence de Monticello). Bien sûr l’Université Martienne ne ressemblera pas à cette belle construction classique mais pour les Martiens la recherche continue du Progrès et le culte de l’Ingéniosité seront tout aussi importants que pour le Concepteur de l’UVA. Jefferson en effet était un homme qui tout en ayant une grande culture classique s’intéressait énormément aux Sciences et recherchait constamment les solutions pratiques pour faciliter la vie quotidienne. Il aurait été un parfait Martien!

Astronomer Chris Impey examines the possibilities of the universe in his new book Beyond. "I like the idea that the universe — the boundless possibility of 20 billion habitable worlds — has led to things that we can barely imagine," he says. In the 1970s, NASA Ames conducted several space colony studies, commissioning renderings of the giant spacecraft which could house entire

Un fantasme écologique dans l’espace

Transposons-nous par la pensée à l’époque, j’espère prochaine, où l’on aura décidé de construire des îles-de-l’espace de type « Île-3 » (cylindre de 32 km de long et de 8 km de diamètre) autour du Point de Lagrange L5 avec des matériaux lunaires, comme le préconisait le physicien Gerard O’Neill dans les années 1970.

Avant d’introduire dans ce type d’habitat, une population humaine nombreuse et de ce fait impossible à évacuer en urgence, il faudra le tester pour en équilibrer l’écologie de telle sorte qu’il soit vivable. Pour ce faire je pense que la meilleure solution sur le plan écologique mais aussi économique serait, après avoir terraformé les 400 km2 de sol du premier cylindre, ou plutôt les 800 km2 des deux premiers (côte à côte en rotation sur eux-mêmes en sens contraire pour une meilleure stabilité), d’y introduire des populations d’animaux (version alternative de l’arche de Noé). L’un des cylindres serait climatisé aux températures moyennes / froides, l’autre le serait aux températures chaudes / moyennes. On y trouverait des grands bassins et des rivières, des forêts et des savanes. On y apporterait quelques couples de chaque espèce en nombre correspondant à leur rapport écologique le plus équilibré sur Terre. Il y aurait des grands mammifères et des petits, des oiseaux, des poissons, des insectes et des microbes, des végétariens et des carnassiers, des omnivores, des insectivores, des charognards, tout ce qu’il faut pour « faire un monde », tout sauf l’homme. A noter que plus le volume de l’habitat sera grand, plus l’instabilité de son écologie sera réduite, les micro-déséquilibres pouvant être compensés par la stabilité du reste de l’écosystème (effet tampon). Il sera donc probablement moins difficile de réguler le volume d’île-3 que celui d’île-1 (beaucoup plus petit).

Nous serions les démiurges et les observateurs de ce paradis terrestre avant Adam et Eve. Nous en réglerions la température, l’équilibre atmosphérique gazeux (pression, teneur en oxygène mais aussi en azote, CO2, méthane, et autres gaz), l’hygrométrie. Nous en contrôlerions la population en prélevant les vies animales en surnombre et en introduisant celles qui s’avéreraient manquer (les moustiques sont-ils nécessaires au Paradis ?) ou être insuffisantes et nous ferions de même avec les espèces végétales. Nous en contrôlerions le microbiome en observant la naissance des déséquilibres et en nous efforçant d’y faire face (sans aucun doute le plus difficile !). L’observation d’une telle biosphère serait pour les écobiologistes de toutes disciplines un terrain d’étude et d’expérimentation extraordinaire. Biosphère-2 supposait la présence de l’homme et l’ambition de l’inclure dès le début dans le système a peut-être été une erreur (mais nous aurons demain de plus en plus de capteurs qui nous permettront d’intervenir en amont de déséquilibres difficilement réversibles). Il est sans doute préférable de commencer sans lui en procédant par ajustements/apports successifs d’autres êtres vivants, de telles sortes que des copies de cet « Eden-2 » deviennent un jour habitables, par l’homme, en toute sécurité.

Bien sûr, l’habitat serait accessible aux chercheurs et techniciens divers nécessaires à son fonctionnement et à son réglage ou rééquilibrage continuel et de plus en plus précis (« pilotage ») mais ce serait toujours l’objet de missions courtes, rendues possibles par l’accessibilité de L5 à partir de la Terre en toutes périodes de l’année, pas de séjours longs. Mais in fine, l’horloge d’Eden-2 resterait éternellement fixée au milieu du « Sixième Jour ».

Parallèlement, Eden-2 pourrait faire l’objet de visites virtuelles de Terriens non nécessaires au fonctionnement de l’île, visites rendues très faciles par la présence de capteurs en tous lieux. On pourrait même, à un certain stade, envisager des séjours physiques de petits groupes de chasseurs ou de touristes stationnés dans des lodges. Ces visites pourraient être source de revenus importants qui financeraient au moins partiellement la gestion de l’ensemble. Surtout, Eden-2 puis d’autres îles de l’espace dédiées, deviendraient des conservatoires de notre faune et de notre flore (les seuls de l’Univers accessible ?) ou seraient élevés en particulier les animaux et les plantes menacées et devenues rares sur Terre, l’avantage étant que l’accès en serait par nature strictement contrôlé (plus de braconniers pour tuer les éléphants ou les rhinocéros!). Elles pourraient fonctionner en symbiose avec les banques de gènes et de spores établies sur Mars (du type Svalbard Global Seed Vault). Elles pourraient aussi servir de réserve d’animaux qui seraient exportés après sevrage vers d’autres îles de l’espace. On peut imaginer ainsi qu’une autre île de la région L5, achète un couple d’éléphants. On ferait gravir aux éléphanteaux la « montagne » à l’une des extrémités du cylindre menant vers l’embarcadère qui se trouverait au niveau de l’axe de rotation. Plus les animaux monteraient vers cet axe, plus leur masse aurait un poids léger jusqu’à devenir nul (puisque la force centrifuge serait à ce niveau devenue nulle). On les conditionnerait alors pour leur transfert et un taxi les emporterait avec une très faible impulsion (très faible masse d’énergie, donc faible coût) n’importe où dans la région.

Dieu ayant été imprudent en introduisant l’homme au Paradis, comme l’Histoire l’a si bien prouvé, les Nouvelles Terres habitées par l’homme seraient ainsi créées en dehors du Paradis, dans des îles de l’espace séparées. Il faut toujours tirer leçon de l’expérience!

Image à la Une : illustration de Rick Guidice, réalisée sur les indications de Gerard O’Neill, représentant l’intérieur d’un cylindre « île-3 ». Crédit Rick Guidice/NASA-Ames Research Center.

Proxima Centauri Localisation

Le « pale-red-dot » de Proxima-b une étape sur le chemin de Pandora?

Il ne faut pas qualifier trop vite de « Nouvelle Terre » l’exoplanète « Proxima-b » dont la découverte a été confirmée dans Le Temps du 25 août ! La comparaison avec notre Terre ne peut se faire qu’en prenant en compte d’une part la masse de son étoile, Proxima Centauri, par rapport à celle du Soleil, et d’autre part la distance de Proxima-b à Proxima Centauri par rapport à la  distance de la Terre au Soleil, ainsi que la masse et la densité de Proxima-b par rapport à celles de la Terre. Cela donne des résultats dont l’intérêt est certain mais qu’il ne faut pas exagérer.

Selon ces critères, sa masse de 1,30 fois celle de la Terre et sa densité (roche et non gaz) font bien de Proxima-b une sœur de notre planète. Un homme sur son sol aurait à peu près la même sensation de pesanteur que sur Terre. Notons que la détection d’une planète rocheuse de la taille de la Terre est d’autant plus difficile que l’on en est éloigné et que c’est bien parce que Proxima Centauri est l’astre le plus proche du Soleil (4,23 années lumières soit 45.000 millards de km) que l’on a pu déceler la présence de Proxima-b malgré sa petite taille (on ne la « voit » pas, on la « perçoit » indirectement par des oscillations infimes de son étoile résultant de son jeu gravitationnel avec elle).

La température moyenne au sol (estimée à -30°C/+30°C) de Proxima-b est un autre critère de ressemblance. Combiné à la masse et à la densité il permet effectivement d’envisager de l’eau liquide en surface…pourvu que la planète ait une atmosphère et que la pression de cette atmosphère au sol se situe sensiblement au-dessus du point triple de l’eau (611 pascal, soit 0,61 % de notre pression atmosphérique au sol).

C’est tout ce qu’on peut dire de positif sur cette planète ; les autres données que l’on a recueillies ne font pas d’elle un endroit très hospitalier. En effet, si la température en surface est relativement « douce » c’est bien sûr que la distance à l’étoile est adéquate mais le résultat est obtenu grâce à une combinaison qui est loin d’être « plaisante ». Proxima-b doit être très proche de son étoile, et elle l’est effectivement (7 millions de km seulement alors que Mercure se trouve à 36 millions de km et la Terre à 150 millions), parce que cette étoile est une naine rouge, dix fois moins massive que le soleil et mille fois moins lumineuse (et moins chaude). Plus éloignée, elle serait glacée. Cette proximité n’est cependant pas sans conséquences négatives. D’abord la force de gravité de l’étoile a bloqué la planète dans sa rotation sur elle-même (« tidal locking »). Comme la Lune par rapport à la Terre, Proxima-b présente toujours la même face à Proxima Centauri. Il faut donc imaginer d’une part une face sans nuit et chaude, et d’autre part une face sans jour* et froide. Par ailleurs Proxima Centauri est une sorte d’étoile avortée et instable du fait de sa faible masse. Elle n’expulse pas l’énergie résultant de la combustion de son hydrogène par radiations mais par mouvements physiques de plasma. Aussi les mouvements de convection internes génèrent un champ magnétique permanent mais irrégulier et l’énergie magnétique est libérée par des éruptions violentes qui peuvent comporter énormément d’ultraviolets durs (« C ») et de rayons X. Ces émanations et radiations balayent très fréquemment la surface de Proxima-b.

* la lumière parvenant des deux autres étoiles (Alpha Centauri A & B) du système triple dont fait partie Proxima Centauri ne peut pas éclairer fortement Proxima-b et ceci bien qu’Alpha Centauri A soit une étoile de la classe du Soleil, car Proxima Centauri est séparée de ses deux compagnes par quelques 13.000 UA (1 UA = distance Terre / Soleil) soit 2.000 milliards de km (rappelons pour comparaison que la distance moyenne de Pluton à la Terre est de 6 milliards de km).

La configuration de Proxima-b n’incite donc pas à une quelconque mission habitée…d’autant que, avec les moyens d’aujourd’hui, il faudrait 19.000 ans pour l’atteindre dans le meilleur des cas (vitesse de 240.000 km/h acquise par la sonde Hélios 2 de la NASA grâce à la très forte gravité solaire). Pour aller plus vite, la presse a parlé récemment du projet « Breakthrough Starshot » du Russe Youri Milner, cautionné par Stephen Hawking. Il s’agirait de propulser des voiles dans l’espace avec de la lumière provenant de très puissants rayons lasers (lumière cohérente sur de très longues distances), vieux concept imaginé au début des années 1980 par Robert Forward dans son magnifique roman « Flight of the Dragonfly ». On pourrait ainsi atteindre 20% de la vitesse de la lumière et donc faire le voyage en vingt ans. « Petit » problème : il faudrait énormément d’énergie pour générer ces rayons lasers et aussi pour freiner le vaisseau lorsqu’on serait arrivé à destination (et il n’y a personne de l’autre côté !). On est là dans le domaine de la science-fiction même si la science « dure » n’est pas loin.

On sera donc encore longtemps condamné à simplement observer la planète, faire de l’astronomie et non de l’astronautiquemais ce n’est déjà pas si mal. On le fera certainement de mieux en mieux, ne serait-ce qu’avec les grands télescopes de l’ESO dans le désert chilien, dans l’espace avec le JWST, successeur de Hubble, ou autres (voir ci-dessous*). C’est d’ailleurs cela qui intéresse les astronomes du groupe « Pale Red Dot » qui se sont regroupés pour l’identification et l’approfondissement de nos connaissances concernant Proxima-b. C’est une aubaine pour eux que l’étoile la plus proche gouverne une planète rocheuse à peu près de la taille de la Terre. Cela va leur permettre de tester et d’améliorer leurs moyens d’observation des exoplanètes, indirects et un jour directs.

Autre intérêt : avoir trouvé Proxima-b si près de nous implique que les exoplanètes de ce type ne sont pas rares et que l’on en trouvera bien d’autres dans notre environnement proche (c’est-à-dire juste un peu plus lointain) au fur et à mesure de l’amélioration de la précision de nos instruments d’observation et des théories de nos astronomes. Ce qui serait « formidable » ce serait de découvrir une planète semblable à la Terre juste à côté, dans le monde d’Alpha Centauri A qui est, elle, un vrai « soleil ». Rappelons que Pandora la « planète » du film Avatar de James Cameron, est une lune (pour le moment totalement hypothétique) qui orbite autour de Polyphème, une géante gazeuse (également aujourd’hui hypothétique) située dans la zone habitable d’Alpha Centauri A. Selon James Cameron l’action se déroule en 2154! Si les astronomes débusquent un jour Pandora ou sa sœur, nul doute que ce serait un aiguillon très efficace pour développer les moyens astronautiques nécessaires pour l’atteindre.

Image à la Une : localisation et composition de notre système stellaire voisin, Alpha Centauri. Crédit organisation Pale Red Dot.

Autre image (ci-dessous) : vue d’artiste de Proxima Centauri à partir du sol de Proxima-b. Crédit : ESO.

liens :

vers le projet « Pale Red Dot » :

http://www.palereddot.org

vers l’initiative « Breakthrough Starshot » :

https://breakthroughinitiatives.org/Initiative/3

*NB: Les astronomes du projet « Pale Red Dot » qui, pour le nom, se sont inspirés du « Pale Blue Dot » de Carl Sagan ont utilisé l’instrument « HARPS »  (High Accuracy Radial Velocity Planet Searcher) annexe du télescope de l’ESO de 3,6 mètres de diamètre de l’Observatoire de La Silla au Chili. Ils continuent avec les réseaux d’observatoires de « LCOGT » (Las Cumbres Observatory Global Telescope Network) et de « BOOTES » (Optical Observer and Transient Exploring System).

Vu de Proxima Centauri de Proxima-b_so1629a-1038x576

Blog_61_MiDASS_modules_1_&_2

MiDASS un résultat de la recherche MELiSSA promis à un brillant avenir

MiDASS (« Microbial Detection in Air System for Space ») est l’exemple de ce que la recherche spatiale MELiSSA peut apporter à la vie sur Terre. L’appareil résulte d’une coopération proposée dans ce cadre par l’ESA à BioMérieux, cette société leader mondial des diagnostiques infectieux in vitro (bactéries, champignons, virus) étant évidemment le meilleur partenaire possible (JV 50/50). L’objet premier de MiDASS est le contrôle des équilibres microbiens dans l’habitat d’un vaisseau spatial mais l’intérêt qu’il présente imposera son usage dans tous les milieux clos habités.

Comme nous l’avons vu précédemment, l’un des risques majeurs pour les équipages des missions habitées de longue durée dans l’espace profond, sera les déséquilibres microbiens survenant dans leur environnement. Les sources et les vecteurs possibles sont multiples. Il peut s’agir des membres de l’équipage eux-mêmes, des matériaux divers qui les entourent et qui se seront dégradés, des aliments qu’ils auront pris avec eux, de l’air qu’ils respireront, de l’eau qu’ils utiliseront.

Jusqu’à présent le seul moyen d’identifier un microbe pathogène, c’était d’en faire la culture et on obtenait les résultats, l’identification, dans un délai allant de 48 heures à une semaine (dans la mesure où le microbe était facilement cultivable !). Dans un milieu clos très petit, comparable en fait à une (très) grosse boîte de Petri, ce délai est généralement suffisant pour que la présence du microbe se généralise. La correction reste possible mais elle est tardive et coûteuse (ne serait-ce qu’en termes de masse de produits correctifs à utiliser). MiDASS est le premier système totalement automatisé, de l’échantillonnage au résultat, applicable à l’analyse microbienne de l’atmosphère ou aux surfaces (on parle de « détecter et quantifier la charge bactérienne ou fongique »). Il est basé sur une analyse moléculaire de type « NASBA » pour « Nucleic Acid Sequence Based Amplification », une méthode utilisée pour amplifier les séquences ARN des micro-organismes sélectionnés (après capture et lyse de ces microorganismes). On peut atteindre avec elle des niveaux très fins de début de contamination, à des seuils de risque prédéterminés (évalués en « CFU », pour « Colony-Forming Units », par m3). L’obtention des résultats est extrêmement rapide (moins de 3 heures !) et l’on sait combien le délai de réaction est important vis-à-vis de populations bactériennes qui se reproduisent à très grande vitesse (à noter qu’en plus les conditions d’apesanteur favorisent la prolifération bactérienne). Autre avantage, l’appareil peut traiter une vingtaine d’échantillons par jour.

Il fonctionne aujourd’hui en prototype pour l’atmosphère des habitats spatiaux (instrument, réactifs, consommables et software) avec une très grande sensibilité (une cellule par m!) et on cherche à l’adapter pour l’eau (alimentaire et hygiène). C’est notamment le travail de la doctorante Anne-Laure Béchy (Laboratoire de Biométrie et Biologie Evolutive de l’Université Claude Bernard Lyon 1, en liaison, « UMR », avec le CNRS et avec Biomérieux). Si elle réussit (ce qu’on lui souhaite de tout cœur), on aura ainsi la possibilité de contrôler les deux vecteurs les plus dangereux dans un habitat confiné.

On voit bien les retombées que cette recherche peut avoir sur Terre pour les locaux hospitaliers, les systèmes d’air conditionnés d’immeubles de bureaux, les canalisations d’eau potables ou sanitaires. On voit aussi que l’expansion de l’homme dans l’espace c’est l’extension de son domaine de vie. Nous nous y transporterons avec notre coquille. Le principe étant que celle-ci doit être la plus petite, la plus légère mais aussi la plus fiable possible, en quelque sorte une quintessence de coquille. Cela n’est possible que si nous en connaissons les composants et que si nous contrôlons leur évolution. Pour être plus précis, à l’intérieur de la coque rigide de l’habitat du vaisseau spatial, il faudrait voir cette « coquille » comme un nuage d’êtres vivants (évidemment microscopiques) qui enveloppe et pénètre chacun des membres de l’équipage en se mêlant à celle de l’équipage tout entier et en se lovant à l’intérieur des parois du vaisseau. Nous voyagerons avec notre microbiote et celui des autres passagers dans notre propre microbiome et dans le microbiome commun. MiDASS sera l’outil incontournable du pilotage de ce microbiome.

(dernier billet d’une série de sept sur MELiSSA)

Image à la Une :  prototypes d’appareil MiDASS pour usage atmosphérique. Ils sont évidemment miniaturisé car ils devront être embarqués ! Crédit ESA/Biomérieux.

Blog_60_FIPES_6fd681b8-5b66-11e4-b7f4-d2d5f283df81

Oïkosmos clef de voûte de MELiSSA

Le programme Oïkosmos est mené à l’UniL par Théodore Besson, doctorant, sous la direction du Professeur Suren Erkman, au sein de son groupe Ecologie industrielle (Institut des dynamiques de la surface terrestre, Faculté des Géosciences et de l’Environnement). Théodore va défendre sa thèse sur le sujet en Octobre.

Le principe d’Oïkosmos est de déterminer et de faire progresser / évoluer un agenda de recherches micro-écologiques ayant pour objectifs la préparation d’un habitat spatial autonome opérationnel mais aussi, en parallèle, l’exploitation systématique des résultats pour une meilleure gestion de notre environnement terrestre. Ces recherches devront être menées / testées sur Terre dans un démonstrateur technologique, un « ECA » (pour « Ecosystème Clos Artificiel », ou « ACE » en Anglais), qui simulera les contraintes des habitats spatiaux.

Pour être efficace  et coller aux exigences de la réalité visée (vie humaine dans une bulle autonome, dans l’espace ou sur une autre planète), l’approche doit être synergétique et systémique. Elle devra regrouper tous les programmes scientifiques et technologiques évoluant à la frontière des domaines de recherche concernés. Il s’agit d’abord de l’écologie industrielle (gestion durable des ressources, bio-monitoring de la boucle matières organiques, éco-toxicologie, valorisation du gaz carbonique, bio-raffinage). Il s’agit ensuite de la biologie des systèmes (sciences biologiques dites « omiques » : bio-monitoring de la santé, génomique, protéomique –protéines-, métabolomique –métabolisme-, nutrigénomique –nutrition-, science des outils microbiens). Il s’agit enfin des technologies de l’information et de la communication (interactions homme/machine, technologies embarquées, objets connectés, systèmes de contrôle intelligent, télémédecine). La combinaison de ces domaines de recherche est cruciale pour parvenir à fournir le monitoring quasiment en temps réel (si le centre intelligent et réactif se trouve dans l’habitat Martien !), la régulation fine et le contrôle des processus de santé des organismes vivants et des conditions environnementales dans un habitat clos.

On voit bien ainsi qu’Oïkosmos sera la mise en situation des recherches MELiSSA (suite logique des travaux menée jusqu’à présent) et le moyen d’étudier toutes leurs interactions. Pour les applications terrestres, on voit bien également qu’elles viseront la « soutenabilité » écologique des activités terrestres (dans un contexte de raréfaction des ressources naturelles), la lutte contre la diffusion des polluants dans les écosystèmes naturels ou encore l’impact environnemental de la construction.

L’ECA dont MELiSSA a besoin pourrait être une version actualisée du projet FIPES (« Facility for Integrated Planetary Simulations ») étudié en 2006 par le Liquifer System Group (« LGS », Vienne) à la demande de l’ESA/ESTEC. Ce FIPES pourrait être implanté à l’UniL. Il testerait, avec des équipages humains, les technologies MELiSSA au fur et à mesure de leur évolution. Il constituerait un outil beaucoup plus sérieux que l’expérience « Mars 500 » dont les media ont beaucoup parlé. En effet Mars-500 ne pouvait tester que les conséquences psychologiques d’une vie en commun en espace clos sur une longue période. Or la véritable difficulté d’une mission habitée dans l’espace profond, ou plutôt la difficulté première, n’est pas là. Elle réside, d’abord, dans la possibilité pour l’équipage de préserver ses fonctions vitales et ses fonctions opérationnels physiques, pendant le voyage et une fois arrivé à destination. Il s’agit de permettre à l’équipage de survivre sans aucun apport matériel extérieur pendant une longue période (mission sur Mars : deux fois six mois de voyage encadrant un séjour de 18 mois en surface d’une planète stérile) compte tenu du fait que les possibilités d’emport de matières sont, avec les technologies actuelles, extrêmement limitées. Rappelons qu’on ne peut prendre à bord en orbite basse terrestre que 130 tonnes, ne déposer sur Mars qu’une vingtaine de tonnes à la fois et qu’il est irréaliste (coût) d’envisager des missions comprenant de trop nombreux lancements (plutôt deux ou trois lancements par fenêtre de tirs, espacées de 26 mois).

Après cette courte présentation, que j’espère objective et exacte d’Oïkosmos, j’insiste pour dire que ces recherches ne doivent pas être utilisées comme alibi pour reculer l’envoi d’équipages humains dans l’espace profond jusqu’à ce qu’on soit parvenu à faire fonctionner un système MELiSSA parfait, c’est à dire assurant une autonomie complète. Je pense au contraire que nous devrions entreprendre ces vols dès à présent (c’est d’ailleurs l’intention d’Elon Musk) avec des systèmes de support vie (« ECLSS ») hybrides : autant régénératifs que possibles mais également artificiels dans la mesure où le régénératif n’est pas encore suffisamment capable ou fiable. La première conséquence de l’imperfection actuelle de MELiSSA ce sera le fait que nous devrons embarquer plus (mais de moins en moins) de « produits » (agents « nettoyants » d’une part, réserves d’eau, d’oxygène et nourriture d’autre part) et de dispositifs physiques (émetteurs d’UV par exemple) nécessaires au rétablissement des équilibres écologiques déstabilisés. La seconde conséquence c’est (comme déjà dit) qu’il est trop tôt pour envisager des vols plus longs que ceux qui sont nécessaires pour atteindre et revenir de Mars (mais la surface planétaire de Mars doit nous permettre de nous organiser pour y séjourner les 18 mois requis par la mécanique céleste).

A suivre! (« MELiSSA » 6/7)

Image à la Une: Projet d’installation FIPES; Crédit image ESA

lecture: « Vers une écologie industrielle » de Suren Erkman, chez éditions Charles Leopold Mayer (2004).

https://www.letemps.ch/sciences/2014/10/23/aventure-un-voyage-vers-mars-commencait-suisse-romande

Blog_59_Melissa

MELiSSA c’est encore des plantes pour respirer et se nourrir

Dans leur « Compartiment IVb » (celui des plantes supérieures) qui doit fournir en nutriments et en oxygène le Compartiment V (habité), les équipes de MELiSSA travaillent à la culture par hydroponie et en environnement contrôlé, du chou frisé (kale), de la laitue, de l’oignon, du riz, de la tomate et de l’épinard, en plus (depuis 2009) de celle des pommes de terre, du soja, du blé tendre et du blé dur, après avoir commencé en 1997 par le blé, les betteraves et la laitue. Ces cultures sont menées indépendamment de celle des algues unicellulaires, type spiruline ou chlorelle (menée dès 1997 dans le Compartiment IVa). Les parties non comestibles de ces plantes et le gaz carbonique qu’elles produisent par leur respiration (pendant les périodes sans lumière), sont renvoyés au début de la boucle de vie (Compartiment 1) pour être recyclés. A noter que les plantes ont besoin d’une alternance jour / nuit variable selon leur espèce.

La diversité des cultures, choisies évidemment pour leurs propriétés nutritives, la quantité relativement faible de leurs déchets et la facilité de leur contrôle (ne serait-ce que l’encombrement de la plante !), progresse donc constamment. Mais la recherche de contrôle ne peut pas porter que sur les espèces cultivées stricto sensu. En effet, comme pour tout être vivant, l’environnement de la plante est essentiel et doit être également connu et maîtrisé. En 2015 les équipes de MELiSSA ont ainsi abordé l’action des microbes sur la rhizosphère (la pomme de terre ou l’asperge, par exemple, se propagent grâce à un rhizome). Ces microbes sont des partenaires symbiotiques de nombreuses plantes (à rhizome ou à simple racine) ; ils en facilitent ou même en permettent la croissance.

La difficulté de la culture en milieu clos et exigu est avant tout un problème sanitaire. Les plantes, comme tout être vivant, ont chacune des compatibilités (des besoins) ou des incompatibilités avec les autres plantes. Elles sont en compétition et / ou en symbiose entre elles. Elles ont chacune un microbiome qui leur est propre et ce microbiome peut contenir un microbiote dont des éléments (malsains ou même sains) peuvent ne pas être supportés par l’autre. A cet égard l’eau et l’atmosphère peuvent être des vecteurs malheureux. Cela n’a pas beaucoup d’importance dans la nature, sauf pour le jardinier ou le cultivateur mais sur Terre on peut amender le sol, le modifier, planter ailleurs, dériver l’irrigation. Au cours d’une mission spatiale habitée c’est beaucoup plus difficile.

Comme dans le cadre des autres compartiments, les scientifiques de MELiSSA font varier les différents facteurs environnementaux du Compartiment IVb. Le but est évidemment d’obtenir les rendements maximum en masse consommable (un minimum de déchets), en valeur nutritionnelle et en temps. Là encore on constate que les besoins des plantes peuvent varier. Elles ont des exigences différentes concernant l’alternance jour / nuit, l’intensité lumineuse, les dominantes du spectre lumineux, les variations de températures, la composition du sol en minéraux, les alternances humidité / sécheresse, le pH, la composition de l’atmosphère (teneur en gaz carbonique).

La conséquence des risques de contamination et de ces particularités est que l’on a intérêt à séparer les cultivars et à bien prendre en compte la compatibilité des plantes si on les associe. On a également intérêt à ne pas leur procurer une pression atmosphérique inutilement forte (on peut descendre beaucoup plus bas pour les végétaux que pour les animaux, peut-être à 0,3 bar), à bien sélectionner les longueurs d’onde du spectre lumineux (le bleu et le rouge-orangé sont préférés) et à effectuer la récolte au meilleur moment de la maturité pour en tirer le plus de qualités nutritionnelles.

La cuisine moléculaire, tentante a priori pour la variété des goûts qu’elle introduirait dans l’alimentation, n’est pas forcément une bonne idée car elle supposerait l’emport de produits chimiques (molécules!) en masse importante et pas forcément indispensable.

On se pose actuellement beaucoup de questions sur l’orientation de la pousse des plantes en apesanteur. Ce problème n’est important que si on suppose que le voyage se fera dans ces conditions mais, à la Mars Society, nous recommandons fortement de recourir à la gravité artificielle…et pas seulement pour les plantes !

Encore une fois, la culture sur Mars sera beaucoup moins difficile que pendant le voyage (place disponible !). Il ne faudra pas oublier de purifier le sol de ses sels de perchlorates, omniprésents en surface et on devrait d’abord pratiquer la culture hors sol (hydroponie, ultraponie) pour assurer un meilleur contrôle et être économe en eau et en produits nutritifs.

Naturellement la préservation des plantes après cueillette est abordée par MELiSSA car il est essentiel de faire correspondre la mise à disposition des aliments avec les besoins de consommation. Il s’agit d’inactiver l’évolution microbienne dans les plantes en attente de consommation. La meilleure solution (Professeur Alexander Mathys, ETHZ) semble être la combinaison de processus thermique et mécanique, ce qu’on appelle la stérilisation thermique à haute pression (jusqu’à 400 MPa, soit 4000 bar, pendant une très courte période).

Un des problèmes essentiels pendant les missions longues, dans l’espace profond, sera la pauvreté relative des variétés d’aliments. Pour contrer les effets de carence, le professeur Mathys recommande l’introduction d’une variété aussi grande que possible de protéines, ce qui implique celles provenant des algues et des insectes. Vous remarquerez que je ne parle pas d’animaux; leur introduction devant se faire ultérieurement (complexité et interaction des microbiomes animaux et avantage poids et volume des algues et des insectes!).

A suivre! (« MELiSSA » 5/7)

Si vous êtes intéressé par le sujet, outre les travaux du Prof. Mathys, vous pouvez consulter ceux des scientifiques ci-dessous (participants au Workshop MELiSSA des 8 et 9 juin) :

Dr. Roberta Paradiso ; University of Naples.

Prof. Ep Heuvelink ; Wageninguen University ; Pays-Bas.

Prof. Radu Mircea Giurgiu ; University of Agricultural Sciences & veterinary medicine, Roumanie.

Prof. Mike Dixon, Université de Guelph (Toronto)

Image à la Une: The Oxygen Garden dans le film Sunshine, 2007, Crédit DNA Films.

MELiSSA_loop

MELiSSA c’est aussi le recyclage de l’eau et l’atmosphère

En dehors du recyclage des matières organiques solides, le projet MELiSSA est également pertinent pour l’eau et  l’atmosphère. Tout comme les premiers, ces deux fluides doivent être recyclés après utilisation dans la boucle de vie et, pour le moment, c’est ce qui « marche » le mieux. Pour leur traitement, on n’a pas besoin de les mélanger avec les déchets, mais on devra récupérer l’eau et les gaz de ces déchets. Dans un vaisseau spatial, il y aura donc deux sources approvisionnement. Sur Mars il y en aura trois car Mars possède de l’eau et une atmosphère (CO2 + azote) qu’il conviendra d’utiliser. Dans tous les cas, outre le recyclage des composants chimiques, il faudra veiller à la « pureté » bactériologique du produit final.

Le spectre de l’eau usée est donc très large. Il comprend des eaux noires et des eaux grises. En surface planétaire une fraction des eaux grises pourra être réutilisée en tant que telles mais pendant le voyage et en fonction de sa durée, tout devra pouvoir être récupéré en eau « propre », pour des raisons sanitaires et pour des raisons d’économie de masse. Pour le traitement on utilise dans la Station Spatiale la technique de « VCD » (pour « Vapor Compression Distillation » ou « distillation par compression de vapeur ») qui présente apparemment quelques difficultés techniques (liées à l’apesanteur ?). Dans MELiSSA on utilise, d’après l’expérience acquise dans la station Concordia en Antarctique, la technique WTUB (Water Treatment Unit Breadboard) qui permet de récupérer 90% du condensat des eaux grises. Elle consiste à combiner la nitrification de l’ammoniac de l’urine par des bactéries spécialisées, avec un dispositif de membranes qui récupèrent l’eau de l’urine nitrifiée mélangée aux eaux grises. On procède ensuite à la distillation de l’eau grise et on obtient d’une part de l’eau pure et d’autre part un fertilisant de bonne qualité.

Mais la nitrification n’est pas si facile car le débit d’urine fraîche doit être en harmonie avec les capacités de traitement des bactéries. Un débit trop élevé apporte un excès d’ammoniac libre qui gêne le « travail » des bactéries nitrifiantes et un débit trop faible introduit un excès de bactéries oxydant l’ammoniac, qui produit trop de nitrites pour les bactéries qui peuvent les oxyder. Les nitrites en  s’accumulant épuisent les bactéries susceptibles de les traiter, les bactéries oxydantes de l’ammoniac deviennent tolérantes à l’acidité ce qui fait chuter le pH du liquide et libère divers gaz non souhaités (et qu’il faudrait retraiter !): acide nitreux, oxyde nitrique et oxyde nitreux (anesthésiant et hallucinogène). Il faut donc réguler l’entrée d’urine fraîche dans le système de manière à garder le pH dans une bande étroite, entre 6.3 et 6.35 (sur une échelle 1 à 14). Si le débit d’urine est trop bas (comme indiqué par le taux de pH) il faut arrêter son entrée et empêcher l’oxydation (arrêter l’aération)…Tout ce développement pour montrer que rien n’est simple et que les dérèglements des systèmes de recyclage peuvent avoir de graves conséquences dans un environnement très exigu et avec une « population » forcément réduite dont les rejets métaboliques ne peuvent être lissés par le nombre.

Pour ce qui est de l’atmosphère, on a choisi la régénération du CO2 en O2 par photosynthèse, ce qui est naturel puisque c’est ce qui fonctionne naturellement sur Terre. Elle sera opérée par des micro-algues (bactéries, unicellulaires), spirulines et/ou chlorelles, installées dans des photo-bioréacteurs (savamment conçus pour que la lumière soit diffusée sur un maximum de biomasse). Elles absorberont le gaz carbonique et rejetteront un solde positif important d’oxygène (et seront ultérieurement consommables). Là aussi, la qualité bactériologique doit être constamment contrôlée et pilotée. Plus un déséquilibre sera perçu tôt, plus il sera facile et moins il sera coûteux de le corriger.

Une première retombée de la recherche MELiSSA, a été la mise au point en commun avec BioMérieux d’un appareil de contrôle de qualité bactériologique de l’air, MiDASS (pour Microbial Detection in Air system for Space) qui a l’avantage de pouvoir être commercialisé et donc d’apporter des ressources à MELiSSA. J’en parlerai dans un autre billet.

Comme pour le traitement des déchets organiques solides, on ne devrait pas atteindre rapidement un recyclage totale de l’eau et de l’atmosphère mais les pourcentages pour l’atmosphère et les eaux grises sont déjà très élevés (dans les 93% pour l’eau et 75% pour l’oxygène). Chaque progrès effectué donne une plus grande sécurité et permet d’envisager de réduire la masse qu’il sera indispensable de prendre avec soi dans le vaisseau spatial (compte tenu des quantités non recyclables, des risques de défaillance des systèmes de traitement naturels et des produits chimiques nécessaires à un traitement alternatif, non « naturel »). Encore une fois ce qui compte c’est la durée de fiabilité d’une installation de traitement et la capacité d’emport dans les fusées que nous savons construire aujourd’hui. On ne peut ainsi envisager que d’aller sur la Lune et sur Mars. Sur Mars, compte tenu de la durée du voyage et du séjour en surface planétaire, il faudra compter avec l’utilisation des ressources locales.

A suivre! (« MELiSSA » 4/7)

Si vous êtes intéressé par le sujet, vous pouvez consulter les travaux des personnes suivantes :

Dr. Kai Udert (ETHZ / EAWAG). See : www.vuna.ch or www.autarky.ch

Prof. Siegfried Vlaeminck (Uni. Anvers), pour WTUB.

Prof. Jack Legrand (Uni. Nantes) pour l’ingénierie de la photobioréaction.

Liens :

http://www.nasa.gov/press/2014/april/nasa-astronauts-will-breathe-easier-with-new-oxygen-recovery-systems/#.V4Kl1fmLSM8

http://www.universetoday.com/101775/an-inside-look-at-the-waterurine-recycling-system-on-the-space-station/

Image à la Une: Les interactions « naturelles » que s’efforce de reproduire la boucle MELiSSA. Crédit ESA / MELiSSA

Blog_55B_body-bacteria

MELiSSA un pilotage de microbiotes

Le bon fonctionnement (contrôle et orientation) des différents compartiments de MELiSSA n’est pas simple et c’est tout le défi que le projet représente ; de nombreux problèmes se posent, le plus délicat étant sans doute celui du pilotage de notre environnement microbien (microbiote). En effet, comme on peut le constater, des bactéries (bactéries, archées) sont à l’œuvre dans chacun des compartiments (y compris le cinquième, habité !) et on doit « faire attention » à celles qui s’y trouvent, qu’on introduit et qui s’y développent (y compris, en dehors des procaryotes mentionnés, les eucaryotes protistes et mycètes)! Le dernier verbe, « développer », est important car le microbiote comme tout système vivant, est un système dynamique et symbiotique. Les êtres vivants transforment la matière alentour par leur métabolisme, vivent les uns à côté des autres et les uns grâce aux autres, et ils prolifèrent.

Grace au « Human Microbiome Project », on connait maintenant (sans toutefois parfaitement le comprendre dans son fonctionnement) entre 80 et 99% du microbiote strictement humain mais on ne connait toujours qu’un pourcentage infime (moins de 0,01%) des microbes de l’ensemble de notre environnement, englobant nos plantes, nos animaux, notre sol (peut-être un trillion d’espèces pour la Terre entière). Les microbes sont directement ou indirectement nos alliés ou nos ennemis. Certains nous sont nocifs (« pathogènes »), d’autres nous sont neutres (mais peut-être pas pour nos plantes et nos animaux), d’autres encore nous sont favorables ou indispensables. Leurs quantités et leurs proportions sont très importantes pour un système écologique viable pour l’homme (relations entre les microbes, avec le milieu minéral, le milieu vivant eucaryotique) non seulement dans l’espace (la bulle où vivront les astronautes) mais aussi dans le temps (selon notre activité). L’aire de vie de ce microbiote (son microbiome) est lui-même sensible à l’environnement (à l’humidité, au pH, à la température, à la lumière ou à son absence, à la composition de l’atmosphère, à la composition et à l’état des supports, à la présence de nourriture telle que graisses ou protéines).

Les stérilisations ou, moins drastiques, les nettoyages ou mieux, les corrections sélectives de proliférations, sont nécessaires mais dangereux car on risque de détruire de bons microbes en même temps que les mauvais ou bien de sélectionner des souches résistantes en éradiquant des souches bénignes. Le but d’une action sur le microbiome n’est pas d’éliminer le microbiote mais de le maintenir dans un équilibre favorable pour nous, la difficulté étant qu’on le connait encore si mal et que le milieu viable (qui est aussi le microbiome considéré) dans lequel évolueront les astronautes sera isolé et petit. « Isolé » cela veut dire que si le milieu est détruit on ne pourra aisément le reconstituer et « petit », cela veut dire qu’en cas de détérioration, le déséquilibre sera ressenti beaucoup plus que dans un milieu large puisque les déficiences ne pourront être réparées comme sur Terre, par homogénéisation avec l’ensemble des milieux voisins (effet masse ou « buffer »).

Dans ces conditions la durée du voyage interplanétaire et la redondance des milieux de vie seront des données très importantes pour toute mission habitée dans l’espace profond. En effet plus le voyage sera long plus les risques de déséquilibre du milieu seront grands (et plus les correctifs chimiques que l’on pourra emporter avec soi risque d’être insuffisants en termes de masse). A l’arrivée sur l’autre planète, le risque pourra être mitigé par la création aussi tôt que possible (avant l’arrivée de l’homme) de plusieurs milieux viables isolés les uns des autres. On voit tout de suite les limites que cela impose : Mars est à six mois de distance. L’expérience de la Station spatiale a montré que cette durée est gérable mais il vaut mieux choisir de ne pas aller plus loin (vers les lunes de Jupiter) car sur un an on risque d’avoir des divergences importantes des milieux par rapport à l’état initial. Le risque de divergence subsiste pour les séjours, forcément longs, sur une autre planète (sur Mars, 18 mois pour retrouver la configuration planétaire la plus favorable au retour) mais ces risques pourraient être mitigés par la redondance, plusieurs habitats renforçant la probabilité de la persistance d’au moins un environnement viable et donc de la possibilité de correction des environnements divergents. Dans ce contexte, un séjour sur Mars devrait également s’avérer préférable à un séjour sur un autre corps céleste puisque le sol de Mars comporte les mêmes ressources minéralogiques que la Terre et en particulier de l’eau (glace). Ces ressources pourraient permettre de produire localement rapidement les composés chimiques nécessaires au rééquilibrage des microbiotes.

A suivre! (« MELiSSA » 3/7)

Image à la Une: une fraction infime de notre microbiote.

Si vous êtes intéressés par le sujet, vous pouvez consulter les travaux du Dr. Christophe Lasseur, du Prof. Jean-Pierre Flandrois (Uni. de Lyon) ou du Prof. Alberto Bemporad (IMT School for advanced studies, Lucques, Italie). C’est le professeur Bemporad qui a exprimé le concept de « pilotage » lors du workshop.

Lecture: « I contain multitudes: the microbes within us and a grander view of Life » par Ed Yong, à paraître le 9 août 2016.

Liens :

http://wp.unil.ch/geoblog/2016/06/interview-de-christophe-lasseur-directeur-du-projet-melissa-a-lesa/#more-2183

http://www.csmonitor.com/Science/2016/0503/99.999-percent-of-microbe-species-remain-undiscovered-say-researchers

https://www.genome.gov/27549144/2012-release-nih-human-microbiome-project-defines-normal-bacterial-makeup-of-the-body/